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Abstract: The existing studies indicate that the measurement formulas used in blister test 
techniques, which are used to measure the mechanical properties of thin-film/substrate systems, 
are usually given based on an approximation—that is, the applied direction of the uniformly 
distributed transverse load is always vertical, while the applied direction of the uniformly 
distributed gas pressure is always perpendicular to the surface of the thin film. This 
approximation will lead to a large measurement error. In this study, we obtained the analytical 
solution to the problem of axisymmetric deformation of blistering circular thin polymer films 
under the action of uniformly distributed gas pressure via the power series method. An example is 
given to illustrate the error caused by the approximation mentioned above, and the validity of the 
solution presented here is verified. The result shows that the chance of error caused by the 
approximation increases with the increase in the applied load, and it far exceeds the allowable 
error of measurement when the applied load is relatively large. In addition, the related 
experiments of the blistering circular thin polymer film under uniformly distributed gas pressure 
are carried out, and the experimental results are compared with the theoretical results. The 
comparison results show that the analytical solution given in this paper is correct. The solution 
presented here is of great significance to improve the measurement accuracy of the blister test 
technique. 

Keywords: thin-film/substrate systems; pressure blister test; uniformly distributed gas pressure; 
experimental verification; closed-from solution 

 

1. Introduction 

Thin-film/substrate systems have found increasing application in many fields, such as civil 
engineering, mechanics and biotechnology [1–6]. Usually, the reliability of thin-film/substrate 
systems depends mainly on the mechanical properties of thin-film/substrate systems (including the 
mechanical properties of surface thin film and interfacial adhesive strength of thin-film/substrates). 
Therefore, in order to know the reliability of thin-film/substrate systems more accurately, it is 
necessary to measure the mechanical properties of thin-film/substrate systems precisely. The 
measurement formula used is usually based on the analytical solution of the corresponding 
mechanical problem, so it is also necessary to give the analytical solution of the corresponding 
mechanical problem. 
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To date, many test techniques have been used for the measurement of the mechanical 
properties of thin-film/substrate systems [7–18], of which the blister testing method is common and 
realizes the synchronous measurement (the mechanical properties of the thin film and the adhesive 
strength of the thin-film/substrate systems can be measured simultaneously) [19–21]. The blister test 
technique was first suggested by Dannenberg [22], and was then developed into many variant 
forms by subsequent investigators [23–26]. All blister tests can be classified into two major variants 
according to the loading method: (i) gas pressure loading (corresponding to a pressure blister test, 
as shown in Figure 1a where q denotes applied load, a denotes the radius of film, h denotes the 
thickness of film, r denotes the radial coordinate and wm denotes the max transversal displacement 
of the circular membrane), and (ii) shaft-loading (corresponding to a shaft-loaded blister test, as 
shown in Figure 1b where F denotes applied load). In the pressure blister test, the thin film is 
pressurized progressively by working gas, until an axisymmetric blister crack runs into the 
interface of thin-film/substrate systems. From Figure 1a, it can be seen that the delamination process 
of the thin film from the substrate can be simplified as the mechanical problem of axisymmetric 
deformation of circular thin film under the action of uniformly distributed gas pressure. The 
measurement formulas used in the pressure blister test are given based on the analytical solution of 
the mechanical problem. However, due to the difficulty in obtaining the analytical solution of 
axisymmetric deformation problem of circular thin film under uniformly distributed gas pressure, 
the existing measurement formulas are all given by the analytical solution of the axisymmetric 
deformation problem of circular thin film under uniformly distributed transverse load. The 
mechanical model of this is shown in Figure 2 [15]. The problem of axisymmetric deformation of 
circular thin film under uniformly distributed transverse load was originally dealt with by Hencky 
[27]; therefore, it is widely known as the Hencky problem for short, and its solution is known as the 
Hencky solution [28]. 

 

Figure 1. Sketches of the loading configuration of blister tests. (a) a pressurized circular blister 
configuration and (b) a shaft-loaded circular blister configuration. 

 
Figure 2. Sketch of circular thin film under uniformly distributed transverse load. 

