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Abstract: The superlative mechanical properties of spider silk and its conspicuous variations have
instigated significant interest over the past few years. However, current attempts to synthetically
spin spider silk fibers often yield an inferior physical performance, owing to the improper molecular
interactions of silk proteins. Considering this, herein, a post-treatment process to reorganize molecular
structures and improve the physical strength of spider silk is reported. The major ampullate dragline
silk from Nephila pilipes with a high β-sheet content and an adequate tensile strength was utilized as
the study material, while that from Cyrtophora moluccensis was regarded as a reference. Our results
indicated that the hydrothermal post-treatment (50–70 ◦C) of natural spider silk could effectively
induce the alternation of secondary structures (random coil to β-sheet) and increase the overall tensile
strength of the silk. Such advantageous post-treatment strategy when applied to regenerated spider
silk also leads to an increment in the strength by ~2.5–3.0 folds, recapitulating ~90% of the strength
of native spider silk. Overall, this study provides a facile and effective post-spinning means for
enhancing the molecular structures and mechanical properties of as-spun silk threads, both natural
and regenerated.

Keywords: spider silk; secondary structures; hydrothermal treatment; strength; Nephila pilipes

1. Introduction

Spider silks are protein fibers consisting of hierarchically synergized protein motifs that account for
outstanding mechanical properties (toughest material in nature) and biocompatibility [1–3]. The unique
motifs, including the polyalanine- and glycine-rich sequences (AAA or GGA), constitute the crystalline
and amorphous regions in tandem repeats, imparting the ductility and strength of silk fibers and
leading to excellent toughness [4,5]. For instance, the silk fiber produced by the major ampullate
gland (MA) of spiders is the strongest amongst various silk types and is utilized to form the radii and
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frames of spider webs. Such major ampullate silk, also known as the major component of dragline
silks, exhibits a tensile strength stronger than steel (>1 GPa), and it also has adequate viscoelasticity
(~20–35%) [6]. The incomparable toughness and the excellent biocompatibility of spider silk results in
potential applications in industrial and biomedical configurations, such as performance/protective
gears, ultra-thin sutures for neurosurgery and wound closure, band aids, and implants for bone,
cartilage, tendons and ligaments [7,8].

It is generally recognized that the extraordinary performance of the spider silk resides in the
well-organized inter- and intra-molecular chains of silk proteins. Those hierarchically supra-molecular
silk structures are greatly controlled by the sophisticated spinning process occurring in the spinning
ducts of the spiders. Currently, two common hypotheses describe the hierarchical structures responsible
for the spinning process that transforms silk protein solutions into solid filaments at the submicron
and micron levels, namely the liquid crystalline model [9] and the micelles model [10–12]. The liquid
crystalline model describes the transformation of liquid silk protein into fibers formed within the
spinning duct of spiders, which in turn is accompanied by increasing shear forces that lead to the
formation of intermolecular secondary structures. The micelles model describes the formation of
micelle structures through the interplay of the hydrophilic tails and hydrophobic cores of the spidroins
and the induction of molecular-chain alignment upon the spinning process [10,11]. Taken together, the
spidroin-aligned secondary structures (α-helices, random coil, and β-turns) govern the mechanical
properties, e.g., hydrophobic antiparallel β-sheets that provide strength and β-spirals that offer the
elasticity of the spider silks [9,11,13–17].

Though the physical properties of spider silk are predetermined by the spinning process of spiders,
the molecular interaction within the spun fibers may be subjected to environmental change, leading to
a tunable silk performance. This may include a typical phenomenon called the supercontraction of
spider silk fibers that involves the shrinkage of spider silk fiber to half of its original length, when the
dragline silk is in a hydrated and relaxed state. Those are the silk fibers that possess remarkable
alternations in their molecular structures and subsequent mechanical behaviors, owing to the presence
of water as a plasticizer, that is used to alter hydrogen bonds [18,19].

