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Abstract: Materials science is beginning to adopt computational simulation to eliminate laboratory
trial and error campaigns—much like the pharmaceutical industry of 40 years ago. To further
computational materials discovery, new methodology must be developed that enables rapid and
accurate testing on accessible computational hardware. To this end, the authors utilise a novel
methodology concept of intermediate molecules as a starting point, for which they propose the term
‘symthon’ (The term ‘Symthon’ is being used as a simulation equivalent of the synthon, popularised
by Dr Stuart Warren in ‘Organic Synthesis: The Disconnection Approach’, OUP: Oxford, 1983.) rather
than conventional monomers. The use of symthons eliminates the initial monomer bonding phase,
reducing the number of iterations required in the simulation, thereby reducing the runtime. A novel
approach to molecular dynamics, with an NVT (Canonical) ensemble and variable unit cell geometry,
was used to generate structures with differing physical and thermal properties. Additional script
methods were designed and tested, which enabled a high degree of cure in all sampled structures.
This simulation has been trialled on large-scale atomistic models of phenolic resins, based on a range
of stoichiometric ratios of formaldehyde and phenol. Density and glass transition temperature values
were produced, and found to be in good agreement with empirical data and other simulated values in
the literature. The runtime of the simulation was a key consideration in script design; cured models
can be produced in under 24 h on modest hardware. The use of symthons has been shown as a viable
methodology to reduce simulation runtime whilst generating accurate models.

Keywords: material simulation; molecular dynamics; intermediate structures; phenolic resins;
characterisation; symthons

1. Introduction

Materials development, much like drug development in the pharmaceutical industry, often relies
on a systematic trial and error campaign of the design space for a given material system. Empirical
trials can be time-consuming and costly, both financially and in terms of embodied energy, as many
experiments must be done to explore all possible synthetic conditions. Increasingly, it is recognised
that this approach is inherently unsustainable, since it also involves the production of waste material
that must be disposed of safely. Computer modelling can be used to reduce empirical trial and error,
and more quickly develop materials with increased functionality for bespoke applications. In the
future, the aim of computational materials science is to conduct all trial and error testing virtually, using
laboratory experiments to verify the integrity of a model and synthesise the material whose properties
are optimal. Rather than spending time developing a single material, time is spent developing an
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accurate model that can predict a broad range of materials. Modern materials development is beginning
to see the use of computer simulations for epoxy [1–4], carbon nanotube [5–7] and hybrid composite
materials [8–10], to name but a few. High quality structures give rise to the accurate prediction of
macroscopic physical properties, such as density, glass transition temperature (Tg), and electrical
conductivity [11,12]. The evaluation of these physical properties can be used to narrow down a broad
design space to propose an optimised material, which can subsequently be tested empirically.

First produced by Leo H. Baekeland and patented in 1907, phenolic resins are considered the
first wholly synthetic plastics, which were later commercialised as Bakelite [13]. Modern uses range
from insulation foam in the construction industry to advanced aerospace applications such as heat
shields employed by spacecraft on re-entry to the Earth’s atmosphere [14,15]. Phenolic resins are
characterized by several key properties: high strength, low flammability, high char yield and low
thermal conductivity [13,16]. These properties arise from the potential for crosslinking within the
resin, but vary between resole and novolac resins. Resoles, the class of phenolic resin modelled in this
work, have a formaldehyde (F):phenol (P) ratio of ≥1:1, up to a limit of 3:1 [17]. Excess formaldehyde
facilitates extensive crosslinking between the chains. This crosslinking occurs via the formation
of hydroxymethylphenol (HMP) intermediate structures, which can be seen in Figure 1. Novolacs
have an F:P ratio of <1:1, and typically require curing agents, such as hexamethylene tetraamine
(HMTA), to form solid materials at room temperature [18]. Resoles are the more commonly used
form of phenolic resin, due to the higher strength and thermal resistance that they display compared
to novolacs; they see continued use in high-temperature applications in aerospace [19]. For thermal
protection within engineering applications, resole phenolics need to be bespoke to enable them to
compete with other high-temperature thermosets, such as phenolic-triazine (PT) or phthalonitrile (PN)
resins, or engineering thermoplastics such as polybenzimidazole (PBI), polybenzoxazole (PBO) or
polyimides, in terms of performance and price.
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Figure 1. Potential HMPs formed from mono-, di- or tri-substitution of an initial phenol molecule
with formaldehyde.

