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Abstract: In this study, we focus on lateral size effects of graphene nanosheets as conductive additives
for LiNi0.5Co0.2Mn0.3O2 (NCM) cathode materials for Li-ion batteries. We used two different lateral
sizes of graphene, 13 (GN-13) and 28 µm (GN-28). It can be found that the larger sheet sizes of
graphene nanosheets give a poorer rate capability. The electrochemical measurements indicate that
GN-13 delivers an average capacity of 189.8 mAh/g at 0.1 C and 114.2 mAh/g at 2 C and GN-28
exhibits an average capacity of 179.4 mAh/g at 0.1 C and only 6 mAh/g at 2 C. Moreover, according
to the results of alternating current (AC) impedance, it can be found that the GN-28 sample has
much higher resistance than that of GN-13. The reason might be attributed to that GN-28 has a
longer diffusion distance of ion transfer and the mismatch of particle size between NCM and GN-28.
The corresponding characterization might provide important reference for Li-ion battery applications.
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1. Introduction

The scientific and technological understanding of batteries has been developed rapidly in recent
years because of the needs of the electronic devices market. Li-ion batteries are major energy storage
devices that are used in many different electronic devices, such as cellphones, watches, computers,
etc. [1]. The requirements of the electric vehicle market have also been extended in recent years.
To meet the electric vehicle market’s requirements, energy density, operating voltage and stability play
fundamental roles in the battery. LiFePO4 [2] is one of the most widely used cathode materials in electric
vehicles and it was intensively studied for many years, but there are some problems that should be
solved, such as lower energy density, lower operating voltage and lower capacity [3,4]. In order to get
high energy density, the layer structures of LiCoxNiyMnzO2 (x + y + z = 1) are widely studied because
of their high operating voltage and higher specific capacity. Compared to LiFePO4, LiCoxNiyMnzO2,
namely NCM-based cathodes, demonstrated much better electrochemical performance, such as higher
specific capacity, operating voltage and energy density [5–14]. Thus, many efforts have been made to
improve the electrochemical performance of NCM-based cathodes from the viewpoints of electronic
conductivity and structure stability. Changing the chemical composition and surface morphology
modifications of NCM-based cathode materials are efficient methods to enhance their electronic
conductivity or electrode stability, such as oxide coatings [15–19] and doping techniques [19–22]. Zhu
et al. [15] proposed a LiNi0.5Co0.2Mn0.3O2/LiFePO4 core-shell structure. By LiFePO4 coating, the
electrochemical performance and safety of the composite are greatly improved by pouch fill cells tests.
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Yang et al. reported a one-dimensional Nb-doped LiNi1/3Co1/3Mn1/3O2 cathode nanostructure. By Nb
doping, the reversible capacity, and structure stability as well as the electronic conductivity and cycle
performance of the LiNi1/3Co1/3Mn1/3O2 cathode could be enhanced. The composition-optimized
Nb-doped LiNi1/3Co1/3Mn1/3O2 cathode achieved a high discharge capacity of 200.4 mAh·g−1 at 0.1 C.
Even at 5 C, the modified cathode still had a high capacity of 118.7 mAh·g−1 after 200 cycles [20]. As well
as oxide coating and element doping modifications, adding electronic conductive additive [23–25] is
also an efficient way to enhance the electronic conductivity of cathode materials and cycle performance.
Carbon materials [26], of course, are the most commonly used as conductive additives because of
their high conductivity and chemical stability. For instance, Du et al. [24] reported carbon nanotubes
(CNTs) and Super-P as the conductive additive to make the slurry of lithium nickel manganese
cobalt oxide (NMC) that can build the three-dimensional structure network to improve its electronic
conductivity. The content of active materials increased from 90 to 96 wt %. After 200 cycles the
retention in full pouch cell was still 99.4%, which was better than the carbon black. Nowadays,
much attention has been drawn to graphene-based materials as conductive additives in cathode
materials for Li-ion batteries. Undoubtedly, graphene nanosheets (GN) [11,12,27–43] are potential
candidates because of their unique chemical properties, high mechanical strength, chemical tolerance
and excellent conductivity. Wang et al. [42] found that by only 3 wt % graphene loading, the specific
capacity of LiFePO4 cathode could be dramatically enhanced from 150 to 178 mAh·g−1. For LiCoO2