Additionally, there exists another crucial factor, which is the thermal history of the molecular
structure, as well as the mechanical behavior of spider silk. For instance, there is a heating-induced
gradual transition in spider silk structure, attributed to weakened hydrogen bonds and disordered
molecular chains in amorphous (at a low temperature range) and β-sheet crystalline regions (at a higher
temperature range) [20–22]. For mechanical performance, the literature has reported an interesting
observation of spider silk, suggesting a unique storage modulus transition at ~60 ◦C and an elongation
at break at ~70 ◦C, indicating a rise in stiffness or stronger interactions between molecular chains [21,23].
Similar to spider silk, recent studies on silkworm silk have also indicated molecular and physical
property transition at ~60 ◦C due to the enhancement of the dynamic modulus in first temperature scan
ranging from 25 to 100 ◦C [24]. Comprehensively, it is believed that a more precise re-investigation
of temperature treatment on spider silk would be worthy in establishing a relationship among the
molecular structures, processing, and subsequent mechanical performance.

In this research, a strategy combining hydration and thermal treatments was exerted on spider silk
to comprehend the transition of secondary structures and mechanical performance at the microscopic
and macroscopic levels, respectively. Using native spider silk as the benchmark material, we could
easily evaluate the success of these strategic approaches upon altering the physical characteristics of
the treated silk fibers. As a convincing result, a conformational transition of secondary structures
(from random coil to β-sheet) and an enhanced mechanical strength after the post-hydrothermal
treatment of the native spider silk was witnessed. Furthermore, artificially-regenerated spider silk
threads, when treated with the same post-spinning condition, also exhibited altered secondary
structures, and an increased mechanical strength. Overall, the hydrothermal treatment on spider
silk materials explored in this research serves as an effective means towards reorganizing hierarchy
of silk molecules, rendering superior mechanical strength as a favorable outcome. Furthermore,
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this technique, in turn, could be also scaled-up for the future fabrication of high-performance synthetic
silk materials using the recombinant silk sources.

2. Materials and Methods

2.1. Silk Collection and Preparation of Silk Films

Orb-weaving spiders of the genus Nephila are among the most popular species for silk studies.
Therefore, for this study, adult female Nephila pilipes, weighing from 3.7 to 4.3 g, were chosen to collect
silk. Only the dragline produced by major ampullate glands was examined. Forced silking was used
to collect dragline silk from N. pilipes. Spiders were first placed on a platform, ventral side facing
upward and the legs and abdomen fixed with non-sticky tapes and insect pins. Two threads of major
ampullate dragline silks were pulled from the spinneret and were taped on a rotor powered by a
motor. The platform was placed under a stereo-microscope to ensure that no experimental error or
contamination occurred during the forced silking. Dragline silk was drawn at a speed of 2–4 m/min,
which was similar to that of natural spinning. Some of the collected silk was prepared for mechanical
tests; some was dissolved in HFIP (hexafluoro-isopropanol) (Sigma-Aldrich, Saint louis, MO, USA) at
50 ◦C for 2 h, dried in aluminum pan at room temperature; and the remaining was cast on glass slides
for FT-IR analysis. After the dried films were obtained, both dragline threads and spidroin films were
immersed in distilled water in a water bath and heat-treated for 30 min (designated as heat treatment
in water) at 30, 40, 50, 70, and 90 ◦C. The films samples were removed from water bath, immediately
dried at ambient temperature, and analyzed by FT-IR. Additional groups of dragline threads and
spidroin films were also thermally treated using a heat blower (designated as heat treatment in air),
with a tunable temperature controller for 30 min at 30, 40, 50, 70, and 90 ◦C, followed by a series of
FT-IR analyses and tensile tests.

2.2. Characterization of Mechanical Properties of Spider Silk Fibers

The strength and elasticity of the collected dragline silk (first subjected to fiber fineness
measurement by vibroscope) was measured by a ZWICK 1445 mechanical testing instrument
(ZwickRoell, Herefordshire, UK). In each measurement, 20 threads of silk fibers were measured,
and the data were averaged to represent the silk properties. In addition to the silk of the N. pilipes,
the major ampullate dragline silk from the tent-web spider, Cyrtophora moluccensis, was harvested
for further comparison. Similar forced-silking conditions for collecting the silk of C. moluccensis,
at 2~4 m/min was utilized, and the strength and elasticity of dragline silk from these two types of
spiders were subsequently measured.