There exist many different forms of structural modelling, the present work focusing solely on
molecular dynamics (MD). MD uses the Born-Oppenheimer Approximation and classical mechanics to
simplify modelling the movement of atoms under very short time intervals (typically 1 fs) for a time
duration extending into microseconds [20]. Modelling can be visualised with atomistic rendering or
coarse-grained approaches, representing groups of atoms as a single entity with combined properties.
Simulations with high atom counts are generally considered more accurate; a unit cell with periodic
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boundary conditions is used to keep the simulation size practical yet scalable. Further to reducing
computational demand, interaction cut-offs and energy forcefields are used to manage bonding and
non-bonding interaction energies without the need to undertake ab initio calculations. Simulations can
be influenced by macroscopic (bulk) properties with the implementation of thermostats/barostats to
simulate the effects of temperature and pressure. Further details of these methods can be found in
introductions to the topic by Allen and Tildesley [21] or Schneider et al. [22]. The design of the script to
simulate the polymerisation of the system can affect the quality of the results, as well as the runtime.
Common across many applications of computational simulation is the concept of static and dynamic
approaches. Static approaches complete an action in its entirety, whilst dynamic approaches perform a
subset of an action before continuing to carry out a major change such as structural movement. In MD,
static approaches typically involve bonding every available bond; dynamic approaches bond a subset
of the available bonds, before undergoing MD simulation, so as to avoid forming the structure too
quickly. Monk et al. highlight in a sensitivity study that the dynamic methodology has a significant
impact on the energy of bonded systems [23]. Dynamically cured systems tend to have lower potential
energies, but have increased runtimes due to increased iterations of the curing script.

The use of intermediates, or ‘symthons’, is an easy to implement design philosophy to reduce the
runtime of simulations. Traditional MD simulations follow chemical mechanisms originating with
real monomers. The first step in these simulations is bonding between the monomers. By contrast,
originating the simulation with symthons, this initial bonding step is eliminated, and polymer chains
can begin forming immediately. The HMPs outlined in Figure 1 reflect the second step of the mechanism
in Figure 2, and form the basis of the symthons. This step has been proven empirically to pass through
a quinone methide intermediate [24,25]. One of three products is formed based on whether the
formaldehyde reacts at the ortho- or para- site, denoted as o-o’, o-p’, p-p’ bonded phenols via a methylene
bridge. The cure mechanism is known to be complex, and further side products have been identified
empirically using spectral analysis, e.g., 1H and 13C nuclear magnetic resonance (NMR) or Fourier
transform infrared (FTIR) spectroscopy, of phenolic resins [26]. These structures originate from the
condensation of hydroxymethyl groups of two HMPs bonding together to form an ethylene bridge,
or reacting at the hydroxide group.Polymers 2020, 10, x FOR PEER REVIEW  4 of 12 
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A number of recent papers have aimed to generate phenolic resin structures; the comparison of
their methods and results provide useful context to contrast the results of this work. All these works
report density values which facilitate a direct comparison of the subtly different methods employed
across the research. A key focus across all simulations of thermosets is enabling a high degree of
crosslinking within short runtimes. Izumi et al. have demonstrated extensively the potential for MD
within phenolic resin research [27–29]. They have shown that large (>200,000 atom, or 10,000 phenol
molecules) MD simulations are suitable for modelling phenolic resins for studying inhomogeneity.
However, their focus is on the static modelling of novolacs and using pseudo-reactions or united atom
approaches which, being coarse grained, have less detail than an individual atomistic approach to
bonding. Monk et al. have generated good dynamic phenolic models predicting density, Tg and
Young’s modulus, which have been corroborated with empirical literature [23]. They also reviewed
the effects of different modelling parameters on final structures, the results of which have been used to
inform the design of the script in this work. Monk et al. have generated their structures from fixed
length chains that have been crosslinked together, as opposed to monomers or a symthon. This is
a simple method for generating crosslinked structures, although it limits the potential variability
in the models, leaving the simulation prone to bias. Work by Li et al. utilises a novel mixed
modelling technique for generating resole phenolic resin structures using quantum calculations, Monte
Carlo and MD simulation originating from monomers [30]. Although they report model densities
supported by empirical literature, their Tg results fall significantly below those produced empirically
by Manfredi et al., with an F:P ratio of 2.0 simulating a Tg of 403 K, compared to 543 K from empirical
resin derived by dynamic mechanical analysis [31].

