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Abstract: Polymer composite frame has been frequently used in the main structural body of vehicles
in aerospace, automotive, etc., applications. Manufacturing of complex curved composite frame
suffer from the lack of accurate and optimum method of winding process that lead to preparation
of uniform fiber arrangement in critical location of the curved frame. This article deals with the
fabrication of high-quality polymer composite frame through an optimal winding of textile fibers
onto a non-bearing core frame using a fiber-processing head and an industrial robot. The number of
winding layers of fibers and their winding angles are determined based on the operational load on
the composite structure. Ensuring the correct winding angles and thus also the homogeneity of fibers
in each winding layer can be achieved by using an industrial robot and by definition of its suitable
off-line trajectory for the production cycle. Determination of an optimal off-line trajectory of the
end-effector of a robot (robot-end-effector (REE)) is important especially in the case of complicated 3D
shaped frames. The authors developed their own calculation procedure to determine the optimal REE
trajectory in the composite manufacturing process. A mathematical model of the winding process,
matrix calculus (particularly matrices of rotations and translations) and an optimization differential
evolution algorithm are used during calculation of the optimal REE trajectory. Polymer composites
with greater resistance to failure damage (especially against physical destruction) can be produced
using the above mentioned procedure. The procedure was successfully tested in an experimental
composite laboratory. Two practical examples of optimal trajectory calculation are included in
the article. The described optimization algorithm of REE trajectory is completely independent of
the industrial robot type and robot software tools used and can also be used in other composite
manufacturing technologies.

Keywords: polymer composite frame; winding of fibers; winding angle; matrix calculus; mathematical
model; experimental verification; optimization of robot trajectory

1. Introduction

In the past few decades, polymer composites have increasingly replaced traditional materials
such as wood, iron, and steel in advanced industrial applications, due to their superb mechanical
features such as flexible design capability, high strength to weight ratio, thermal resistance, etc. [1,2].
Polymer composite frames are mainly used to reinforce the chassis, body, and doors of a car, or to
strengthen the fuselage and attach windows to the fuselage, etc., in the aerospace and automotive
industries, as well as in the manufacture of agricultural machinery [3–6]. These composite frames are
primarily used due to their excellent mechanical and physical properties such as resistance to harsh
weather conditions, as well as long term resistance to corrosion in severe environmental conditions,
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etc. [7–10]. Achieving the desired properties of the composite significantly depends on the quality of
the wound fibers (usually carbon, aramid, or glass fibers) and the fabrication process [11–13]. Ensuring
the correct fiber winding angles from the geometric point of view and hence the homogeneity of the
windings is one of the important aspects of composite quality. Previous studies indicated that any
inhomogeneity during fiber windings process in the fabrication process polymer composite frame,
results in preparation of defect as a potential source of defect that induce stress concentration and early
failure phenomena [14–17].

Polymer composite frames are normally fabricated in complex irregular geometry with various
configurations (e.g., Figure 1), in which industrial robots play an important role in the production of
the fiber winding process [15]. Once the core frame is wound by the fibers, then it is replaced in a mold
where matrix material, such as resin, etc., is injected around the frame to form a solid layer with specific
thickness as the polymer composite frame [15,18]. The advantages of robotic fiber over manual fiber
windings (winding of fibers by production worker without the use of a robot or other textile machine)
in the manufacturing process of composite frame were investigated by Shirinzadeh, et al. [19]. It is
proven that determining a correct off-line REE trajectory results in making high-quality winding of
fibers onto a core frame during the production process of the polymer composite frame [3,4,16,20].
The process of trajectory calculation during the winding process for simple frame geometry in the
form of two- and three-dimensional (2D and 3D) cases, is described elsewhere [21]. However, this
trajectory process is not optimized and may not be applicable in the case of a more complicated 3D
shaped non-bearing core frame.
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Figure 1. Example of 3D geometrically complicated non-bearing core frame used to reinforce chassis of
passenger car.

Sofi et al. presented dry fiber winding possibilities and explanation of the most important
processes of winding [22], and Polini et al. pointed out that the tension of winding during robotic
filament winding technology is a very important parameter that influences directly the defects and
the mechanical property of composite [23]. Azevedo et al. investigated the effects of mosaic winding
pattern on carbon- fiber composite cylinder fabricated using filament winding, and found the optimum
radius to thickness ratio for optimum strength and stiffness properties [24]. Many authors studied
the problem of the correct winding of fibers on a non-bearing core frame. This problematic field is
very topical and essential for the industrial production of composite frames. Along with specific
selections of layers sequence and angle that is made through design process, the “correct winding
angle process” is to ensure the arrangement of the fibers such that the angle of the fibers to the frame
remains uniform, homogeneous, and consistent in circular-helix cross-sectional form throughout the
complex 3D curved geometry of the frame. Determination of the correct trajectory of a robot during
winding of the fibers is presented, for example, in [19,25–27]. Gao et al. proposed high-speed fiber
placement technology in a new methodology of motion planning in a redundant robotic system [25], in
which the problem of time optimization of robot motion is solved [25,28,29]. The optimization of robot
trajectory in the fiber winding process is also addressed, in which graph theory is used to obtain the
optimal robot trajectory as well as special algorithm such as genetic algorithm, harmony search and
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also Bézier curves [28–32]. A similar topic, however, focused rather on the study of trajectory control
of an arbitrary shape winding mandrel in 3D circular braiding is explored in [20,23,27].

The present study focuses on the production of high-quality polymer composite frame by
calculation of the correct winding angles. In this respect, the winding technology, individual
components used in the winding process and the mathematical model of the winding process are
described in detail to address the use of a mathematical model, matrix calculus and optimization
process. A 3D complex frame is considered for calculating the optimal 3D REE trajectory, as shown in
Figure 1. The attempt is to find the correct winding angles and appropriate homogeneous distribution
of the fiber windings through this optimization procedure, even in the case of a highly complicated
frame geometry. It should be emphasized that this study deals with the issue of defining a suitable
cost function in order to find the optimal off-line REE trajectory during individual steps of the frame’s
passage through the fiber-processing head to ensure the correct winding of the fibers onto the frame.
A differential evolution algorithm is used to obtain a minimum cost function as well as finding the
optimal REE trajectory. The possibility of frame collisions with a fiber-processing head is also tested
during each passage step. The procedure described in this paper allows ensuring that the geometrically
correct required winding angles are maintained during the winding process.

2. Manufacturing of Polymer Composite Frame

Technology of polymer composite frame production is a complex process, in which the shape
and function of the composite frame (open (Figure 1) or closed) are the determining parameters for
the choice of material and technology of the composite parts [33]. The choice of fibrous material
depends on the required physical and mechanical properties of final product design based on specific
operational load and boundary condition. It is possible to use dry fibers of carbon, glass, basalt,
aramid, a combination of these fibers so-called hybrids or a combination these fibers with thermoplastic
fibers. The aim of winding of dry fibers is to create directionally oriented layers of fibers so that
the fibers are wound homogeneous, regularly, and evenly in each layer. The number of winding
layers and the angular orientation of the individual winding fiber layers are usually determined
using mathematical models and simulation of the composite frame [1,33–37]. The winding process
is generally done through “manual-robotic winding” in which the robot is programmed manually
(teach-in method). This method is time-consuming and does not guarantee a quality winding process
for more geometrically complex frame shape.