2.3. Circular Dichroism

The secondary structure conformation of the silk protein in a solution was characterized by
circular dichroism (CD). A JASCO spectropolarimeters J-810 (JASCO International Co. Ltd., Tokyo,
Japan) at a scan range of 180–260 nm was utilized to examine the spectrum for the spidroin solution.
HFIP was chosen as the solvent to dissolve silk protein at the final concentration of 0.5 wt % at 50 ◦C,
2 h. The CDNN 2.1 software was then used to calculate the secondary structure proportion from the
obtained CD spectrum. The structural conformations of the dissolved dragline solution and native
liquid gland silk dope from N. pilipes were compared. In addition, the dissolved silk from C. moluccensis
was utilized as a reference for the silk solution of N. pilipes.

2.4. FT-IR Analysis

The FT-IR spectroscopy was performed for the silk subjected to different heat treatments (30–90 ◦C).
In this experiment, an autoimage attenuated total reflectance Fourier transform infrared spectroscopic
(ATR-FT-IR) microscopy system (Perkin Elmer, Llantrisant, UK) was used to probe the silk samples.
The resolution of the mercury cadmium telluride (MCT) detector was 4 cm−1, and the operation
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condition of the scan number was 128. After the FT-IR spectra were obtained, software PeakFit® 4.11
(Systat Software) was used for further FT-IR spectrum deconvolution and secondary structure analysis.

2.5. Reconstitution of Spider Silk and Microspinning

The 20 g of spider silk samples collected by forced-silking were dissolved in HFIP (boiling point
of 58.2 ◦C) at a final concentration of 10 wt % [25]. The silk protein/HFIP spinning dope was placed
in a glass syringe (Hamilton, Model 1002 SL, Bonaduz, Switzerland) equipped with a 26G needle
with an inner diameter of 0.5 mm. The syringe with the silk solution was hooked up to a syringe
pump (Kd Scientific, KDS-100, Holliston, MA, USA), and the silk protein/HFIP dope was pumped
out at flow rate of 10–100 µL/h. Regenerated silk fibers were formed by extruding the silk solution
through the syringe needle and subsequently collected on a six-poled winder powered by a customized
motor. The collected regenerated-silk samples were secured on the poles of the winder by taping with
adhesive tape (water resistant and thermo-stable) and collected with the reeling speed of 60 cm/min.
The regenerated fibers, together with the winder, were removed from the motor and submerged
into 60 ◦C double-distilled water (dd H2O) for 30 min, followed by immediate drying at ambient
temperature. The silk fibers were then removed by carefully cutting them off from poles on the winder,
after which, they were evaluated for tensile properties.

2.6. Statistical Analysis

For the statistical analysis, experiments were performed in triplicates, the mean ± standard
deviation was calculated, and statistical significance was determined by a Student’s t-test (p < 0.05).

3. Results and Discussion

3.1. Analysis of Secondary Structures of Silk Fibroin by Circular Dichroism

Spiders have evolved to produce unique/specialized silk proteins and build orb webs (comprised of
silk threads) to account for various functional properties and applications [26]. Each of those silk proteins
possess diverse material and biological properties that are tailored for specific applications [27–29].
In this research, we primarily compared the silk properties between two common spider species,
N. pilipes and C. moluccensis, allowing us to screen the ideal silk material in the subsequent experiments
of this research. Nephila is the largest orb web weaver species, tropical and subtropical region
dweller, and are found in Taiwan [22,30]. It makes the vertical orb-web to catch flying insects;
while C. moluccensis, the largest 3D space-weaver found in Taiwan, builds up the tent webs for the
arrest of hopping insects [22].