The simulations performed in the present work aim to generate atomistic phenolic resin structures
using a novel intermediate starting point (i.e., a symthon). Runtime is a focus of simulation design
to enable rapid material testing, allowing the greater exploration of the novel material design space.
Existing simulations in the literature, of both phenolics and other material systems, often develop
a script that more closely represents the chemical mechanism of a curing polymer from starting
reagents. By doing this, simulations have an increased computational demand, as the initial bonding
of monomers is the primary step. Our novel methodology bypasses this initial step, significantly
reducing runtime without impacting the accuracy of the structures produced. To examine further the
effects of the simulation runtime, this simulation will be designed and tested on modest hardware in
an effort to facilitate the more widespread use of materials modelling. The structures generated will be
validated by comparing density and Tg to empirical and simulated results. Monk et al. show that
density is intrinsically linked to Young’s Modulus and viscoelastic properties, therefore making it a
vital parameter to be able to simulate accurately [23].

2. Materials and Methods

2.1. Software and Hardware

Modelling simulations were carried out using Materials Studio™ 6.1 by Accelerys™ Software
Inc., with the additional packages Forcite Plus and Amorphous Cell. Programming and data analysis
were undertaken on a desktop computer, with script writing in Perl for general flow control and
Materials Script to interface with the model. To provide context for simulation runtime, simulations
were managed by a 48 core Linux server of 4 AMD™ Opteron® 6174 processors with 64 GB of RAM.

2.2. Initial Unit Cell Construction

Symthon (intermediate) structures were produced with ortho- and para- substitution sites, colored
blue and purple respectively, which can be seen in Figure 3. This provided the script with the means to
distinguish reaction sites from other parts of the structure. A cuboid periodic unit cell was constructed
using the Amorphous Cell builder within Materials Studio, and symthons were packed into the cell to
a target density of 1 g cm−3. Simulations were designed with 10,000 atoms per unit cell; the number of
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symthons in each simulation varied, but aimed to be the smallest value above 10,000 atoms possible.
The F:P ratio could be controlled by varying the ratio of different mono- and di-substituted symthons.
The cell dimensions varied with the F:P ratio, and ranged from 41–53 Å. The ratio of ortho- and para-
sites was kept at 1:1, so as to not bias the bonding by favouring one site over another. Empirical
literature is ambiguous over whether bonding is favored at the ortho- or para- sites [32–34]. Li et al.
calculate that the activation energies of sites are comparable; to enable good comparison, this work
follows the same evidence and does not bias the bonding of the structure [23]. The initial construction
was repeated to create seven 10,000 atom structures, with F:P ratios ranging from 1:1 to 2:1.
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unit cells to achieve different F:P ratios. Ortho (blue) and para (purple) sites are colored to give them a
unique identifier for which the script can search.

2.3. Script Iterations

An average execution of the script will loop through 100 iterations of the processes outlined in
Figure 4. All possible bonds within a 5 Å cut-off were narrowed down based on the closest contact
between the formaldehyde moiety and the reaction site. To utilise a dynamic methodology, the array
of possible bonds was shrunk to a maximum of 35 bonding pairs, which ensured the structure did not
cure too quickly. These pairs were picked arbitrarily, and as other script components influence the
number of bonds forming, the typical maximum number of bonds formed per script loop is around 25.