and Li(Ni1/3Mn1/3Co1/3)O2 cathodes, the maximum specific capacity of 156 and 168 mAh·g−1 were also
enhanced by using graphene as a conductive additive. Wang’s group further demonstrated that by
adding liquid-exfoliated graphene, the electrode kinetic energy and reversibility of cathodes were
greatly enhanced. In addition, graphene-based additives in cathode materials could also shorten
Li-ion diffusion paths and reduce polarization in cathode material particles. The liquid-exfoliated
graphene used as the conductive additive in cathode materials decreased the content of conductive
additive without reducing the electrode conductivity [44]. The results indicated that cathodes with
multi-carbon additives displayed better improvement in capacity and rate capability. Difference
kinds of carbon additives were found to have great effects on the improvement of electrochemical
performance. CNTs and graphene make up the shortage of carbon black. When all the carbon additives
were used together, NCM particles were well covered by graphene, with carbon black particles coating
onto the surface, and the whole sheet was connected by CNTs, offering electrons both “short path” and
“long path” highways to transport [45]. The lateral sizes of graphene nanosheets are also a key issue for
the applications of graphene additives in cathode materials. In Liu’s study, the different graphene size
affected the electrochemical performance of LiFePO4 cathode materials. The results indicated that the
smallest size of graphene had better electrochemical performance (165 mAh·g−1). The specific capacity
and rate performance of LiFePO4 electrodes tend to worsen with increases of the size of graphene,
because the length of ionic transport path got longer [46].

In this study, we studied the effects of different graphene nanosheets sizes on LiNi0.5Co0.2Mn0.3O2

cathode materials. Graphene and carbon black form three-dimensional structure networks by
point-to-plane contact with the graphene and carbon black. The electrochemical measurements indicate
that GN-13 delivers an average capacity of 189.8 mAh/g at 0.1 C and 114.2 mAh/g at 2 C and GN-28
exhibits an average capacity of 179.4 mAh/g at 0.1 C and only 6 mAh/g at 2 C, respectively.

2. Experimental

2.1. Electrode Composition and Characterizations

The composition of electrodes consisted of LiNi0.5Co0.2Mn0.3O2 (NCM from MIT Advanced
Material Co., Ltd, New Taipei City, Taiwan; D50 = 15 µm) as the active material, polyvinylidene
fluoride (PVDF) as binder and graphene ((graphene (GN, Hengwang®, our cooperated company,
Xuancheng city, China) and carbon black (Super-P, Timcal®, Shanghai City, China) as conductive
additives in the weight ratio 91:4:3:2. Commercial graphene nanosheets (5–10 layers) with different
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sizes were used in this study. For comparison, two different lateral sizes of graphene nanosheets
(denoted as GN-13 and GN-28) were synthesized by using the cavitation process via fixing the chamber
pressure at 2000 bar and changing the cycling times to 3 times or 12 times to obtain GN-13 (smaller
lateral size) and GN-28 (bigger lateral size), respectively [47]. The NCM powders were investigated by
powder X-ray diffraction (XRD, Bruker D8 Advance Eco) with Cu Kα radiation (λ = 1.5418 Å). Scanning
electron microscopy (SEM, Hitachi S-4100 Tokyo, Japan) and energy dispersive X-ray spectroscopy
(EDS) analyzed the morphology and structure of powders. The lateral size was analyzed by dynamic
light scattering (DLS, Malvern Zetasizer Nano ZS90, Malvern, United Kingdom). High resolution
transmission electron microscopy (HRTEM, JEOL JEM-2100, Guangzhou City, China) images were
taken on acceleration voltage of 200 kV.