There are a few procedures for applying the fiber reinforcement to the core frame, such as methods
for overlaying the fibers on the core frame, and winding the fibers from the coils while rotating the core
frame [1]. Most of the fiber winding procedures are applicable to constant fiber deposition without
possible optimization of the fiber laying angles in 3D. The procedure described in this article allows to
optimize geometrically fiber winding on 3D open and closed frames, in which the production process
is shown in Figure 2a. In the first step of the production of a composite frame, a mold (Figure 2b) with
the geometry identical to the final product is fabricated to make a non-bearing and lightweight core
frame (generally made of porous polyurethane foam, brown color frame in Figure 2c). Then, the fiber
is wound around the core frame (Figure 2d), and the frame is inserted into the preheated mold and
then the matrix (made of thermoplastics (polyurethane, etc.) or thermosets (epoxy, polyester, etc.) are
injected into the mold under controlled pressure and temperature for the curing process as dictated
through the vacuum injection technology.
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point of view generally a helical motion. The winding fiber creates the helix on the composite frame. 
This motion is the composition of rotation of a fiber around the internal axis o  of the frame and its 
parallel translation in direction of axis o . In this way, fiber forms a helix on the surface of the frame. 
Right-handed and left-handed helices are shown in Figure 3. Points RA  and LA  are the initial 
points of helices created by the winding process. 

 

Figure 2. (a) production process of long-fiber reinforced polymer composite frame, (b) a laboratory
mold for holding and curing of the polymer composite frame (example of wind turbine blade), (c) the
core before fiber winding, and (d) wound core with fibers, positioned in the mold before injection of
the polymer matrix.

2.1. Fiber Winding Geometry

This section describes a geometric interpretation of the execution of the fiber winding on a
non-bearing core frame of circular cross-section.

The right-handed Euclidean coordinate system E3 is taken into account. Vectors and matrices are
written in a homogeneous form (i.e., any point V = [xV, yV, zV, 1]T and any vector u = (xu, yu, zu, 0)T,

in more detail see [38]). The Euclidean norm ‖u‖ of vector u, where ‖u‖ =
√

x2
u + y2

u + z2
u is used.

The winding of one fiber on a composite frame of a circular cross-section is from a geometrical
point of view generally a helical motion. The winding fiber creates the helix on the composite frame.
This motion is the composition of rotation of a fiber around the internal axis o of the frame and its
parallel translation in direction of axis o. In this way, fiber forms a helix on the surface of the frame.
Right-handed and left-handed helices are shown in Figure 3. Points AR and AL are the initial points of
helices created by the winding process.

Polymers 2020, 12, 1037 4 of 30 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2. (a) production process of long-fiber reinforced polymer composite frame, (b) a laboratory 
mold for holding and curing of the polymer composite frame (example of wind turbine blade), (c) the 
core before fiber winding, and (d) wound core with fibers, positioned in the mold before injection of 
the polymer matrix. 

2.1. Fiber Winding Geometry 

This section describes a geometric interpretation of the execution of the fiber winding on a non-
bearing core frame of circular cross-section.  

The right-handed Euclidean coordinate system E3 is taken into account. Vectors and matrices 
are written in a homogeneous form (i.e., any point [ ]TVVV ,z,y,x=V 1 and any vector ( )Tuuu z,y,x= ,0u
, in more detail see [38]). The Euclidean norm u of vector u , where 222

uuu z+y+x=u  is used.  
The winding of one fiber on a composite frame of a circular cross-section is from a geometrical 

point of view generally a helical motion. The winding fiber creates the helix on the composite frame. 
This motion is the composition of rotation of a fiber around the internal axis o  of the frame and its 
parallel translation in direction of axis o . In this way, fiber forms a helix on the surface of the frame. 
Right-handed and left-handed helices are shown in Figure 3. Points RA  and LA  are the initial 
points of helices created by the winding process. 

 
Figure 3. Right-handed helix pR with initial point AR and left-handed helix pL with initial point AL.



Polymers 2020, 12, 1037 5 of 26

Let us consider the right-handed helix pR with axis o identical to axis z of the right-handed
Euclidean coordinate system E3 (Figure 3 (left)) and its parameters reduced pitch v0 (length of
translation during rotation of fiber by one radian), helix radius r (radius of frame), angle δ of slope of
the helix pR defined by relation tgδ = v0/r (the detailed description of helix parameters can be found
elsewhere [39,40]). Then the parametric equation of helix pR can be expressed in the form of

pR(t) = (r cos t, r sin t, v0t, 1), t ∈< 0, ∞)

Point AR = (r, 0, 0, 1)T is then the initial point of right-handed helix pR.
The equation of the right-handed helix pR can also be expressed as the rotation of point AR =

(r, 0, 0, 1)T around axis z (we suppose o ≡ z) and its translation in a positive direction of axis z [39]:

p(t) = (x(t), y(t), z(t), 1)T =


cos t − sin t 0 0
sin t cos t 0 0

0 0 1 0
0 0 0 1

 ·


1 0 0 0
0 1 0 0
0 0 1 v0t
0 0 0 1

 ·


r
0
0
1

 =
cos t − sin t 0 0
sin t cos t 0 0

0 0 1 v0t
0 0 0 1

 ·


r
0
0
1

 =


r cos t
r sin t

v0t
1

.
(1)

In the case of one turn of the right-handed helix pR as shown in Figure 3 (left), parameter t lies
within interval t ∈< 0, 2π >. Please note that the positive winding angle ω of one fiber on composite
frame is (Figure 4 (left))

ω =
π
2
− δ (2)

and if the value of reduced pitch v0 is close to∞, then ω = 0 (in this case the fiber is laid on the frame
parallel with internal axis o ≡ z of the frame).Polymers 2020, 12, 1037 6 of 30 
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is considered and angle ω is (Figure 4 (right))

ω = −
(
π
2
− δ

)
(3)

The parametric equation of left-handed helix pL can be expressed as

pL(t) = (r cos t, −r sin t, v0t, 1), t ∈< 0, ∞)
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and similarly by matrix calculus as in the case of the right-handed helix in relation (1).
In the production of the polymer composite frame, three layers of fibers during the winding

process and twelve strands of fibers are usually wound on the frame in each layer. One given winding
layer with positive winding angle ω is considered. Then during the winding process each strand (of
the total number of twelve strands) creates right-handed helix pR on the composite frame with positive
angle δ of slope of the helix. In accordance with relation (2), ω = π

2 − δ. Let angles λi are determined
by relation λi = (i− 1) 2π/12 for i = 1, 2, . . . . , 12.