Following bond formation, as proposed by Izumi et al., bond angles are checked to determine
whether the angle is realistic: bonds with unrealistic angles (< 90◦) are broken [29]. Note that the bond
angle used is the methylene bridge angle, rather than using the angle defined across the phenol rings
before bonding. This check helped to reduce the potential energy of the finished structures. Following
the formation of a successful bond, the hydrogen atom of the reaction site and the hydroxide group of
the formaldehyde moiety are deleted from the system. This means the simulation reflects a perfectly
dry phenolic resin (N.B. the polymerisation mechanism is a step growth, condensation mechanism
that yields water molecules as a byproduct). As the rate of simulated cure decreased, two additional
methods to promote curing and achieve a high final degree of cure were enabled. Formaldehyde
moieties were slowly deleted from the system to free up potential reactive sites to enable crosslinking
between chains and maintain the rate of cure. Furthermore, formaldehyde moieties were transferred
from an occupied reactive site to neighbouring free reactive sites. This created further bonding by
bringing formaldehyde moieties within the range of other free reactive sites, or by freeing up a reactive
site that was in a range of other formaldehyde moieties that had not been moved. Both these methods
were essential for F:P ratios > 1.5:1, as sites needed to be cleared of formaldehyde moieties to enable
fully cured (> 99%) structures to be generated. In these cases, up to 10–15 formaldehyde moieties
could be deleted per loop; deletion rates were ramped based on the number of moieties deleted in
previous iterations, in order to maintain a steady deletion rate.
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Figure 4. A simplified overview of the script design. The optional formaldehyde moiety
deletion/movement methods would be activated when the relative degree of cure between iterations
fell too low. This was essential for F:P ratios > 1.5:1, where reactive sites need to be cleared to achieve
high degrees of cure.

2.3.1. Geometry Optimisation

The geometry optimisation is carried out with the COMPASS (Condensed-phase Optimized
Molecular Potentials for Atomistic Simulation Studies) forcefield of pre-calculated bonding and
non-bonding interaction terms. COMPASS was chosen over other popular fields such as DREIDING,
as it has been specifically designed for condensed phase polymers such as thermoset networks [35].
Furthermore, COMPASS includes partial atomic charges, calculated by ab initio calculations, eliminating
an additional step common in most simulations [2]. These charges are updated by Materials Studio as
necessary as the structure cures. A combined steepest descent [36] and conjugate gradient method [37]
was used to optimise the structures [38]. Steepest descents ran for a short (100 steps) optimisation
to reduce the potential energy of the structure to something more feasible. The conjugate gradient
method was found to be unsuccessful at high potential energies, as is typically seen initially, so was
employed after steepest descents to achieve a better final optimisation. During the conjugate gradient
stage, the geometry of the unit cell was allowed to change in order to reduce the volume of the cell,
and thus the density of the system changed.

2.3.2. Molecular Dynamics

This work made use of the NVT (Canonical) ensemble, which holds the number of atoms,
the system volume and temperature as all constant. The NVT ensemble is feasibly employed in this
simulation, as density is varied in the geometry optimisation stage; density is constant in the MD stage,
as the volume is held constant. The temperature was held constant during dynamics simulations
using the Nosé thermostat [39]. The Nosé algorithm gave the most control over temperature within
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the system when compared to the Andersen and Berendsen thermostats, which were also trialled.
The initial system temperature was 298 K, which was gradually ramped between loops from 298 K
to 398 K, based on the degree of cure of the system. The timestep of the simulation was 1 fs, and the
initial simulation duration was 12 ps. This duration was increased to 20 ps as the structure became
more cured, to allow the simulation more time to equilibrate. The velocity Verlet algorithm was
used to integrate equations of motion across each timestep [40]. Motion groups were not kept rigid
throughout this process, to facilitate random movement within the simulation. Once the structure
reached the cut-off degree of cure, the loop was closed with a final 20 ps dynamics simulation at 298 K,
to equilibrate the structure to room temperature for comparison with literature data.