Specifically, at first, the majority of the ampullate spider silk was collected from the two species of
spiders and dissolved separately into HFIP at 0.1 wt %, at 50 ◦C, for 2 h. This was followed by the
measurement of its CD spectra and deconvolution analysis. CD is among the common techniques in
studying protein secondary structures, and the deconvolution algorithm provides a relative estimation
of secondary structures for proteins in a solution [31]. The secondary structure proportions of N. pilipes
and C. moluccensis silk were calculated and are summarized in Table 1. The data of CD spectra in the
solution indicated the similarity of conformation between liquid silk dope and dissolved silk-thread
sample of N. pilipes. Compared to the secondary structures of silk from C. moluccensis, the dragline silk
of N. pilipes contained more β-sheet structures in proportion, in the form of antiparallel and parallel
β-sheets, 28.4% and 8.1 %, respectively. The β-turns were found be similar in liquid and dragline silk
from N. pilipes in comparison to those from C. moluccensis. As previously reported [32–34], the β-sheet
domain is primarily responsible for the mechanical strength of the silk thread, while β-turns can
build up a spiral-like spring structure that could be stretched under extension (renders elasticity).
Based on data from Table 1, it is indicative that the dragline threads of N. pilipes may exhibit a different
mechanical performance in comparison to those from C. moluccensis.
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Table 1. Secondary structures estimation of spider silks via CD analysis.

Conformation Liquid Silk of
N. pilipes (%)

Dragline Silk of
N. pilipes (%)

Dragline Silk of
C. moluccensis (%)

α Helix 19.8 20.7 30.0

Antiparallel β-sheet 27.4 28.4 21.9

Parallel β-sheet 8.6 8.1 7.1

β turn 18.3 18.8 20.3

Random coil 16.0 24.1 20.7

3.2. Mechanical Strength of Dragline Silk Fibers

It can be seen from Figure 1 that the mechanical strength of dragline silk from N. pilipes
(1084 ± 355 MPa) was found to be significantly higher than that of C. moluccensis (260 ± 91 MPa),
while the mean elasticity of the dragline silk from C. moluccensis (25.2 ± 8.4%) was barely larger than
that from N. pilipes (20.2 ± 3.1%), with no significant difference. By combining the results from Table 1
and Figure 1, the enhancement of the mechanical performance for the treated silk samples could
possibly be attributed to the elevated β-sheet content in the silk [35]. Moreover, the secondary structure
of silk thread was found to be retained, even after re-dissolution, indicating the absence of any ill effects
(degradation) of the HFIP treatment on silk [36]. Overall, the dragline silk produced from N. pilipes
was mechanically superior to that from C. moluccensis, and, as such, it was consequently chosen as the
study material for the rest of the research.

Polymers 2019, 11, x FOR PEER REVIEW 5 of 10 

 

Table 1. Secondary structures estimation of spider silks via CD analysis. 

Conformation 
Liquid Silk of N. 

pilipes (%) 

Dragline Silk of N. 

pilipes (%) 

Dragline Silk of C. 

moluccensis (%) 

α Helix 19.8 20.7 30.0 

Antiparallel β-

sheet 
27.4 28.4 21.9 

Parallel β-sheet 8.6 8.1 7.1 

β turn 18.3 18.8 20.3 

Random coil 16.0 24.1 20.7 

3.2. Mechanical Strength of Dragline Silk Fibers 

It can be seen from Figure 1 that the mechanical strength of dragline silk from N. pilipes (1084 ± 

355 MPa) was found to be significantly higher than that of C. moluccensis (260 ± 91 MPa), while the 

mean elasticity of the dragline silk from C. moluccensis (25.2 ± 8.4 %) was barely larger than that from 

N. pilipes (20.2 ± 3.1 %), with no significant difference. By combining the results from Table 1 and 

Figure 1, the enhancement of the mechanical performance for the treated silk samples could possibly 

be attributed to the elevated β-sheet content in the silk [35]. Moreover, the secondary structure of silk 

thread was found to be retained, even after re-dissolution, indicating the absence of any ill effects 

(degradation) of the HFIP treatment on silk [36]. Overall, the dragline silk produced from N. pilipes 

was mechanically superior to that from C. moluccensis, and, as such, it was consequently chosen as 

the study material for the rest of the research. 