2.2. Slurry Preparation

The slurry was fabricated as follows: first, polyvinyl difluoride (PVDF, 0.04 g) was added into the
graphene (4.6 wt %) suspension in a 10 mL sample vial, stirring smoothly for 2 h by hotplate to make
sure the PVDF was fully dissolved. Second, mixing of Super-P (0.02 g) and active material (0.91 g) by
powder mixing machine. The Super-P electrode was made in the same method by 5 wt % without
adding graphene. Finally, the above mixture was added into N-methyl pyrrolidone (NMP) solution
and stirred overnight. The slurry was coated onto aluminum foil (20 µm) by a coating machine and
dried in an oven at 80 ◦C for 30 minutes. The electrodes were punched (Diameter = 14 mm) and dried
at 120 ◦C in a vacuum system overnight to remove the residual water. Electrochemical performance
was analyzed by coin cells (CR2032, Xinet International Co. Ltd., Taichung City, Taiwan).

2.3. Electrochemical Measurements

The batteries were assembled in an Ar-gas filled glove box with H2O and O2 content < 0.5 ppm,
using a lithium disk as the counter electrode. The electrolyte consisted of 1 M LiPF6 in ethylene
carbonate (EC), ethyl methyl carbonate (EMC) and dimethyl carbonate (DMC) (1:1:1 by wt %), with 1 wt
% vinylene carbonate (VC). The separators were purchased from Celgard 2325®. The electrochemical
performance tests for rate performance (0.1, 0.2, 0.5, 1, 2, 5 and 10 C) were analysed by an AcuTech
System in the voltage window of 3.0 and 4.5 V at room temperature. The electrodes were analyzed by
cyclic voltammograms (CV) (CH Instruments Analyzer CHI 6273E) in the voltage window of 3.0 to
4.5 V with a scan rate of 0.1~0.5 mV·s−1. Electrochemical impedance spectroscopy (EIS) measurements
were measured on Bio-Logic Science Instruments (VSP-300) with a perturbation amplitude of 5 mV at
the frequency range between 100,000 Hz and 0.01 Hz.

3. Results and Discussion

Figure 1a displays the X-ray diffraction pattern of the NCM sample. The diffraction peaks of
18◦, 36◦, 38◦, 44◦, 48◦, 58◦, 64◦, 65◦ and 68◦ could be indexed as the (003), (101), (10-2), (104), (10-5),
(009), (10-8), (2-10) and (2-13) planes, respectively, by comparing the standard XRD pattern of NCM
peaks with ICSD-242139. The result indicates that the active material was pure-phased with highly
crystallinity. Figure 1b shows the SEM image of the surface morphology of NCM. From the SEM image
we could observe that the particle size distribution of NCM was from 10 to 15 µm with a sphere-like
morphology. Furthermore, from the same results as the SEM observations, the particle size distribution
of the NCM was similar and ranged from 8 to 20 µm with wide lateral size of 15 µm (D50) (Figure 1c).
Figure 1d shows the atomic ratio of the NCM cathode powders and without other signals of elements
according to EDS analysis.



Polymers 2020, 12, 1162 4 of 13
Polymers 2020, 01, x FOR PEER REVIEW  4 of 14 
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ray spectroscopy (EDS) image of NCM. 

Figure 2 shows the SEM images and HR-TEM images of the surface morphology of GN-13 and 
GN-28, respectively. Figure 2a,b shows the SEM images of GN-13 and GN-28. The nature of few-
layered graphene can be seen without significant stacking. Figure 2c,d shows the TEM images of GN-
13 and GN-28. The contour of graphene can be clearly seen from the figure, and the graphene 
nanosheet was only stacked to a few layers, it can be observed to be translucent under the TEM. The 
edges are wrinkled, which was one of the typical features of graphene, and the small columnar may 
be dispersant. 