2.4. Tg Simulation

To identify the Tg of the final cured structures, the Temperature Cycle protocol from the Amorphous
Cell module was used. Structures were elevated from an initial temperature of 300 K to 600 K. Finalised
structures with F:P ratios of 1.2:1 and 1.5:1 were simulated. The protocol works by gradually raising
the temperature of the system in 10 K increments, followed by simulating atom dynamics, allowing
the volume of the system to change. Each temperature increment was modelled five times, and a plot
with two fitted lines was produced. The Tg can be found by observing the temperature at which the
density of the system decreases considerably—the point at which the two fitted lines intersect [41].
This corresponds to an increase in volume, as the system transforms from a rigid structure to a more
flexible, elastomeric one.

3. Results and Discussion

3.1. Simulation Outcomes

The results of seven cured 10,000-atom structures across a range of F:P ratios derived from the
method herein are displayed in Table 1. The density results are reproduced graphically in Figure 5 for
ease of comparison with results from other groups. As can be seen, there is a broad range of densities
quoted within the literature [17,42]. In comparison to the results of Manfredi et al., these results follow
the trend that peak density lies somewhere around an F:P ratio of 1.2:1 [31]. Equally, the results
show good comparison to those reported by Li et al., the closest simulation in literature, for F:P
ratios ≤ 1.5:1—however, the reliability of these results is brought into question above 1.5:1. A greater
than 1.5:1 F:P ratio marks a change in design philosophy for the simulation, as the formaldehyde
component deletion/movement becomes essential to achieve the high degree of cure seen in the results
of Table 1. The positive potential energies of > 1.5:1 F:P ratio models are thought to contribute to the
non-conforming density results. 1.6:1 and 1.8:1 F:P ratio structures have similar densities but vastly
different potential energies. The 2:1 F:P model has density in agreement with the literature, but high
potential energy. There is no clear trend in the discrepancy between the results to suggest a definitive
cause for this error. One thought is that formaldehyde deletion and movement methods are causing
the simulation to run longer, which hampers structure relaxation methods. Various methods have been
trialled to produce more relaxed cured structures, using longer duration simulations and/or shorter
timesteps, but all significantly increased the runtime without meaningfully improving potential energy.
Additional simulation and refinement of the script procedure is required to fully establish the cause;
however, the models in the ideal F:P ratio range defined by the literature are conforming, which gives
credence to the model design.

Simulated values of Tg were derived for the 1.2:1 and 1.5:1 F:P ratio cured models, and achieved
values of 515 K and 526 K, respectively. A plot of density as a function of temperature for the 1.5:1
model can be seen in Figure 6. A clear decrease in density at 526 K is observed, corresponding to
an increase in volume as the structure becomes more flexible. Comparing these results to literature
provides good validation for this simulation design. Manfredi et al. reported Tg values of 506 K and
530 K for 1.2:1 and 1.5:1 F:P ratios, respectively [31]. In comparison to other simulated literature,
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the simulation in this work shows a clear improvement, e.g., the comparable simulation produced by
Li et al., which resulted in a Tg of 412 K for a 1.5:1 F:P ratio model [30].

Table 1. Results of seven cured 10,000-atom structures of varying F:P ratios.