 

Figure 1. Strength (A) and elasticity (B) of major ampullate dragline silks collected from Nephila pilipes 

and Cyrtophora moluccensis (* denotes p value < 0.05 for the strength average in the silk from two 

spiders). 

3.3. Effect of Thermal Treatment on Spider Silk Samples 

To evaluate the thermal impact of the molecular structures and mechanical performance of 

spider silk, a series of silk threads drawn from N. pilipes were first fixed on the frames, followed by 

heat treatment (in air or water). Figure 2 represents post-treatment effects at various temperature on 

the strength of the dragline threads spun by N. pilipes. The water treatment was performed by using 

hot dd H2O in a water bath, while for the air treatment, a heat blower with a temperature controller 

was used as the heat source to treat the silk threads. As depicted in Figure 2, the temperature played 

a pivot role in varying the strength of dragline threads in both the air and water treatments (ranging 

from 30 to 90 °C). The heat-treated samples (30 °C in air) were regarded as the reference, indicating 

the untreated spun silk at the ambient condition. The parabolic curves obtained for the same 

suggested an enhancement of silk strength with increasing temperature up to the critical point, 70 °C, 
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and Cyrtophora moluccensis (* denotes p value < 0.05 for the strength average in the silk from two spiders).

3.3. Effect of Thermal Treatment on Spider Silk Samples

To evaluate the thermal impact of the molecular structures and mechanical performance of spider
silk, a series of silk threads drawn from N. pilipes were first fixed on the frames, followed by heat
treatment (in air or water). Figure 2 represents post-treatment effects at various temperature on the
strength of the dragline threads spun by N. pilipes. The water treatment was performed by using hot
dd H2O in a water bath, while for the air treatment, a heat blower with a temperature controller was
used as the heat source to treat the silk threads. As depicted in Figure 2, the temperature played a
pivot role in varying the strength of dragline threads in both the air and water treatments (ranging
from 30 to 90 ◦C). The heat-treated samples (30 ◦C in air) were regarded as the reference, indicating the
untreated spun silk at the ambient condition. The parabolic curves obtained for the same suggested an
enhancement of silk strength with increasing temperature up to the critical point, 70 ◦C, beyond which,
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a decrease in the strength was observed. Hence, a temperature in the range of 50–70 ◦C may be the
most effective in promoting the strength of spider silk.
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thermal treatment group (in air). * represents statistically difference (p value < 0.05).

A similar phenomenon on insect silk fibers was reported by Tsukada et al. [23], wherein tussah silk
fibers exhibited an enhancement in storage modulus upon increasing the temperature from 30 to 60 ◦C.
This was attributed to a rearrangement of molecules in amorphous regions, leading to strengthening of
intermolecular interactions [23]. Additionally, when comparing the two plots from the heat treatment
conditions, breaking strength (1202 ± 114 MPa) was higher by 17.18% between 50 and 70 ◦C in the
liquid condition than that in the air condition (1026 ± 99 MPa) (no statistical difference was observed).
This indicated a relatively stronger interaction that further occurred during the rehydration of the silk
samples, thereby promoting a more complex reorganization of the molecular chains within the spider
silk threads [21]. Thus, the effect of hydration and thermal process, taken together as the post-treatment
procedure [19], played a favorable role in tuning the structures and properties of the spider silk threads.