From Figure 1a and Figure 2, it can be seen that the applied direction of the uniformly 
distributed transverse load is always vertical, while the applied direction of the uniformly 
distributed gas pressure is always perpendicular to the surface of the thin film. When the gas 
pressure is very small, the deformation of the thin film will be correspondingly small. Thus, the 
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component of uniformly distributed gas pressure along the horizontal direction is also relatively 
small. In this case, the uniformly distributed gas pressure may be approximately replaced by the 
uniformly distributed transverse load without much error. However, with the increase in uniformly 
distributed gas pressure, the deformation of the thin film will increase correspondingly, meaning 
that the component of uniformly distributed gas pressure along the horizontal direction is no 
longer too small, and will have a great impact on the deformation of the thin film. If the uniformly 
distributed gas pressure is replaced by the uniformly distributed transverse load, obviously there 
will be a big error. In addition, thin films are usually made of flexible materials, which can easily 
produce large deformations under the action of external loads. Therefore, it is obviously 
inappropriate to replace the uniformly distributed gas pressure with the uniformly distributed 
transverse load. As a result, in order to obtain an accurate measurement formula of the blister test 
technique, it is necessary to give an analytical solution of the axisymmetric deformation problem of 
circular thin film under uniformly distributed gas pressure. 

In this paper, the closed-form solution of the problem of axisymmetric deformation of the 
blistering circular thin film under the action of uniformly distributed gas pressure was presented by 
the power series method. In Section 2, the governing equations of the problem solved here will be 
given and dimensionless, and the dimensionless governing equations will be solved by the power 
series method. The solution presented in this paper will be compared with the well-known Hencky 
solution [28] in Section 3. Next, in Section 4, we will conduct the related experiments of the blistering 
circular thin films under uniformly distributed gas pressure and compare the experimental results 
with the solution presented here. According to the results mentioned above, some main conclusions 
will be drawn in Section 5. The work presented here is of great significance and aims to improve the 
measurement accuracy of blister test technique. In addition, thin and ultrathin films are widely used 
for gas and solvent separation [29,30]. Thus, the work of this paper also has a certain guiding role for 
gas and solvent separation. 

2. Membrane Equation and Its Solution 

2.1. Establishment of Membrane Equations 

A uniformly distributed gas pressure, q , is applied onto the surface of a peripherally fixed 
circular membrane with Young’s modulus of elasticity, E, Poisson’s ratio, v, thickness, h, and radius, 
a, as shown in Figure 3, where the dashed lines denote the initial flat circular membrane, r is the 
radial coordinate and w is the transversal displacement of the circular membrane. 

q

a

r
w(r)

r

 
Figure 3. Sketch of circular membrane under uniformly distributed gas pressure. 

Let us take a piece of the central portion of the circular membrane, whose radius is 0 r a< < , 
with a view to studying this membrane’s static problem of equilibrium under the action of the 
uniformly distributed gas pressure q  and the membrane force rhσ  acted on the boundary, as 

shown in Figure 4, where rσ  is the radial stress and θ  is the sloped angle of the membrane after 
loading. 
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Figure 4. The equilibrium diagram of the central portion ( )r a<  of the circular membrane. 

Then, a wedge differential element, ABCD , is cut out from the circular membrane by the two 
radial sections AB , CD , normal to the membrane, and by two cylindrical sections AD , BC , also 
normal to the membrane, as shown in Figure 5, in which the normal stress component in the radial 
direction is denoted by rσ , another component in the circumferential direction by tσ  and ϕ  is 
the other coordinate parameter, i.e., the angular coordinate in the cylindrical coordinate ( , , )r wϕ . 
There are four normal forces acting on the four sides of this element, in which the radial membrane 
force acting on the side AD  is rhσ  and the radial membrane force on the side BC  is 

( )r
r

d
dr h

dr
σ

σ + . The sides AB  and CD  are subjected to the same circumferential membrane force 

thσ  due to axisymmetric characteristics. 

BC
AD

q r
(σr+dr

dσrdr)h

dφ

σth

σth

θ+ θ
σrh

A

D

B

C

dr
dθ dr

dr

σrh(σr+dr
dσrdr)h

 
Figure 5. Sketch of the differential element body ABCD  where the red curves denotes the Profile of 
the thin film. 