A circle with its center in origin O of right-handed Euclidean coordinate system E3 and radius r is
considered. Then arms of oriented anglesλi create on the circle the vertices Ai = (r cosλi, r sinλi, 0, 1)T

of a regular twelve-rectangle (Figure 5 (left)).
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Vertices Ai are initial points of individual helix pRi (i = 1, 2, . . . . , 12) of the winding layer. The
parametric equation of right-handed helix pRi in accordance with relation (1) can be defined in the form

pRi(t) = (x(t), y(t), z(t), 1)T =


cos t − sin t 0 0
sin t cos t 0 0

0 0 1 0
0 0 0 1

 ·


1 0 0 0
0 1 0 0
0 0 1 v0t
0 0 0 1

 ·


r cosλi
r sinλi

0
1

 =

=


cos t − sin t 0 0
sin t cos t 0 0

0 0 1 v0t
0 0 0 1

 ·


r cosλi
r sinλi

0
1

 =


r cos t cosλi − r sin t sinλi
r sin t cosλi + r cos t sinλi

v0t
1

 =


r cos(t + λi)

r sin(t + λi)

v0t
1


Helix pRi(t) = (r cos( t + λi), r sin(t + λi), v0t, 1)T can be obtained by this way of expression. If

the considerations are generalized and the rotation of points Ai around axis z of the coordinate system
is considered, (Figure 5 (right)) with angle ψ, the expression of helix pRi can be written in the form

pRi(t) = (r cos(ψ+ t + λi), r sin(ψ+ t + λi), v0t, 1)T for i = 1, 2, . . . . , 12; t ∈< 0, ∞) (4)

Individual helices pRi of the winding layer have the same winding angle ω, but the next helix is
rotated by angle π

6 relative to the previous one.
The generalized parametric equation of the left-handed winding helix in the form (4) can be

derived analogously.
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All layers of windings (with positive, negative or zero winding angle ω) are progressively realized
along the entire circumference of the non-bearing core frame in the case of the composite frame.
In practical cases the composite frame can be open or closed.

2.2. Mathematical Model of Winding Process

A brief description of the mathematical model of the winding process and defined designations
and abbreviations are given in this section The actual process of winding the fibers on a non-bearing
frame is implemented by the fiber-processing head (Figure 6 (right)) and by an industrial robot (in this
article industrial robot KUKA KR 16-2).Polymers 2020, 12, 1037 8 of 30 
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fiber-processing head (Figure 7 (left)). Axis BCSs  is parallel to the coordinate axis BCSy  of system 
BCS  ( BCSBCS ys // ) in the model. 

 

Figure 6. Different views of robot KR 16-2 with non-bearing core frame and fiber-processing head with
three guide lines.

The non-bearing core frame is firmly attached to the REE, and the fiber-processing head is fixed in
the workspace of the robot (Figure 6 (left)). In the described mathematical model, the basic right-handed
Euclidean coordinate system E3 of the robot (BCS) is taken into account. This system is often called the
“robot coordinate system” for industrial robots (Figure 7 (right)). Individual parts of the mathematical
winding model are described in BCS.
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The local right-handed Euclidean coordinate system E3 of the REE (LCS) is also taken into account.
The position of LCS toward BCS defines position of REE in BCS.

The points and vectors with coordinates in BCS and LCS are labeled with the subscript BCS and

LCS in the following text, respectively.
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2.2.1. Fiber-Processing Head

The visual presentation of the fiber-processing head (Figure 6) in the mathematical model is given
in Figure 7 (left). The coordinates of the head individual components are defined in the BCS. The first
outer rotating guide line with fiber spools forms the first winding layer of fibers (usually under the
angle 45◦, see Figure 4 (left)) and is presented by circle k1 with center S1BCS = [xS1BCS, yS1BCS, zS1BCS, 1].
The second guide line creates a layer of longitudinally laid fibers (winding under angle 0◦—parallel
to the frame axes oBCS) which is not important in the mathematical model. The third guide line
forms the last layer of fibers (usually under the angle—45◦) and is presented by circle k2 with center
S2BCS = [xS2BCS, yS2BCS, zS2BCS, 1]. Circles k1 and k2 have the same radius rCIRCLE. Wounded fibers
by circles (guide lines) k1 and k2 on the frame create a right and left-handed helix (Figure 3). Points
S1BCS and S2BCS lie on axis sBCS of the fiber-processing head (Figure 7 (left)). Axis sBCS is parallel to the
coordinate axis yBCS of system BCS (sBCS//yBCS) in the model.

2.2.2. Non-Bearing Core Frame

The non-bearing core frame with a circular cross-section is defined by central axis oLCS and radius
rTUBE (see example of frame in Figure 8). We suppose rCIRCLE > rTUBE. Central axis oLCS is entered
in LCS of the REE using a discrete set of N points B(i)LCS lying on axis oLCS, where 1 ≤ i ≤ N. The
initial point of axis oLCS is B(1)LCS and endpoint is B(N)LCS. At the same time, for each index i unit
tangent vector b1(i)LCS to axis oLCS and unit vector b2(i)LCS at point B(i)LCS are defined. All the time
b1(i)LCS⊥b2( i) LCS holds (see Figure 8). Vector b2 (i)LCS characterizes the needed rotation of the frame
around axis oLCS when frame passes through fiber-processing head (detail is described elsewhere [21]).
In the case of a closed frame B(1) LCS ≡ B(N) LCS, b1 (1)LCS ≡ b1 (N)LCS and b2 (N)LCS apply.Polymers 2020, 12, 1037 10 of 30 
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Figure 8. Example of a vertical cross-section of a non-bearing core frame with axis o in LCS—frame for
a baby carriage. The frame is connected to the REE at the point B(N)LCS, where N = 2131. Unit tangent
vector b1(i)LCS to axis oLCS and unit vector b2(i)LCS are defined at point B(i)LCS for i = 1, . . . , N.
All the time b1(i)LCS⊥b2(i)LCS holds (vector b2(i)LCS characterizes the needed rotation of the frame
around axis oLCS when point B(i)LCS ∈ oLCS passes through fiber-processing head).

The variable l (see Figure 8) represents the distance of a general point lying on the axis oLCS
from point B(1)LCS measured on the axis oLCS (point B(1)LCS is at the beginning of the frame, this
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distance l is marked as the o-arc length). Points of axis oLCS with increasing distance l gradually
pass through the head at the winding process. The set of positive real non-negative values C(i) (for
1 ≤ i ≤ N) is supposed, where value C(i) indicates the o-arc length of point B(i)LCS from point B(1)LCS,
i.e., C(i) = lB(i)LCS

. Then value C(N) indicates the total length of the frame.
During the passage of the frame through the fiber-processing head, three layers of fiber windings

are created. These layers are created gradually from the beginning of the frame determined by the
initial point B(1)LCS of axis o to endpoint B(N)LCS of axis oLCS.

An important assumption of the mathematical model is to ensure a constant ration of the rotational
angular speed of guide line of the fiber-processing head and speed of passage of the frame through the
fiber-processing head. Robot external axes can be used to control rotational angular speed of the outer
guide lines k1 and k2.

The actual position of the LCS of the REE with regard to the BCS is determined by six parameters
listed in the “tool-center-point” (TCP). The first three values of TCP = (x, y, z, a, b, c) specify the
coordinates of the origin of the LCS in regard to the BCS (see Figure 7 on the right). The last three
parameters a, b and c determine the angles of the rotations of the LCS around the axis z, y, and x with
regard to the BCS.