Figure 1. (a) X-ray diffraction (XRD) pattern of LiNi0.5Co0.2Mn0.3O2 (NCM), (b) scanning electron
microscopy (SEM) image of NCM, (c) particle size distribution of NCM and (d) energy dispersive X-ray
spectroscopy (EDS) image of NCM.

Figure 2 shows the SEM images and HR-TEM images of the surface morphology of GN-13 and
GN-28, respectively. Figure 2a,b shows the SEM images of GN-13 and GN-28. The nature of few-layered
graphene can be seen without significant stacking. Figure 2c,d shows the TEM images of GN-13 and
GN-28. The contour of graphene can be clearly seen from the figure, and the graphene nanosheet
was only stacked to a few layers, it can be observed to be translucent under the TEM. The edges are
wrinkled, which was one of the typical features of graphene, and the small columnar may be dispersant.

Figure 3 shows the AFM (Atomic force microscopy) images and the distribution of thickness for
GN-13 and GN-28 samples. We took 30 samples to obtain the information of the average thickness and
distribution of thickness. All of the graphene nanosheets were of a thickness approximate to 3 to 5 nm.
The few-layered graphene GN-13 and GN-28 had six to 10 layers that prove graphene sheets were of
high quality. Figure 4 shows the DLS images of different graphene nanosheets. The average sizes (D50)
of GN-13 and GN-28 were 13 and 28 µm, respectively. The particle sizes (D10) and (D90) of GN-13 were
5 and 28 µm and of GN-28 were 11 and 79 µm, respectively.

Figure 5 displays X-ray diffraction patterns of different lateral sizes of graphene nanosheets.
The grain size of GN-13 and GN-28 were determined to be 135.516 and 86.277 Å, respectively, by the
Scherrer equation:

D = κλ/β/cosθ (1)

where D is the mean size of the crystalline domains, κ is the dimensionless shape factor, λ is the X-ray
wavelength (1.5418 Å), β is the line broadening at half the maximum intensity (FWHM) and θ is the
Bragg angle.
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P electrode shows reversible capacity of 168.4, 151.4, 136.6 and 37.2 mAh/g at 0.1, 0.5 ,1 and 2 C, 
respectively. Compare to GN-13/Super-P and GN-28/Super-P, we found that bi-conductive additives 
gave much better rate capability than Super P. For example, at 2 C, the capacity of GN-13 and Super 
P were 114.2 and 37.2 mAh/g. The enhancement could be 3.06 times by intruding GN-13/Super P as 
composite conductive additives. The reason for the dramatically enhancement might be explained 
that GN-13/Super P provides a shorter point-to-plane structure for the Li-ion transfer path. The 
structure of the Super-P electrode is the only point-to-point structure in which the C-rate performance 
was worse at high rate. The results show that the high rate performance of the electrode becomes 
worse without the addition of graphene. When the current rate is redirected back to 0.1 C, the charge 
capacity of GN-13 and GN-28 electrodes are recovered to 178.8 and 160.4 mAh/g, respectively. Figure 
6b,c are the charge/discharge curves of GN-13 and GN-28, respectively. The charge/discharge 
electrical potential difference of GN-13 at 90 mAh/g (0.5 C) is 0.219 V. The difference of electrical 
potential for GN-28 at 90 mAh/g (0.5 C) was 0.754 V. The lower potential difference needs less energy 
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suffers from severe polarization which results in poor electrochemical conductivity. When the 
graphene sheet size is approximate with NCM particle sizes this can improve the electrochemical 

Figure 5. XRD patterns of (a) GN-13 (b) GN-28 samples.