It is easily seen from Figure 5 that the equilibrium equation along the w-axis direction is 

( )
2 2

sin

( )1sin cos
2 cos

r
r

r

d ddr h r dr d dr
dr dr

r dr r
hrd q d

σ θσ ϕ θ

σ ϕ θ ϕ θ
θ

   + + +   
  

 + − − =

. (1)

By summing up the components of forces along the r-axis direction, we can obtain the 
equilibrium equation, 
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( )
2 2

cos cos

( )12 sin sin 0
cos 2 2 cos

r
r r

t

d ddr h r dr d dr hrd
dr dr

r dr rdr dh q d

σ θσ ϕ θ σ ϕ θ

ϕσ ϕ θ
θ θ

   + + + −   
  

 + −   − + = 
 

, (2)

where the body force of the membrane is ignored. 
From Equations (1) and (2), we can obtain 

22 sinrrh qrσ θ = , (3)

and 

( )cos
cos sin 0r

t

d r
h h qr

dr
σ θ

θ σ θ− + = , (4)

where 

sin tan dw
dr

θ θ≅ = −  (5a)

and 

( )2 2

1 1cos
1 tan 1 /dw dr

θ
θ

= =
+ + −

. (5b)

Substituting Equation (5a, 5b) into Equations (3) and (4), it can be found that 

2 r
dwh qr
dr

σ− =  (6)

and 

( )

( )

2

2

/ 1 /
1

1 /

r

t

d r dw dr
dwh h qr

dr drdw dr

σ
σ

 + 
 = −

+
. (7)

The relations of the strain and displacement of the large deflection problem—that is, the 
so-called geometric equations—still follow the classical geometric equations [31], 

 
= +     
= 

2
1
2r

t

du dwe
dr dr
ue
r

, (8)

in which re  is the radial strain, te  is the circumferential strain, and u  is the radial displacement. 
The relations of the stress and strain—that is, the so-called physical equations—also follow the 
classical physical equations [31], 

( )

( )
2

2

1

1

r r t

t t r

E e e

E e e

σ ν
ν

σ ν
ν

= + − 
= +
− 

. (9)

Substituting Equation (8) into Equation (9), we may obtain 
2

2

1
21r

Eh du dw uh v
dr dr r

σ
ν

  
 = + + −    

 (10a)
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and 
2

2 21t
Eh u v dw duh v

r dr dr
σ

ν

  
 = + + −    

. (10b)

By means of Equations (10a, b) and (4), we may obtain 

( ) ( ) ( )

2

2

2 2 22

1

1 / 1 / 1 /

r
r

r
r

d dw d wrru dwdrdr drh h h qr h
r Eh drdw dr dw dr dw dr

σ σσ
ν σ

 
 
 = + − − −
 + +  +    

. (11)

Then substituting the u  of Equation (11) into Equation (10a), we obtain 

( ) ( ) ( )

( ) ( ) ( ) ( )

2

2

2 2 22

222 2 3 22 2 2
22 2 3

2 2 2 22 2 2

43
2

1 / 1 / 1 /

3

1 / 1 / 1 / 1 /

4

r
r

r
r r

r r
rr

r

d dw d wh rh r h dwdrdr drh qr h
drdw dr dw dr dw dr

d wd d dw d w dw d w h rh r h r h r drdr dr drdr dr dr
dw dr dw dr dw dr dw dr

h

σ σσ
σ ν σ

σ σ σσ

σ

= + − − −
+ +  +  

 
 
 + − − −

+      + + +          

+
( ) ( )

( ) ( )

22 2
2

22 2
2

3 2 22

2

2

2 22

2 1 /1 /

1 / 1 /

r

r

r
r

dw d w dr vh rdr dr dd w Eh dw drqr hr
dr drdr dw drdw dr

dw d wvh rvh dwdr dr vqr
drdw dr dw dr

σ
σ

ν

σσ

  
  

     − − + + 
  + +  

+ − −
+  +  

. (12)

The boundary conditions, under which Equations (6), (7) and (12) can be solved, are 

0dw
dr

=  at 0r =   (13a)

and 

0u
r

=  and 0w =  at r a= . (13b)

Equations (6), (7) and (12) are three differential equations for the solutions of rσ , σ t  and w , which 
can be solved by the boundary conditions, Equations (13a,b). 

2.2. Nondimensionalization 

Let us introduce the following dimensionless variables 

, , , ,r t
r t

aq w rQ W S S x
hE a E E a

σ σ
= = = = = , (14)

and transform Equations (6), (7), (12) and (11) into 

2 0r
dWQx S
dx

+ = , (15)
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( ) ( ) ( )

2

2

2 2 221 / 1 / 1 /

r
r

r
t

dS dW d WS xx S dWdxdx dxS Qx
dxdW dx dW dx dW dx

= + − −
+ +  +  

, (16)

 

( ) ( ) ( )

( ) ( ) ( ) ( )