2.3. Robot Trajectory Optimization

Robot trajectory optimization is usually required for more geometrically 2D and 3D shaped
non-bearing core frames. The procedure for optimal robot trajectory calculation is described in this section.

The winding of three layers of fibers is carried out in the production of the composite frame. Three
consecutive layers of fibers are often wound onto the frame at angles of 45◦, 0◦ and −45◦ (Figure 6).
Middle longitudinal layer of fibers is fastened to the frame by the third fiber winding. Please note that
in the considered model, axis sBCS of the fiber-processing head is parallel to the coordinate axis yBCS.
The correct winding angle and homogeneity of the winding fibers (filaments) on the frame are assured
if the frame axis oBCS passes through a fictitious winding plane at the same point as the head axis sBCS
and at the same time the axis oBCS is orthogonal to the winding plane at that point. The fictitious
plane of the first winding layer is designated ρ1 and the fictitious plane of the third winding layer is
designated ρ2, as shown in Figures 9 and 10.
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Figure 10. Front view of general scheme of non-bearing core frame passage through the fiber-processing
head, axis sBCS of fiber-processing head is parallel to axis yBCS.

The exact winding angles are ensured when frame axis oBCS (or its part) is identical to axis sBCS
of fiber-processing head in BCS during winding process (i.e., the frame or its part is a straight rod).
Then axis oBCS is orthogonal to the imaginary planes of the fibers winding ρ1 and ρ2 (Figure 9) in
points of intersections M1BCS ∈ sBCS and M2BCS ∈ sBCS. Static guide line k3 creates the middle layer of
longitudinally laid fibers.

The general scheme of the frame passage through the head is displayed in Figure 10. In this case,
the axes oBCS and sBCS occupy different positions in the BCS.

The attempt is to optimize the position of the frame when passing through the winding planes
ρ1 and ρ2 so that its position would be as close as possible to the case of a straight rod. We are
gradually looking for an optimal frame passage through the fiber-processing head for N points
B(i)lCS ∈ oLCS (lying on the o-axis) in the time, when point B(i)BCS ∈ σ (where σ is orthogonal plane to
axes sBCS)—we speak about the i-th step of passage of frame through the fiber-processing head, the
center of fiber-processing head is point HBCS ∈ σ (Figure 10).

Points P1 (i)BCS ∈ oBCS and P2 (i)BCS ∈ oBCS are selected to meet the following conditions. The
distance of points R1(i)BCS ∈ k1 (this point lies inside k1 in the intersection with axis oBCS) and
P1 (i)BCS ∈ oBCS measured as o-arc length (distance of these points on axis oBCS, see Section 2.2.2) is
equal to value ‖S1BCSM1BCS‖. At the same time, distance points R2(i)BCS ∈ k2 (this point lies inside
k2 in the intersection with axis oBCS) and P2(i)BCS ∈ oBCS measured as o-arc length is equal to value
‖S2BCSM2BCS‖. The prescribed angles of the first and third windings of the fibers will be more accurate,
the smaller the distances ‖P1(i)BCSM1BCS‖ and ‖P2(i)BCSM2BCS‖ will be in the i-th step of the frame
passage through the winding head. We find such a position of the REE for each i (1 ≤ i ≤ N) that
the location of axis oBCS in BCS (and hence the frame) will make the distances ‖P1(i)BCSM1BCS‖ and
‖P2(i)BCSM2BCS‖ as small as possible (in the case that the frame or its part is a straight rod both
distances are equal to zero).

Using the mathematical fiber winding model described in Section 3, matrix calculus and the
optimization method, the optimal trajectory of the REE is calculated, which means the optimal
passage of the frame through the winding head. In this way, we ensure the correct angle of winding
individual layers.

It should be highlighted that the procedure for calculating the optimal trajectory of the REE in the
i-th step of the frame passage through fiber-processing head, is described in this section.

Point HBCS ≡ (S1BCS + S2BCS)/2 is the center of the fiber-processing head (Figure 7 (left)) and
h1BCS = (0, 1, 0, 0), h2BCS = (0, 0, 1, 0) are constant mutually orthogonal vectors.

Plane σ is orthogonal to axis sBCS of the fiber-processing head (and hence also to axis yBCS) and
passes through the center HBCS of the head (Figures 9 and 10). Point H(i)BCS is randomly chosen in a
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defined circle with center HBCS, circle lies in plane σ. At the same time, a pair of orthogonal vectors
h1 (i)BCS and h2 (i)BCS is created through the following relation

h1 (i)BCS = Rot (z,ϕ (i)) ·Rot (x,ω (i)) · h1BCS, h2(i)BCS = Rot (z,ϕ (i)) ·Rot (x,ω (i)) · h2BCS, (5)

where Rot(z,ϕ(i)) is an orthogonal rotation matrix around axis z at angle ϕ(i) and Rot (x,ω (i)) is
an orthogonal rotation matrix around axis x at angle ω (i). Elements of matrices Rot (z,ϕ (i)) and
Rot(x,ω(i)) are listed elsewhere [21,38]. In relation (5) vector h1BCS is first rotated around the z-axis
by angle ϕ(i) and then around the x-axis by angle ω (i) and vector h1 (i)BCS is obtained. The sizes of
angles ϕ (i) and ω (i) are randomly chosen and are within the limits set. Analogously vector h2 (i)BCS
is constructed in relation (5).

In this way we randomly chose point H(i)BCS ∈ σ and mutually orthogonal vectors h1 (i)BCS and
h2 (i)BCS. Then there is an unambiguously defined transformation matrix T(i) that is valid

H(i)BCS ≡ B(i)BCS = T(i)B(i)LCS,h1(i)BCS ≡ b1 (i)BCS = T(i)b1 (i)LCS,
h2(i)BCS ≡ b2 (i)BCS = T(i)b2 (i)LCS.

(6)

It means that matrix T(i) transforms LCS of REE to BCS that is a true relation (6). Transformation
matrix T(i) is defined by relation [21,41]

T(i) = L(i) ·Q(i) (7)

where L(i) is translation matrix and Q(i) rotation matrix. The detailed calculation procedure of finding
transform matrix T(i) is described in [21,42].

By fulfilling the conditions (6), one possible position of axis oBCS in BCS (and thus the whole frame)
is determined during the i-th passage of frame through head. B( j)BCS = T(i)B( j)LCS and B( j)BCS
∈ oBCS is true for 1 ≤ j ≤ N. The position of oBCS axis is determined by points B( j)BCS. At this stage,
the best possible position of axis oBCS in BCS is investigated for the needs of the winding process.

Please note that identification h2 (i)BCS ≡ b2 (i)BCS = T(i)b2 (i)LCS in relation (6) enables the
possible rotation of the frame around vector b1 (i)BCS at point B(i)BCS.

For each i (1 ≤ i ≤ N), we seek optimal point H(i)optBCS
and vectors h1(i)optBCS

, h2 (i)optBCS
, so

that distances ‖P1(i)optBCS
M1BCS‖ and ‖P2(i)optBCS

M2BCS‖ are the smallest possible values. It means
that point H(i)optBCS

and vectors h1(i)optBCS
, h2(i)optBCS

determine the best frame position for the
winding process.