Figure 6a shows the rate performances of the NCM with different sheet sizes of graphene and
Super-P. The GN-13 electrode demonstrates charge capacity with an increased current rate of 189.8,
165.6, 142.2 and 114.2 mAh/g when the current rate increased from 0.1, 0.5, 1 and 2 C, respectively.
The GN-28 electrode exhibits charge capacities with increased current rates of 179.4, 134.8, 75.2 and
6 mAh/g at current rate from 0.1, 0.5, 1 and 2 C, respectively. For comparison, we also introduced
5 wt % Super P as a conductive additive in the NCM electrode for the control measurement. The
Super-P electrode shows reversible capacity of 168.4, 151.4, 136.6 and 37.2 mAh/g at 0.1, 0.5, 1 and 2 C,
respectively. Compare to GN-13/Super-P and GN-28/Super-P, we found that bi-conductive additives
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gave much better rate capability than Super P. For example, at 2 C, the capacity of GN-13 and Super
P were 114.2 and 37.2 mAh/g. The enhancement could be 3.06 times by intruding GN-13/Super P as
composite conductive additives. The reason for the dramatically enhancement might be explained that
GN-13/Super P provides a shorter point-to-plane structure for the Li-ion transfer path. The structure
of the Super-P electrode is the only point-to-point structure in which the C-rate performance was
worse at high rate. The results show that the high rate performance of the electrode becomes worse
without the addition of graphene. When the current rate is redirected back to 0.1 C, the charge capacity
of GN-13 and GN-28 electrodes are recovered to 178.8 and 160.4 mAh/g, respectively. Figure 6b,c
are the charge/discharge curves of GN-13 and GN-28, respectively. The charge/discharge electrical
potential difference of GN-13 at 90 mAh/g (0.5 C) is 0.219 V. The difference of electrical potential for
GN-28 at 90 mAh/g (0.5 C) was 0.754 V. The lower potential difference needs less energy than high
potential difference for charge/discharge. It can be inferred from these graphs that GN-28 suffers from
severe polarization which results in poor electrochemical conductivity. When the graphene sheet
size is approximate with NCM particle sizes this can improve the electrochemical performance and
decrease the diffusion distance of ion transfer. Considering each specific capacity at 0.1 C as 100%, the
rate capability of GN-13 and GN-28 were investigated by increasing current density from 0.1 to 10 C.
Figure 6d shows the capacity retention of different C-rates and the retention of GN-13 at 0.5, 1 and 2 C
was about 96%, 87% and 75%, respectively. The capacity retention of GN-28 was about 75%, 42% and
3% at 0.5, 1 and 2 C, respectively.
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Figure 7a shows EIS analyses of GN-13 and GN-28 electrodes. The inset shows the equivalent
circuits and fitting results after three cycles (0.1 C) at charged state. As shown in Figure 7a, the diameter
of the semicircle for the GN-13 electrode was much lower than that of the GN-28 electrode. Semicircles
and a straight sloping line from the high to low frequency region are the typical EIS. The internal
resistance of the coin cell systems includes the combined resistance from the electrolyte, solid electrolyte
interphase (SEI), charge transfer and Li-ion diffusion into the electrode. Thus, we use RS, Rf and
RCT items in the equivalent circuit. RS is the electrolyte resistance at the highest frequency, Rf is the
resistance of the SEI film and RCT is the charge transfer resistance at the middle frequency region.
The sloping line represents the diffusion of Li-ion at the lower frequency. Depending on the EIS plot,
the RS, Rf and RCT values of GN-13 are 4.14, 123 and 40 Ω, respectively. The RS, Rf and RCT values of
GN-28 are 6.13, 142 and 202 Ω, respectively. RCT decreases when smaller graphene is used to be the
conductive agent, owing to shorter diffusion length of ionic transfer in the NCM structure. The ionic
conductivity of the GN-13 electrode is higher than that of the GN-28 electrode, which indicates that
the RCT of GN-13 electrode is smaller than that of GN-28 electrode. The lower slope of EIS analyses
have better ionic diffusivity and conductivity. The diffusion length of ionic transfer in the GN-13 based
electrode was shorter than that of the GN-28 based electrode. The following equation can calculate the
Li-ion diffusion coefficient (D):

D = R2 T2/2A2 n4 F4 C2 σ2 (2)