2

2

2 2 22

222 2 3 22 2 2
22 2 3

2 2 2 22 2 2

2
2

43
2

1 / 1 / 1 /

3

1 / 1 / 1 / 1 /

4

r
r

r
r

r r
rr

r

dS dW d WS xx S dWdxdx dx Qx S
dxdW dx dW dx dW dx

d Wd S dS dW d W dW d W S xx x S x dxdx dx dxdx dx dx
dW dx dW dx dW dx dW dx

dWS x
dx

ν+ − − −
+ +  +  

 
 
 + − − −

+      + + +          

 
 
 +
( ) ( )

( ) ( )

22

22 2
2

3 2 22

2

2

2 22

1
2 1 /1 /

0
1 / 1 /

r

r

r
r

r

d W dS
v xdx dSd W dW dxQx x

dx dxdx dW dxdW dx

dW d WvS xvS dWdx dx vQx S
dxdW dx dW dx

ν

 
 

   − − + + 
  + +  

+ − − − =
+  +  

 (17)

and 

( )
( ) ( )

( ) ( )

2 2

22

2 2 22 2

2

1 1 / 1 /
1 /

1 / 1 /

r
r

r r

dSu x dW dx S dW dx
r dxdW dx

dW d W dWS x Qx dW dx S dW dx
dx dxdx

ν

    = + + +        +  
   − − + − +        

. (18)

Accordingly, the boundary conditions can be transformed into 

0dW
dx

=  at 0x =   (19a)

and 

( ) ( )

( ) ( )

2
2 2

2

2 22 2

1 / 1 /

1 / 1 / 0

r
r r

r

dS dW d Wx dW dx S dW dx S x
dx dx dx

dWQx dW dx S dW dx
dx

ν

   + + + −      

   − + − + =      

 and 0W =  at 1x =   (19b)

2.3. Power Series Solution 

Equations (6), (7) and (12) are three differential equations that are usually difficult to solve. 
Here, we use the power series method to solve them. Note that the radial stress and the transverse 
displacement are continuous functions; both of them can be expanded in terms of the power series. 
So the dimensionless radial stress rS  and transversal displacement W  are simultaneously 
expanded in the form of power series with respect to x , i.e., let 

( )
0

n
r n

n
S x b x

∞

=

=  (20)

and 



Polymers 2020, 12, 1130 8 of 15 

 

( )
0

n
n

n
W x c x

∞

=

= . (21)

After substituting Equations (20), (21) into Equations (15) and (17), the equations are 
represented by the undetermined constants nb  and nc . In order to let the expressions on the 

left-hand of Equations (15) and (17) constantly be zero, the coefficients of all items of nx  should be 
zero. Thus, we can obtain the expressions of the dimensionless stress and transversal displacement 
with the unknown constants 0b  and 0c , such that, 

( ) (

) (

)

2 4 6
2 2 2 4 2

0 0 0 02 5 8
0 0 0

8
3 3 2 6 2 4
0 0 0 011

0
4 3 4 2 3
0 0 0 0 0

10
2 8
0

48 240 1 1248
64 6144 4718592

6144 43008 8352 13 119808
1509949440

2045952 116736 8709120 12960 1038336

106848 85
7247

r
Q Q QS b x b b x b

b b b
Qb b b x b

b
b b b b b

Qb x

ν ν

ν ν

ν ν ν

= − − + + −

− − + + −

+ − + + −

+ + − (

)

2 4 2 5
0 014

0
5 4 5 3
0 0 0 0

4 2 3 2 10
0 0 0 0

4520448 28016640
75731200

498401280 89275392 2092400640 2574336

440732160 199920 27703296 1944528 925 ...

b b
b

b b b b

b b b b x

ν ν

ν ν ν
ν

−

− + − −

+ + − + + −

 (22)

and 

( )

( )

(

3 5
2 4 2 2 6

0 0 04 7
0 0 0

7
3 3 2 2 8
0 0 0 010

0
9

2 4 4 4
0 0 013

0
3 3
0 0 0

1 1 1 96 480 5
4 512 147456

43008 6144 14112 2400 55
75497472

5087232 71221248 264314880
724775731200

4276224 35241984 910080

Q Q QW c x x b b x
b b b

Q b b b b x
b

Q b b b
b

b b b

ν

ν ν

ν ν

ν ν

= − + − + +

+ + − − −

− + +

− − + )2 2 10
06066432 12600 ...b x+ + +

. (23)

It can be seen that Equation (19a) is automatically satisfied by taking the first derivative with 
respect to x  in Equation (23). For the given problem where a , h , E , ν , and q  are known in 
advance, the remaining undetermined constant 0b  can be determined by substituting Equations 

(22) and (23) into Equation (19b), and with this known constant 0b , the undetermined constant 0c  

can be determined by substituting Equation (23) into Equation (19b). As for tS , it is easily obtained 
by direct substitution, so there is no need to illustrate in detail. Thus, the radial stress and 
transverse displacement of the circular membrane under uniformly distributed gas pressure are 
determined. 