Coordinates x(i)optBCS
, z(i)optBCS

define sought point H(i)optBCS
(coordinate yH(i)BCS

is constant
because H(i)BCS ∈ σ), sought unit vectors h1(i)optBCS

and h2(i)optBCS
are defined by anglesϕ(i)opt,ω(i)opt

and by relation (5).
Now, we focus on the definition of cost function F in the form

F(i, xH(i)BCS
, zH(i)BCS

, ϕ(i), ω(i)) = ν1‖P1(i)BCSM1BCS‖
2 + ν2‖P2(i)BCSM2BCS‖

2, (8)

where ‖P1(i)BCSM1BCS‖
2 =

(
xP1(i)BCS

− xM1(i)BCS

)2
+

(
yP1(i)BCS

− yM1(i)BCS

)2
+

(
zP1(i)BCS

− zM1(i)BCS

)2
,

‖P2(i)BCSM2BCS‖
2 =

(
xP2(i)BCS

− xM2(i)BCS

)2
+

(
yP2(i)BCS

− yM2(i)BCS

)2
+

(
zP2(i)BCS

− zM2(i)BCS

)2

and ν1, ν2 are weight constants which allow the specification of the importance of the first layer and
the third layer of winding fibers. It follows from the definition of cost function F, the smaller value of
function F, the better winding conditions.

Note 1
Ensuring the quality of the third winding layer is often more important than the quality of the first

winding layer as it also ensures the fixing of the second placement of fibers in a longitudinal direction



Polymers 2020, 12, 1037 12 of 26

(second static guide line provides winding at zero angle). Therefore, constants ν1, ν2 can be set ν2 > ν1

in the definition of cost functions F in relation (8).
We find the global minimum of cost function F defined by relation (8) in i-th step of passage frame

through the fiber-processing head, i.e.,

F(i, x(i)optBCS
, z(i)optBCS

, ϕ(i)opt, ω(i)opt) = min
xH(i)BCS

, zH(i)BCS
, ϕ(i), ω(i)

{F(i, xH(i)BCS
, zH(i)BCS

, ϕ(i), ω(i))} (9)

Coordinates x(i)optBCS
, z(i)optBCS

define sought point H(i)optBCS
(coordinate yH(i)BCS

is constant),
sought unit vectors h1(i)optBCS

and h2(i)optBCS
are defined by angles ϕ(i)opt, ω(i)opt and by relation (5).

As result of a calculation of x(i)opt, z(i)opt, ϕ(i)opt, ω(i)opt, transformation matrix T(i)opt is obtained.
In accordance with relation (7) the transformation matrix T(i)opt is defined by relation

T(i)opt = L(i)opt ·Q(i)opt (10)

where L(i)opt is the translation matrix and Q(i)opt is the rotation matrix of LCS toward BCS. Rotation
matrix Q(i)opt in relation (10) can be decomposed in the form

Q(i)opt = Rot(z, a(i)opt) ·Rot (y, b(i)opt) ·Rot (x, c(i)opt) (11)

where Rot (z, a(i)opt) is rotation matrix around axis z at angle a(i)opt, Rot (y, b (i)opt) is the rotation
matrix around axis y at angle b(i)opt and Rot (x, c (i)opt) is the rotation matrix around axis x at
angle c(i)opt. A detailed procedure of the calculation of Euler angles a(i)opt, b(i)opt and c(i)opt is
described elsewhere [21,42]. Then TCP(i)opt = (x̃(i)opt, ỹ(i)opt, z̃(i)opt, a(i)opt, b(i)opt, c (i)opt) where
values x̃(i)opt, ỹ(i)opt and , z̃(i)opt are defined by the elements of matrix L(i)opt (the detail is provided
elsewhere [21,42]).

Note 2
It is necessary in the i-th optimization step to accept only such TCP (i)opt whose corresponding

parameters with TCP(i− 1)opt parameters differ less than the specified limit. If the condition is not
satisfied, it is necessary to seek another suitable minimum of cost function F.

Sequence TCP(i)opt, 1 ≤ i ≤ N, is calculated on the external PC and subsequently loaded into the
control unit of industrial robot. In this way, the optimal REE trajectory is determined by the procedure
described above. Then the control unit of robot interpolates the corresponding parameters of TCP (i)opt,
1 ≤ i ≤ N, by its internal interpolation functions similar to what described in [43]. The REE moves
according to the off-line optimal trajectory thus determined.

2.3.1. Schematic Representation of the Procedure for Calculating the Optimal REE Trajectory

The schematic representation of calculation of sequence TCP(i)opt is described in the flowchart as
shown in Figure 11.

Note 3 (based on the flowchart shown in Figure 11)

1. Specification of the fiber-processing head in BCS (including coordinates of centers S1BCS and
S2BCS of outer rotating guide lines k1 and k2 of the head, vectors h1BCS and h2BCS, common radius
rCIRCLE of circles k1 and k2).

2. Loading of the location of composite frame in LCS (including coordinates of points B(i)LCS,
vectors b1 (i)LCS, b2 (i)LCS and values C(i) for 1 ≤ i ≤ N, radius of frame rTUBE).

3. Determination of more B(i)LCS points on frame axis oLCS and corresponding vectors b1 (i)LCS and
b2 (i)LCS.

4. Calculation of the optimal REE trajectory to ensure the high-quality of fiber winding on the
composite frame. A differential evolution algorithm (see Section 4) is used for the optimization
procedure. Determining the optimal sequence TCP(i)opt (1 ≤ i ≤ N) is the result of calculation.
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5. Storing the calculated sequence of TCP(i)opt (1 ≤ i ≤ N) in the central robot unit. Determining
the optimal trajectory by linking individual corresponding parameters of consecutive following
TCP(i)opt (using programming instruction of robot—linear interpolations or cubic splines).Polymers 2020, 12, 1037 15 of 30 

 

 

Figure 11. Flowchart of optimal off-line REE trajectory calculation. 

The flowchart shown in Figure 12 describes point No. 4 of Notes 3 in more detail—the procedure 
for calculation of sequence optiTCP )(  ( Ni ≤≤1 ). 

 

Figure 12. Flowchart of optimal off-line REE trajectory calculation. 

Note 4 
The possible collisions of the composite frame and fiber-processing head (especially collisions 

of the frame and three guide lines 1k , 3k  and 2k  with common radius CIRCLEr , the radius of frame 

is TUBEr , where CIRCLETUBE rr <  , see Figure 13) are tested in each step of passage of the frame 
through the head. 

Figure 11. Flowchart of optimal off-line REE trajectory calculation.

The flowchart shown in Figure 12 describes point No. 4 of Notes 3 in more detail—the procedure
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Figure 12. Flowchart of optimal off-line REE trajectory calculation.