F:P Ratio 1 Density/g
cm−3

Degree of
Cure/%

Maximum
Theoretical

Degree of Cure/%

Initial Atom
Count

Final Atom
Count

Final Potential
Energy/kcal

mol−1

1.0 1.223 66.1 66.7 10,013 8261 −13,367
1.2 1.222 79.1 80.0 10,057 8039 −11,051
1.4 1.205 91.6 93.3 10,044 7790 −5107
1.5 1.182 96.8 100.0 10,032 7659 −2975
1.6 1.141 97.3 100.0 10,012 7489 2491
1.8 1.142 99.5 100.0 10,020 7220 43,785
2.0 1.207 99.2 100.0 10,017 6947 41,185

1 F:P ratio refers to the molar ratio of formaldehyde in the initial unit cell.
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Figure 6. Density against temperature plot for a cured 1.5:1 F:P ratio model. Tg is observed at the
gradient change as 526 K.
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3.2. Evaluation of Novel Modelling Concepts

The runtimes for these simulations ranged from 12 h for 1:1 F:P ratio structures to 23 h for 2:1 ratio
models. The discrepancy in timing originates from the increased reliance on formaldehyde moiety
deletion and movement in the higher F:P ratio models. Using these methods to achieve a high degree
of cure led to more script iterations, and thus longer runtimes, in higher F:P ratio models. There is
room for further refinement of these methods to ensure that deletion/movement is high enough to
promote fast simulations without impacting the final degree of cure. Considering the results presented
in Table 1, it may be suggested that these methods were too severe for the 1.5:1 and 1.6:1 models,
as they fall further below their theoretical maximum degree of cure than other models.

In early script design, the NPT (Isothermal-isobaric) ensemble was used, as it allows the density
of the structure to vary during dynamics simulations. However, concern can be found in the literature,
as well as in discussion with our group, over the ability of the NPT ensemble to meet its ensemble
averages [43,44]. Equally, results produced by the NPT ensemble in this simulation had density values
ranging from 1.02–1.10 g cm−3, far lower than seen in most empirical literature. This was the case
across the range of F:P ratios trialled. Varying the barostat, attempting the Andersen, Berendsen and
Parrinello Rahman algorithms [45–47], had a limited effect on the results produced. Materials Studio
uses an NPT ensemble developed by Martyna et al. in 1994, and subsequent iterations have attempted
to improve upon this [44,48–50]. In order to switch to the more reliable NVT (Canonical) ensemble,
an alternative means of altering volume across the cure loops needed to be adopted. During the
geometry optimisation phase, both the model structure and the unit cell dimensions were optimised,
enabling the unit cell to change volume, and altering the subsequent density of the total structure.
This novel methodology has been shown to produce acceptable structures in this instance, as seen by
comparison with empirical results herein.

The use of symthons has been shown to be capable of producing phenolic structures that fall in line
with empirical and simulated literature; their use raises questions regarding static and dynamic bonding
within molecular dynamics (MD). Using symthons as a starting point is similar to a single large-scale
static cure of phenol and formaldehyde molecules in a conventional phenolic resin simulation. Based
on this concept, the evidence herein shows that there is scope to vary static and dynamic bonding in MD
simulations. Early stage bonding, if not employing symthons and instead originating with monomers,
can be modelled statically or with looser dynamic bonding parameters. As the structure cures, bonding
should become more dynamic—potentially scaling down bonds per cure cycle gradually right to the
end of the simulation.

4. Conclusions

The fundamental aim of this work was to produce an accurate (i.e., chemically representative)
large-scale model originating from an intermediate structure (a symthon). Further to this, a new
modelling methodology was trialled using the NVT (Canonical) ensemble and unit cell dimension
optimisation during the conventional geometry optimisation stage. These methods have proven
successful when applied to phenolic resins, as models have well-reproduced literature values arising
from both empirical and simulated experiments. Low runtimes have been achieved for these
simulations, with fully cured models being generated within 12–23 h on readily accessible hardware.
Moreover, there is scope for a further reduction in runtime by exploring how novel formaldehyde
deletion/movement methodology affects the final structure. Symthons have successfully been shown
to be a viable methodology for simplifying simulations, ultimately reducing runtimes. Their use in
other polymer systems warrants additional investigation. Equally, research into the use of symthons
to promote ease of simulation, rather than simulations based on replication of chemical mechanisms,
would be a valuable addition to the concept. Further simulation refinement is required to reduce
the final potential energy of structures with an F:P ratio >1.5:1, as this currently limits the scope of
this simulation.



