Supplementary Materials

Stable non-covalent Co(Salphen) based polymeric catalyst for highly efficient and selective oxidation of 2,3,6-trimethylphenol

Weijie Zhang, Lingling Hu, He Zhang, Chunyue Pan* and Juntao Tang*

*Corresponding author: Chunyue Pan (E-mail: panchunyue@csu.edu.cn) and Juntao Tang (E-mail: reynardtang@csu.edu.cn)

Postal address: College of Chemistry and Chemical Engineering, Central South

University, 932 South Lushan Road, Changsha 410083, Hunan, P. R. China.

Scheme S1. Synthetic route of Bi[Co(Salphen)], BiCo-BiPy1:1 and CSP BiCo-BiPy1:1 CSP

Co(Salphen)@Py1:2

Scheme S2. Model reactions between Co(Salphen) and pyridine

Procedure:

Preparation of Salphen

In a three-necked round-bottom flask equipped with a constant pressure dropping funnel, a solution of 1,2-diaminobenzene (1.73 g, 16 mmol) in methanol (50 mL) was stirred at 80 °C for 10 min. Subsequently, salicylaldehyde (4.1 g, 33.9 mmol) in methanol (50 mL) was dropped into the above mixture, and the reaction flask was kept stirring for 12 h at 80 °C under N₂. After that, the mixture was cooled under 0 °C for 12 h and the resulting precipitate was collected by filtration, washed with methanol and dried to afford the desired product as a yellow solid (5.1 g, yield 88%). ¹H NMR (CDCl₃, 400 MHz): δ 13.06 (s, 2H),8.65 (s, 2H), 7.41-7.36 (m, 6H), 7.26-7.24 (m, 2H), 7.07-7.05 (d, 2H) and 6.96-6.94 (t, 2H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ 163.7, 161.4, 142.6, 133.4, 132.3, 127.7, 119.9, 119.2, 119.0, 117.6,120.2, 119.1, 118.4 and 117.6 ppm.

Preparation of Co(Salphen)

To a solution of $Co(OAc)_2 \cdot 4H_2O$ (4.8 g, 19.3 mmol) in methanol (100 mL), Salphen (5.0 g, 15.8 mmol) was added under N₂ atmosphere. The above mixture was stirred at 80 °C for 12 h. After cooling to room temperature, the product CoSalphen was collected by filtration (7.0 g, 78%).

Figure. S3. HRMS of Co(Salphen)@Py 1:2

Table S1. Porosity parameters of BiCo(@BiPy						
Sample	$\mathbf{S}_{\mathrm{BET}}^{\mathrm{a}}$	V_{total}^{b}	V _{micro}	Vmicro/Vtotal	D _{pore} ^c nm	
BiCo@BiPy 1:1	95	0.259	0.0338	0.13	8	
BiCo@BiPy 1:4	58	0.116	0.0217	0.18	11	

^aBrunauer-Emmett-Teller surface area in m² g⁻¹. ^bPore volume determined from the N₂ isotherm at P/P₀=0.99 in cm³ g⁻¹. ^cPore size derived from N₂ isotherm with the NLDFT approach.

Figure. S4. TGA of BiCo(Salphen), BiCo@BiPy 1:1 and BiCo@BiPy 1:2

Chemical name	Weight of reagent	Price (yuan/g or	Cost (RMB
	(g or L)	L)	yuan)
[1,1'-biphenyl]-3,3',4,4'-	1.0 g	2.0	2.0
tetraamine			
THF	0.1	15	1.5
Methanol	0.25 L	4.0	0.1
Salicylaldehyde	0.1g	2.74	0.27
BiSalphen (yield: 91%)	0.25 g	1.44	0.36
Methanol	0.03 L	4.0	0.12
THF	0.1 L	15	1.5
Co(OAc) ₂ ·4H ₂ O	0.24 g	1.5	0.36
BiCo(Salphen) (yield:	0.1 g	2.23	0.223
89%)			
THF	0.05 L	15	0.75
4,4-dipyridine	0.02 g	0.15	0.0032
DMF	0.15 L	8	1.2
Methanol	0.05 L	4.0	0.2
BiCo-BiPy1:1 CSP	0.01g	36.3	0.36
(yield: 51%)			
2,3,6-trimethylphenol	0.0681	2.0	0.14
Methanol	0.002	4.0	0.008
2,3,5-	N/A	2.93	N/A
trimethylcyclohexa-2,5-			
diene-1,4-dione			

Table S2. Materials quantities and cost for the synthesis of trimethyl-1,4-benzoquinone

¹³C NMR spectra of BiSalphen

Trimethyl-1,4-benzoquinone: ¹H NMR (CDCl₃, 400 MHz): δ 6.56 (s, 1H) and 2.04-2.01 (m, 9H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ 187.9, 187.5, 145.3, 140.9, 140.7, 133.0, 15.9, 12.4 and 12.1 ppm.