3.4. FT-IR Analysis of Hydrothermally Treated Silk Samples

To further elucidate the molecular mechanism that the hydrothermal process had exerted upon
the spider silk threads, FT-IR analysis was performed. The FT-IR spectra corresponding to each of the
spidroin film samples exposed to post-treatment at varied water temperature from 30–90 ◦C are shown
in Figure 3A. The 1600–1700 cm−1 region corresponded to an amide I group, which represented the
secondary structure conformation [37,38]. The region at 1630–1667 cm−1 was responsible for random
coils and α-helices [39–41], and 1670–1685 cm−1 was responsible for turns [39–41]. The β-sheet band at
1620–1640 cm−1 [39] was prominently increased at 60 ◦C (represented in red). The major functional
group bands/peaks for the β-sheet, α-helix, and random coil were further separated and analyzed
by PeakFit 4.11 to demonstrate the occurring structural transition (Figure 3B). The proportion of the
β-sheet was calculated as the ratio of area under the peak of the β-sheet to the total of area of the β-sheet,
β-turn, α helix, and random coil. An enhancement in the intensity of the β-sheet (41.2%) was observed
at 30 ◦C, which could have been related to the total β-sheet (36.5%), obtained from CD (Table 1).
Further, the intensity of β-sheets at 40, 50, 70, and 90 ◦C were estimated to be 31.7%, 40.1%, 34.5% and
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33.0%, respectively. Evidently, at 60 ◦C treatment, the β-sheet reached the maximum intensity (47.8%),
transformed from the random coil conversion, and the β sheet-to-random coil ratio was maximum
(three-fold higher), as shown in Figure 3C; a similar trend of this has also been reported [42,43]. Thus,
this enhancement in the β-sheet fraction may be regarded as a key index to estimate the strength of
structurally stronger silk materials [44].
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3.5. Mechanical Property of Hydrothermally-Treated Regenerated Spider Silk Fibers

Taking a step further, we evaluated the effect of hydrothermal treatment serving to enhance the
tensile strength of the artificially-spun silk fibers. Specifically, (as in Figure 4A), we collected the MA
silk out of the N. pilipes as the source of our spinning doped material [45]. The silk was subsequently
dissolved in HFIP for 2 h at 50 ◦C [25] and then artificially-spun on the hexagonally-poled winder
powered by a customized motor (~60 cm/min spinning rate). The collected silk samples were secured
on the poles using adhesive tapes (water resistant and thermally stable). The winder was removed and
submerged into a 60 ◦C dd H2O bath for 30 min, followed by immediate drying at ambient temperature.
The silk fibers were then carefully removed from the winder and further evaluated for the tensile
properties. The final tensile strength of the engineered silk threads was assessed for a further efficacy
comparison. As depicted in Figure 4B, the direct micro-spun fiber threads, without any hydrothermal
treatment, exhibited an inferior mechanical strength (390 ± 145 MPa) that was about one-third of
the native silk fibers (960 ± 141 MPa). However, the micro-spun fibers treated at 60 ◦C in dd H2O
exhibited a significantly enhanced strength (910 ± 127 MPa), restoring ~90% of the strength of the
native spider silk threads. Such a demonstration revealed a post-processing treatment that offers a
favorable outcome towards improving the mechanical performance of the existing fibers. We envision
that this could also provide pertinent guidance for current or future silk-based material fabrication and
applications that are not limited to the native spider silk demonstrated here.
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4. Conclusions

In summary, both the molecular structures and physical properties of the major ampullate dragline
silks, collected from the N. pilipes spider, were characterized. In comparison to that of C. mollucensis,
the silk from N. pilipes exhibited a higher beta-sheet content at the microscopic level, and a stronger
tensile strength at the macroscopic performance. A further systematical investigation was performed
to reveal the thermal and hydration effects on the silk threads from N. pilipes. A configurational
transition of secondary structures (random coil to β–sheet) and overall enhanced tensile strength
were observed upon the hydrothermal treatment (50–70 ◦C water) of spider silk. Such an optimal
post-treatment processing of natively-drawn silk threads was also applicable to further improve the
strength of regenerated spider silk threads (~2.5–3 fold), comparable to the ultimate strength of native
spider silks. Building upon such achievements on the natural spider silk, we believe that the proposed
hydrothermal treatment could also be of immense interest in fabricating future silk materials of various
recombinant sources.
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