The ideal gas constant is R (8.314 J/K mol), the room temperature is T, the electrode surface area is
A (~1.54 cm2), the electrons number involved in the reaction is n (n = 0.75), Faraday’s constant is F
(96500 C/mol), and the Li-ion concentration is C (0.001 mol/cm3). Figure 7b shows the relationship
lines between Z’ vs. ω−1/2 at low frequency region of GN-13 and GN-28. We calculated the diffusion
coefficients of Li-ion in GN-13 and GN-28 to be 4.437 × 10−10 and 4.227 × 10−10 cm2/s by the
equation, respectively.
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circuit and (b) the relationship lines between Z’ vs. ω−1/2 at low frequency.

Figure 8a shows the cyclic voltammogram (CV) profiles of GN-13 and GN-28 at a scan rate of
0.1–0.5 mV/s in the voltage window of 3–4.5 V versus Li/Li+. The curves of both graphene show
a similar charge/discharge plateau with the work voltage at 3.0–4.5 V. The diffusion coefficient of
lithium-ion in GN-13 and GN-28 can be calculated by the following Randles–Sevcik equation via
CV analysis:

ip/m = 0.4463 (F3/RT)1/2 n3/2 AD1/2 Cv1/2 (3)

The peak current is ip (A), the mass of the active cathode material is m, Faraday’s constant is F
(96500 C/mol), the ideal gas constant is E (8.314 J/K mol), the room temperature is T, the number of
electrons involved in the reaction is n (n = 0.75), the electrode surface area is A (~1.54 cm2), and the
concentration of Li-ion is C (0.001 mol/cm3). Figure 8b shows that the diffusion coefficient of GN-13
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and GN-28 calculated by the slope of cyclic voltammograms. According to the equation, diffusion
coefficients of lithium ions in GN-13 and GN-28 are calculated to be 3.23× 10−8 and 2.61× 10−8 cm2/s for
anodic and 2.16 × 10−8 and 1.8 × 10−8 cm2/s for cathodic reaction, respectively. As shown in Figure 8b,
the slope of GN-13 was higher than that of GN-28. The ionic diffusivity of the GN-13 electrode was
better than that of the GN-28 electrode. According to Table 1, the separation peak increases from GN-13
to GN-28, which means a lateral size of graphene similar with NCM poses the least polarization. In
order observe the distribution of NCM, GN-13 and GN-28 in electrode, Figure 9 shows SEM images of
fresh electrodes (without charge and discharge) of the GN-13 electrode (Figure 9a,b) and the GN-28
electrode (Figure 9c,d). It is a little difficult to identify which one is cathode material (NCM) and
which one is conductive additives (GN-13, GN-28 or Super P). Thus, we try to label these materials by
different colors. The red lines are NCM, the blue and green lines are GN-13 and GN-28, respectively.
As shown in Figure 9, GN-28 was too big to cover NCM cathodes. Nevertheless, the size of GN-13 and
the NCM cathode was similar. Thus, the rate capability of the NCM cathode might be improved by
intruding GN-13 instead of GN-28. Figure 10 is the schematic diagram of lithium ion and electron
transport paths in different systems using graphene with different sizes and Super-P as conductive
additives. The graphene sheet size is similar to that of NCM in that the distance of electron transport
is shorter.
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4. Conclusions

In summary, we used graphene nanosheets with different lateral sizes as conductive additives in
NCM to study the size effects on their electrochemical properties. An effective electronic conducting
network can be constructed and significantly improved the electrochemical performance of NCM by
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graphene nanosheets and Super P as conductive additives simultaneously. With increased graphene
sheet sizes, the specific capacity and rate performance tends to get worse for NCM electrodes due to
that the distance of the ion transport path is protracted. Size matching is the critical issue for choosing
suitable graphene nanosheets as conductive additives for NCM cathodes for Li-ion battery application.
Similar sizing matching of GN and NCM could keep effective balance between fast lithium ion diffusion
and increased electron transport.
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