Polymers 2020, 12, 926 10 of 12

Author Contributions: M.A.B. and B.J.H. conceived and planned the simulations. M.A.B. developed the software,
carried out testing and analysed results. B.J.H. supervised the work undertaken. M.A.B. wrote the manuscript;
B.J.H., I.H. and T.M. reviewed the manuscript and contributed improvements. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding. M.A.B. is supported by the Engineering and Physical
Science Research Council as part of the EPSRC Centre for Doctoral Training in Composites Science, Engineering,
and Manufacturing. Grant number: EP/S021728/1.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hall, S.A.; Howlin, B.J.; Hamerton, I.; Baidak, A.; Billaud, C.; Ward, S. Solving the problem of building
models of crosslinked polymers: An example focussing on validation of the properties of crosslinked epoxy
resins. PLoS ONE 2012, 7, 1–12. [CrossRef] [PubMed]

2. Demir, B.; Walsh, T. A robust and reproducible procedure for cross-linking thermoset polymers using
molecular simulation. Soft Matter 2016, 12, 2453–2464. [CrossRef]

3. Sun, Y.; Chen, L.; Cui, L.; Zhang, Y.; Du, X. Molecular dynamics simulation of cross-linked epoxy resin and
its interaction energy with graphene under two typical force fields. Comput. Mater. Sci. 2018, 143, 240–247.
[CrossRef]

4. KomarovChiu, P.V.; Yu-Tsung, C.; Shih-Ming, C.; Khalatur, P.G.; Reineker, P. Highly cross-linked epoxy
resins: An atomistic molecular dynamics simulation combined with a mapping/reverse mapping procedure.
Macromolecules 2007, 40, 8104–8113. [CrossRef]

5. Ni, B.; Sinnott, S.B.; Mikulski, P.T.; Harrison, J.A. Compression of carbon nanotubes filled with C60, CH4,
or Ne: Predictions from molecular dynamics simulations. Phys. Rev. Lett. 2002, 88, 1–4. [CrossRef] [PubMed]

6. Zhang, J.; Jiang, D.; Scarpa, F.; Peng, H. Enhancement of pullout energy in a single-walled carbon
nanotube-polyethylene composite system via auxetic effect. Compos. Part A 2013, 55, 188–194. [CrossRef]

7. Maruyama, S. A molecular dynamics simulation of heat conduction of a finite length single-walled carbon
nanotube. Microscale Thermophys. Eng. 2003, 7, 41–50. [CrossRef]

8. Hattemer, G.D.; Arya, G. Viscoelastic properties of polymer-grafted nanoparticle composites from molecular
dynamics simulations. Macromolecules 2015, 48, 1240–1255. [CrossRef]

9. Han, Y.; Elliott, J. Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube
composites. Comput. Mater. Sci. 2007, 39, 315–323. [CrossRef]

10. Zhu, R.; Pan, E.; Roy, A.K. Molecular dynamics study of the stress–strain behavior of carbon-nanotube
reinforced Epon 862 composites. Mater. Sci. Eng. A 2007, 447, 51–57. [CrossRef]

11. Mortazavi, B.; Bardon, J.; Ahzi, S. Interphase effect on the elastic and thermal conductivity response of
polymer nanocomposite materials: 3D finite element study. Comp. Mat. Sci. 2013, 69, 100–106. [CrossRef]

12. Mortia, H.; Tanaka, K.; Kajiyama, T.; Nishi, T.; Doi, M. Study of the glass transition temperature of polymer
surface by coarse-grained molecular dynamics simulation. Macromolecules 2006, 39, 6233–6237. [CrossRef]

13. Gardziella, A.; Pilato, L.A.; Knop, A. Phenolic Resins Chemistry, Applications, Standardization, Safety and Ecology,
2nd ed.; Gardziella, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 109–115, ISBN 978-3-642-08484-3.