Note 4
The possible collisions of the composite frame and fiber-processing head (especially collisions of

the frame and three guide lines k1, k3 and k2 with common radius rCIRCLE, the radius of frame is rTUBE,
where rTUBE < rCIRCLE, see Figure 13) are tested in each step of passage of the frame through the head.
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2.3.2. Use of Differential Evolution Algorithm to REE Trajectory Optimization

The procedure for finding minimum (relation (9)) of cost function F defined by relation (8) in
the i-th step of frame passage through the winding head, is described. Cost function F often contains
many local minima. Thus, using gradient methods for finding the global minimum of function F is not
proper (the high probability that is found only local minimum). Genetic algorithm is often applied to
finding optimal REE trajectory [30,44]. Hence, a differential evolution algorithm is used to minimize of
cost function F. This optimization algorithm gives better results than a genetic algorithm when solving a
given minimization problem. Classical differential evolution algorithm is usually denoted DE/rand/1/bin
(for more detail see [45,46]). The modified differential algorithm (of DE/rand/1/bin) is used that is hereafter
denoted by MDEA [46]. When using MDEA, the asymptotic convergence to the global minimum of cost
function F is ensured [46,47]. The use of MDEA has already proven to be successful in optimizing in other
technical areas [48]. It is often difficult to find a global minimum of cost function F in the final steps of the
algorithm. However, we are then able to find a satisfactory local minimum.

MDEA is used to find TCP(i)opt for given value i, where 1 ≤ i ≤ N. The position of the frame in
BCS is given by four parameters xH(i)BCS

, zH(i)BCS
, ϕ(i), ω(i). These parameters define the value of cost

function F specified by relation (8). This means that every four parameters xH(i)BCS
, zH(i)BCS

, ϕ(i), ω(i)
define one possible location of the frame in the i-th step of passage through the fiber-processing head. One
individual y (i) in MDEA is defined by these four parameters and is a potential solution to this problem
of finding global minimum (relation (9)) of function F. Specimen SPEC ( i ) is defined and determines the
type and value ranges of each parameter of the possible individual y (i) in the i-th step of passage of the
frame through the fiber-processing head. Then SPEC ( i ) can be expressed in the form [45]

SPEC ( i ) =
{{

real, Lo1(i), Hg1(i)
}
,
{

real, Lo2(i), Hg2(i)
}
,
{

real3, Lo3(i), Hg3(i)
}
,
{

real, Lo4(i), Hg4(i)
}}

(12)

Here denomination of real specifies that all four parameters are of a real type, values Lo j(i) and
Hg j(i) specify its lower and upper limits, where 1 ≤ j ≤ 4. The specimen determines the admissible
parameter values defined location of the frame in BCS.

In the MDEA we successively construct generations of individuals y(i). Each generation includes
NP individuals, where each individual y(i) is a potential solution to the problem (relation (9)).

One way of forming the initial generation of individuals y(i) is given by relation

y(i)m , j := Lo j(i) + rand (0, 1) ·
(
Hg j(i) − Lo j(i)

)
(13)

where index i indicates the i-th step of optimization, j determines the j-th component of the m-th
individual of the initial generation (1 ≤ m ≤ NP, 1 ≤ j ≤ 4). The function rand (0, 1) randomly
generates a value from a closed interval < 0, 1 >.



Polymers 2020, 12, 1037 15 of 26

A sequence of generations G(k) is created, where k denotes the number of the generation. Each
generation comprises of individuals y(i) and we look for the individual with the smallest value
F(y(i)). In general, four individuals of the current generation of MDEA participate in the creation of
an individual of the next generation. The generated individuals are saved in matrix B ∈ RNP × 5. Each
row of this matrix represents one individual y(i) and its evaluation F(y(i)). During the creation of
individuals, it is essential to ensure that the components of each generated individual are consistent
with relation (12).

2.3.3. Pseudo-Code of MDEA

In this section, detail information about MDEA is described. The Algorithm 1 consists of three
basic parts: necessary input values, its own computational part, and output values of the algorithm.
The algorithm is presented in pseudo-code for given fixed number i (determining the i-th step of
REE trajectory), where 1 ≤ i ≤ N. The index i is not used in the following algorithm for clarity of
written pseudo-code.

Algorithm 1. MDEA

Input:
The number of calculated generations NG, crossover probability CR, mutation factor f , generation size NP, the dimension
of individuals D = 4, lower limits Lo j and upper limits Hg j, 1 ≤ j ≤ 4.
Internal computation:

1. Create an initial generation (k = 0) of NP individuals yk
m, 1 ≤ m ≤ NP, (e.g., by use of relation (13)).

2. a) Evaluate all the individuals yk
m of the k-th generation (calculate F(yk

m) for each individual yk
m). b) Store the

individuals yk
m and their evaluations F(yk

m) into matrix B (each matrix row contains parameters of individual yk
m and

its evaluation F(yk
m), 1 ≤ m ≤ NP).

3. while k ≤ NG

a) for m := 1 step 1 to NP do
collision:=true
repeat

(i) randomly select index sm ∈ {1, 2, . . . , D},
(ii) randomly select indices r1, r2, r3 ∈ {1, . . . , NP},

where rl , m for 1 ≤ l ≤ 3; r1 , r2, r1 , r3, r2 , r3;
(iii) for j := 1 step 1 to D do

if rand (0, 1) ≤ CR or j = sm) then

ytrial
m, j := yk

r3, j + f
(
yk

r1, j − yk
r2, j

)
else

ytrial
m, j := yk

m, j
end for (j)

(iv) Testing of possible collisions of the frame location in BCS defined by ytrial
m

and the fiber-processing head.
if ytrial

m does not include collisions then
collision = false

until collision = false
end repeat

(v) if F
(
ytrial

m

)
≤ F

(
yk

m

)
then yk+1

m := ytrial
m

else yk+1
m := yk

m
end if

end for (m)
b) Store individuals yk+1

m and their evolutions F
(
yk+1

m

)
(1 ≤ m ≤ NP) of the new generation

(k + 1)-st generation in the matrix B, k := k + 1.
c) Find index p which satisfies the condition F

(
yk+1

p

)
≥ F(yk

m) for 1 ≤ m ≤ NP,

yk
p := yrand, where yrand satisfies (13)

end while (k).
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Output:
The best found individual yopt is represented by the row of matrix B that contains the corresponding value
min

{
F
(
yk

m

)
; yk

m ∈ B
}
.

Comments.
The repeat until condition cycle is always executed at least once, since the controlling condition is checked at the end of the
cycle.
Function rand (0, 1) randomly picks a number from the interval 〈0, 1〉. The notation yk

m, j means the j-th component of an

individual yk
m in the k-th generation.

The individual yopt in pseudo-code of MDEA is the final solution and corresponds to designation y(i)opt that includes
optimized parameters xH(i)opt

, zH(i)opt
, ϕ(i)opt, ω(i)optn. However, it should be noted that in general parameters

xH(i)opt
, zH(i)opt

, ϕ(i)opt, ω(i)opt calculated by MDEA can only be optimized (and not optimal) parameters in relation to
equation (9). This is due to the calculation of the final number of generations of individuals using MDEA. Therefore we
mark calculated parameters as optimal parameters xH(i)opt

, zH(i)opt
, ϕ(i)opt, ω(i)opt.