3. Results and Discussion 

Let us consider a rubber circular thin film with = 70a  mm, = 5h  mm, = 6.11E  MPa, 
0.49ν =  subjected to the uniformly distributed gas pressure q , as a numerical example, to discuss 

some related issues. Figure 6, Figure 7, Figure 8 and Figure 9 show the variations of w  with r  
when q  takes 0.01, 0.05, 0.07 and 0.2 MPa, respectively, and Figure 10 shows the variations of rσ  
with r  when q  takes 0.07 MPa, where the solid line represents the result obtained by the 
solution presented here, and the dashed line by the Hencky solution [28]. 

Theoretically, when the uniformly distributed gas pressure is very small, correspondingly, the 
deformation of the thin film will also be very small. In this case, the uniformly distributed gas 
pressure can be approximately regarded as the uniformly distributed transverse load, due to the 
fact that the horizontal component of the uniformly distributed gas pressure is not obvious. 
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Therefore, when the load is very small, the deflections of the uniformly distributed gas pressure 
problem and uniformly distributed transverse load problem should be very close. From Figure 6, it 
can be seen that, when = 0.01q  MPa (very small), the solid line is very close to the dash line, 
which demonstrates, from the side, the validity of the solution presented here. 
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presented solution
Hencky solution

 
Figure 6. The variations of w  with r  when q  = 0.01 MPa. 
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Figure 7. The variations of w  with r  when q  = 0.05 MPa. 
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Figure 8. The variations of w  with r  when q  = 0.07 MPa. 
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Figure 9. The variations of w  with r  when q  = 0.2 MPa. 

From Figures 7, 8 and 9, it can be seen that, when = 0.05q  MPa, the transverse deflections 
( )w r  obtained by the solution presented here were all smaller than that of the Hencky solution 

within the entire definition domain. When = 0.07q  MPa, the transverse deflection ( )w r  obtained 
by the solution presented here was approximately equal to that by Hencky solution in the 
peripheral region of the circular film, and was smaller than that of the Hencky solution in the 
central region. Finally, when q  increases to 0.2 MPa, the transverse deflection ( )w r  obtained by 
the solution presented here was larger than that of the Hencky solution in the peripheral region of 
the circular film and was smaller than that of the Hencky solution in the central region. Through the 
comparative analysis of the three cases, it can be seen that when the load was small, the horizontal 
component of the uniformly distributed gas pressure had little effect on the deflection of the 
circular thin film, and the uniformly distributed gas pressure can be approximately equivalent to 
the uniformly distributed transverse load. When the uniformly distributed gas pressure became 
larger, the horizontal component of the uniformly distributed gas pressure had a greater impact on 
the deflection of the circular thin film, which is mainly reflected in the outer part of the circular thin 
film. The horizontal force of the uniformly distributed gas pressure made the outer part of the 
circular thin film expand horizontally. At this point, if the uniformly distributed gas pressure was 
replaced by the uniformly distributed transverse load, a large error would have been generated. 
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Figure 10. The variations of rσ  with r  when q  = 0.07MPa. 
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of the circular thin film, the rσ  obtained by the presented solution is all greater than that that of 
the Hencky solution. It can be seen that both ends of the circular thin film expanded outward due to 
the horizontal force of uniformly distributed gas pressure. This horizontal component made the 
circular thin film relaxed and the stress decreased in the outer part, and the circular thin film 
tightened and the stress increased in the central part. 

The measuring formulas used in existing blister test techniques are usually calculated based on 
the ratio of deflection at  / 2r a=  of the thin film to deflection at the center of the thin film. 
Therefore, Table 1 shows 0w  and / 2aw  obtained from the two solutions (the Hencky solution and 
the solution presented here) and the ratio between them, and also gives the relative error of 

0.5 0/aw w . From Table 1, it can be seen that when the gas pressure is small, the error is relatively 
small, but with the increase in gas pressure, the error gradually increases. Generally, the allowable 
error of the measurement is 3%, but the error exceeds this allowable value when the load is just 0.2 
MPa. When the load is equal to 1.5 MPa, the error is as high as 10.301%. This fully illustrates the 
necessity and importance of obtaining the analytical solution of axisymmetric deformation of 
circular thin films under uniformly distributed gas pressure. 