3. Mechanical Performance of Polymer Composite Frame

The polymer composite frames are designed and fabricated to sustain various loads under
specific boundary condition. In this regard, the frame would normally face different types of tensile,
compressive, shear, bending and twisting loads. Such a complex loading normally results in the
development of various stresses in the composite material and cause early damage phenomena. On
the other hand, the composite frames with the complex geometry in open or close form, by nature, are
under stress concentration phenomena, which normally are intensified at the curved location of the
frame. As mentioned in this study, one of the technological challenges in composite frame production
is the homogenous fiber winding process especially at the curved section of the frame. In this regard,
few images of the final winding product (before matrix injection) of an L-shape frame based on the
manual- and new-robot winding processes are provided, as shown in Figure 14. Results of the new
winding method indicated that the angle of the fibers to the frame remains uniform, homogeneous,
and consistent in circular-helix cross-sectional at the critical curved section, while the manual-robot
winding resulted in random inconsistent fiber winding at different plies. Therefore, the final product
of the composite frame using manual-robot winding would contain large macro-scale sections of
polymer matrix pocket (with no fiber) at various layers in the curved location where is under stress
concentration. In fact, due to the superb mechanical properties of the fiber materials, the existence of
matrix pocket itself, would act as a location for stress concentration, even if it was made at the straight
locations of the frame that extensively weaken the composite frame [6,36,49,50].

Damage phenomena in normal composite structures (with uniform, homogeneous, and consistent
fiber arrangement) under loading normally initiate with micro-scale matrix cracking/crushing that grow
in size across the ply thickness (parallel to the fibers), and induce early stage of multi-delamination
event. Further loading could result in local fiber cracking/buckling, excessive multiple intra- and
inter-laminar failures, weaken the laminate and lead to structural rupture [13,51–54]. The fiber
arrangement in normal composites would result the fibers as the load-bearing core component of
the composite, to sustain the load, and ensure the composite frame to bear the designed load before
fracture. The process of damage in normal composites occurs gradually, and composite structures
are normally able to sustain severe loading conditions [54,55]. However, due to the inconsistent fiber
arrangement in composite frame made by manual-robot winding, and stress concentration phenomena
at curved sections as well as the matrix pocket parts, the material damage that initiate as matrix
micro-crack would easily shift to cross-sectional fracture of the frame at the matrix pocket locations.
In this condition, due to the very low properties of matrix materials in comparison with the fiber
properties (10%), it is expected that each ply could only sustain about 10% of the load-share assumed for
the composite ply. This excessively diminish the yielding limit and desired tolerance of the composite
frame [6,53,55,56].
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4. Practical Experimental Verification Tests of Optimization Procedure

The calculation method of the optimal REE trajectory described in this article was applied to
practical problems. If the non-bearing core frame is not too complicated a 3D shape then it is possible to
use a simpler non-optimized algorithm to calculate the REE trajectory described by Martinec, et al. [21].
For more complicated 2D and 3D shaped frames it is suitable to use the algorithm for calculating of
optimal REE trajectory described in this article.

Entering of the input data is simple and as the output values of the described procedure we get the
resulting sequence TCP(i)opt, 1 ≤ i ≤ N. In this way, optimal REE trajectory is calculated on an external
PC. Sequence TCP(i)opt is subsequently stored in the central robot unit and in this way optimal REE
trajectory is defined.

The focus was on calculation of optimized REE trajectory for two non-bearing core frames with
a circular cross-section. In the first experimental test, a normal 2D shape was selected, while a very
complicated 3D shape was selected for the second experiment. Cost function F defined by relation (8)
is used in the optimization procedure of both cases.

The three layers of the fibers are simultaneously wound on the frame at angles 45◦, 0◦ and −45◦

and parameters ν1 = ν2 = 1 in definition of cost function F as provided in relation (8).

4.1. Experimental Test 1—Composite Non-Bearing Core Frame Shaped in 2D

The considered composite frame is part of the supporting structure of a baby carriage prototype
(Figure 15).

The non-bearing core frame before fiber winding is shown in Figure 16 (left). The fiber-processing
head (Figure 16 (right)) is represented in the model by circle k1 and k2 (they correspond to outer
guide lines, see Figure 7 on the left) with centers S1BCS = [1000, 300, 1400, 1] and S2BCS = [1000, 370,
1400, 1] with radius rCIRCLE = 50 [mm]. The length of straight line segment S1BCSS2BCS = 70 [mm].
It is also valid that h1BCS = (S2BCS − S1BCS)/‖S2BCS − S1BCS‖ = (0, 1, 0, 0),h2BCS = (0, 0, 1, 0),
HBCS = (S1BCS + S2BCS)/2.
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Figure 17. Test 1—3D view of the non-bearing core frame location in LCS . 

Axis LCSo  of the composite frame is entered in LCS  of the REE using the discrete set of points

LCSiB )( , 21311 =≤≤ Ni . The total length of axis LCSo ( o - arc length) from the starting point LCSB )1(
to the end point LCSNB )(  is 2130)( =NC [mm]. The continuous distance of points LCSiB )(  on axis 

LCSo  from the initial point LCSB )1(  is denoted by )(iC , 21311 =≤≤ Ni . Vectors LCSi)(b1 and 

LCSi)(b2  are specified and the radius of the frame is =TUBEr 20 [mm] (the frame has the same cross-
section on the whole circuit of the frame).  

The calculated optimal REE trajectory was first used for graphical simulation of the frame 
passage through the fiber-processing head using the OfficeLite simulator software and the 
KUKASimPro graphic simulator of the actions of the robot (see Figure 18). Optimal REE trajectory 
was subsequently tested in a composite experimental workplace. 

Figure 16. Test 1—Non-bearing core frame connected to end-effector of industrial robot KUKA KR 16-2
(left). Testing of passage of the frame through fiber-processing head (right).

The vertical cross-section of the frame with axis oLCS and the describing values mentioned in LCS
are shown in Figure 8. The position of the frame in LCS in a 3D view is shown in Figure 17.
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Figure 17. Test 1—3D view of the non-bearing core frame location in LCS.

Axis oLCS of the composite frame is entered in LCS of the REE using the discrete set of points
B(i)LCS, 1 ≤ i ≤ N = 2131. The total length of axis oLCS (o-arc length) from the starting point B(1)LCS to
the end point B(N)LCS is C(N) = 2130 [mm]. The continuous distance of points B(i)LCS on axis oLCS
from the initial point B(1)LCS is denoted by C(i), 1 ≤ i ≤ N = 2131. Vectors b1 (i)LCS and b2 (i) LCS are
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specified and the radius of the frame is rTUBE = 20 [mm] (the frame has the same cross-section on the
whole circuit of the frame).

The calculated optimal REE trajectory was first used for graphical simulation of the frame passage
through the fiber-processing head using the OfficeLite simulator software and the KUKASimPro
graphic simulator of the actions of the robot (see Figure 18). Optimal REE trajectory was subsequently
tested in a composite experimental workplace.Polymers 2020, 12, 1037 22 of 30 

 

 
Figure 18. Test 1—the graphical simulation of the robot position and the frame in BCS  in the 
winding at four selected points (1–4) of optimal trajectory. 

The course of the REE and its location in BCS  during the passage of the frame through the 
fiber-processing head is graphically illustrated in Figures 19 and 20. The 321 ,, lll and 4l  values in 
Figures 19 and 20 in the l - axis correspond to positions of REE in sub-figures 1, 3, 4 and 5 in Figure 
18. 