Table 1. The deflection of the thin film when q  is equal to different values. 

q(MPa) 
 0.5aw  (mm)  0w  (mm)  0.5 0/aw w  (mm) 

Error 
(%) A 1 B 2 A 1 B 2 A 1 B 2 

0.05 14.467 14.274 18.372 18.150 0.787 0.786 0.125 
0.10 18.227 18.115 23.147 22.580 0.787 0.802 −1.878 
0.15 20.865 20.503 26.497 25.293 0.787 0.810 −2.938 
0.20 22.965 22.473 29.163 27.408 0.787 0.819 −4.125 
0.50 31.168 31.398 39.581 37.516 0.787 0.836 −6.280 
1.00 39.270 39.962 49.869 46.847 0.787 0.853 −8.326 
1.50 44.953 46.958 57.086 54.063 0.787 0.868 −10.301 

1 denotes the Hencky solution and 2 denotes the solution presented here. 

4. Experimental Analysis 

An experiment was conducted to verify the validity of the closed-form solution given in this 
paper. A rubber film with = 5h  mm, = 6.11E  MPa,  0.49ν =  was clamped by two plastic-steel 
cylinders with an inner radius of 70 mm and an outer radius of 75 mm. A total of thirteen 
measuring points were marked every 10mm on the axis of the rubber film, then the other film with 
the inflation hole and the air pressure gauge was clamped on the upper plastic-steel cylinder. The 
scheme of cylinder device is shown in Figure 11. The gas pressure, = 0.07q  MPa, was filled into 
the cylinder from the inflation hole. After the rubber film was deformed stably, the displacement of 
each measuring point on the film was measured by a laser displacement sensor, as shown in Figure 
12. The measured experimental data and theoretical calculation results are shown in Table 2. 
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Figure 11. The scheme of the cylinder device. 

 

Figure 12. The integral measuring device. 
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Table 2. Results in numerical values. 

Measuring 
Points 

Experiment Results 
(mm) 

Theoretical Results 
(mm) Error (%) 

A 1 B 2 A 1 B 2 
1 5.034 6.362 5.514 26.38 8.72 
2 9.345 11.163 9.987 19.45 6.43 
3 12.244 14.762 13.526 20.56 9.48 
4 15.334 17.383 16.207 13.36 5.39 
5 16.857 19.171 18.086 13.73 6.80 
6 18.253 20.210 19.200 10.72 4.93 
7 19.043 20.552 19.569 7.92 2.69 
8 18.245 20.210 19.200 10.77 4.98 
9 16.648 19.171 18.086 15.15 7.96 

10 15.563 17.383 16.207 11.69 3.97 
11 12.986 14.762 13.526 13.68 4.00 
12 9.457 11.163 9.987 18.04 5.32 
13 5.188 6.362 5.514 22.63 5.93 

1 denotes the Hencky solution and 2 denotes the solution presented here. 

From Table 2, it can be seen that the experimental results are very close to the theoretical 
solution presented here, and the maximum error is 9.48%, which is much smaller than the allowable 
error measurement of 15%. Thus, it can be concluded that the theoretical solution given in this 
paper is reliable. Moreover, from Table 2, it can also be seen that the errors of the Hencky solution 
at multiple points are above 15%, which indicates that the Hencky solution is not an appropriate 
replacement. 

5. Concluding Remarks 

In this paper, the problem of axisymmetric deformation of the blistering circular thin polymer 
film under the action of uniformly distributed gas pressure was solved and its closed-form solution 
was presented by the power series method. The presented numerical example shows that the 
solution presented here was correct, and in blister test techniques, using the solution of a uniformly 
distributed transverse load as a substitute for the solution of uniformly distributed gas pressure 
will cause greater error. Generally, the error will increase with the increase in pressure. In addition, 
the related experiments of the blistering circular thin polymer film under uniformly distributed gas 
pressure were carried out, and the experimental results are compared with the theoretical solution. 
The comparison results show that the theoretical results are in good agreement with the 
experimental results, which ensures the reliability of the analytical solution given in this paper. 

The work presented here should be of great significance to increase the accuracy of the blister 
test technique. In further studies, this work will be used for the derivation of measurement 
formulas of the blister test technique. 
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