 

Figure 19. Test 1—Diagram of the optimal course of the OPTTCP  during the passage of the frame 
through the fiber-processing head - values of the first three parameters of optimal .OPTTCP . 

Figure 18. Test 1—the graphical simulation of the robot position and the frame in BCS in the winding
at four selected points (1–4) of optimal trajectory.

The course of the REE and its location in BCS during the passage of the frame through the
fiber-processing head is graphically illustrated in Figures 19 and 20. The l1, l2, l3 and l4 values in
Figures 19 and 20 in the l-axis correspond to positions of REE in sub-figures 1, 3, 4 and 5 in Figure 18.
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Figure 19. Test 1—Diagram of the optimal course of the TCPOPT during the passage of the frame
through the fiber-processing head-values of the first three parameters of optimal TCPOPT.
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4.2. Experimental Test 2—3D Shape Non-Bearing Core Frame  

Figure 20. Test 1—Diagram of the optimal course of the TCPOPT during the passage of the frame
through the fiber-processing head - values of the last three parameters of optimal TCPOPT.

The calculated optimized trajectory lies in a plane parallel to axes z and y of BCS. Therefore,
parameters x, a, and b in optimized TCPOPT are constant for the entire optimal trajectory.

Figure 21 shows a graph of the optimal values F(x(i)opt, z(i)opt, ϕ(i)opt, ω(i)opt) (see relation (9))
corresponding to the optimal trajectory REE and a graph of values F(xHBCS , zHBCS , 0, 0) corresponding
to the non-optimized REE trajectory described in [21].
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4.2. Experimental Test 2—3D Shape Non-Bearing Core Frame  

Figure 21. Test 1—Diagram showing the course of function F(x(i)opt, z(i)opt, ϕ(i)opt, ω(i)opt) for
optimal REE trajectory and values F(xHBCS , zHBCS , 0, 0) for non-optimal REE trajectory during the
passage of the frame through the fiber-processing head (1 ≤ i ≤ N = 2131).

4.2. Experimental Test 2—3D Shape Non-Bearing Core Frame

In the second practical example, the calculation of optimal REE trajectory is performed for a 3D
shaped frame shown in Figures 1 and 22 (on the left and on the right). After production, this composite
frame serves to reinforce the car chassis.
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Figure 22. Test 2—Frame passage testing through fiber-processing head for calculated optimal
REE trajectory.

The fiber-processing head is defined by the same parameter values as in the previous experimental
test No. 1, but only S1BCS = [400, 1000, 1600, 1] and S2BCS = [400, 1070, 1600, 1].

Axis oLCS of the non-bearing core frame is entered in LCS of the REE by a discrete set of points
B(i)LCS, 1 ≤ i ≤ N = 1031. The total length of axis oLCS (o-arc length) from the starting point B(1)LCS to
the end point B (N)LCS is C (N) = 1030 [mm] (note that continuous distance of points B(i)LCS on axis
oLCS from the initial point B(1)LCS is denoted by C(i)). Vectors b1 (i)LCS and b2 (i) LCS are specified
and the radius of the frame is rTUBE = 20 [mm] (the frame has the same radius of cross-section on the
whole circuit of the frame).

A graphical representation of the specified axis oLCS of the frame defined in LCS is shown in
Figure 23. Initial point B(1)BCS corresponds to l = C(1) = 0 [mm] and trajectory endpoint B(1031 )BCS
corresponds to l = C (1031) = 1030 [mm].
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Figures 24 and 25 show graphs of parameters of optimal TCPOPT during the winding of fibers on
the frame. The graphs in Figure 24 contain the first three parameters and the graphs in Figure 25 show
the last three parameters of optimal TCPOPT.

Unlike the previous experimental Test 1, the frame is 3D shaped and all six parameters of optimized
TCPOPT change continuously during the winding process. The sudden changes in a and b parameters
in Figure 25 do not affect the rapid changes in REE orientation. It should be noted that orientation of
the REE is defined by rotation matrix Q(i)opt in relation (10). The determination of Euler angles a, b
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and c are not unique [21,57]. Thus, in general, different parameter values can give the same matrix
Q(i)opt in the product of sub-rotation matrices (relation (11)).
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Figure 26 shows a graph of the optimal values F(x(i)opt, z(i)opt, ϕ(i)opt, ω(i)opt) (see relation (9))
corresponding to the optimal trajectory REE and a graph of values F(xHBCS , zHBCS , 0, 0) corresponding
to the non-optimized REE trajectory [21].

It follows from values of cost function F defined by relation (8) in Figure 26 (and also in Test
1—Figure 21) that the optimized calculation method for definition of REE trajectory is more suitable
than the simple non-optimized method defined in [21] for complex frame shapes.
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for optimal REE trajectory and values F(xHBCS , zHBCS , 0, 0) for non-optimal REE trajectory during the
passage of the frame through the fiber-processing head (1 ≤ i ≤ N = 1031).

5. Conclusions

Fabrication of high-quality polymer composite frame is highly dependent on the homogeneous
and uniform winding process of filament fibers. In the dry fiber winding technology on a non-bearing
core frame, three layers of fibers are gradually created on the frame. The quality of each fiber winding
layer depends on keeping the correct winding angle and thereby ensuring the homogeneity of the
wound fibers. Fulfillment of these conditions depends on determining the correct REE trajectory,
especially in the case of a 3D shaped frame. The simple calculation method of an off-line REE trajectory
described in [21] is suitable only for frames that do not have an excessively complicated shape.

In this study, the original calculation method of optimal REE trajectory is developed, described
and experimentally tested to ensure optimal possible correct winding angles of individual fiber layers
onto frame. This method provides a significant advantage over a manually entered REE trajectory
(manual-robot winding). Technicians often prefer the manual setting of the REE trajectory by means
of a teach pendant (control body for motions of a robot [58]). However, this approach of trajectory
determination is time-consuming and in practice it is not feasible to define an optimal REE trajectory
for our needs.

Using the above described optimization algorithm, is appropriate in general for any shape of
frame with a circular cross-section, especially in the case of a more complicated 3D frame shape. The
use of the described procedure makes it possible to ensure the desired fiber angles and hence the
homogeneity of the fiber windings. Such a process makes it possible to produce a composite frame
with high resistance to operational stress. As a result, the mechanical performance of composite frame
could be assumed based on the designed load, while the load capacity of the composite frame made of
manual-robot winding is diminished drastically.

The principle of the optimization algorithm can also be applied to other manufacturing production
of specific composites when it is necessary to determine the 3D trajectory of the REE.

The described optimization algorithm is completely independent of the type of the industrial robot
and the robot software tool used. The optimization algorithm can be used successfully by technicians
of industrial composite workplaces and also by programmers of software tools for industrial robots
involved in production of composites.

At present, specialized companies offer commercial software tools to industrial robot users. These
tools are developed for advanced areas of industrial production (e.g., cutting, welding, pressing, or
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packing). However, these tools are not usually available for special production technologies such as the
manufacturing of composite frames and other types of composites [59,60]. In such cases, the described
optimization algorithm for calculation of an optimal REE trajectory can be used successfully.
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