14. Cornick, M. Foam. In Phenolic Resins: A Century of Progress; Pilato, L., Ed.; Springer: Berlin/Heidelberg,
Germany, 2010; pp. 189–208. ISBN 978-3-642-04713-8.

15. Hou, T.H.; Bai, J.M.; Baughman, J.M. Processing and properties of a phenolic composite system. J. Reinf.
Plast. Compos. 2006, 25, 495–502. [CrossRef]

16. Mottram, J.; Geary, B.; Taylor, R. Thermal expansion of phenolic resin and phenolic-fibre composites.
J. Mater. Sci. 1992, 27, 5015–5026. [CrossRef]

17. Haupt, R.A.; Sellers, T. Characterizations of phenol-formaldehyde resol resins. Ind. Eng. Chem. Res. 1994, 33,
693–697. [CrossRef]

18. Guo, Z.; Li, H.; Han, W.; Zhao, T. Thermal stability of novolac cured with polyborosilazane. J. Appl. Polym. Sci.
2013, 128, 3356–3364. [CrossRef]

19. Lee, Y.-K.; Kim, D.-J.; Kim, H.-J.; Hwang, T.-S.; Rafailovich, M.; Sokolov, J. Activation energy and
curing behavior of resol- and novolac-type phenolic resins by differential scanning calorimetry and
thermogravimetric analysis. J. Appl. Polym. Sci. 2003, 89, 2589–2596. [CrossRef]

http://dx.doi.org/10.1371/journal.pone.0042928
http://www.ncbi.nlm.nih.gov/pubmed/22916182
http://dx.doi.org/10.1039/C5SM02788H
http://dx.doi.org/10.1016/j.commatsci.2017.11.007
http://dx.doi.org/10.1021/ma070702+
http://dx.doi.org/10.1103/PhysRevLett.88.205505
http://www.ncbi.nlm.nih.gov/pubmed/12005578
http://dx.doi.org/10.1016/j.compositesa.2013.09.006
http://dx.doi.org/10.1080/10893950390150467
http://dx.doi.org/10.1021/ma502086c
http://dx.doi.org/10.1016/j.commatsci.2006.06.011
http://dx.doi.org/10.1016/j.msea.2006.10.054
http://dx.doi.org/10.1016/j.commatsci.2012.11.035
http://dx.doi.org/10.1021/ma052632h
http://dx.doi.org/10.1177/0731684405058271
http://dx.doi.org/10.1007/BF01105268
http://dx.doi.org/10.1021/ie00027a030
http://dx.doi.org/10.1002/app.38441
http://dx.doi.org/10.1002/app.12340


Polymers 2020, 12, 926 11 of 12

20. Bai, D.; Zhang, X.; Chen, G.; Wang, W. Replacement mechanism of methane hydrate with carbon dioxide
from microsecond molecular dynamics simulations. Energy Environ. Sci. 2012, 5, 7033–7041. [CrossRef]

21. Tildesley, D.J.; Allen, M.P. Computational Simulation of Liquids, 2nd ed.; Oxford University Press: Oxford, UK,
2017; ISBN 9780198803195.

22. Schneider, R.; Sharma, A.R.; Rai, A. Introduction to Molecular Dynamics. Lect. Notes Phys. 2008, 739, 3–40.
[CrossRef]

23. Monk, J.D.; Haskins, J.B.; Bauschlicher, C.W., Jr.; Lawson, J.W. Molecular dynamics simulations of phenolic
resin: Construction of atomistic models. Polymer 2015, 62, 39–49. [CrossRef]

24. Li, T.; Cao, M.; Liang, J.; Xie, X.; Du, G. Theoretical confirmation of the quinone methide hypothesis for the
condensation reactions in phenol-formaldehyde resin synthesis. Polymers 2017, 9, 45. [CrossRef] [PubMed]

25. Škalamera, D.; Antol, I.; Mlinaric-Majerski, K.; Vancik, H.; Phillips, D.L.; Ma, J.; Basaric, N. Ultrafast adiabatic
photodehydration of 2-hydroxymethylphenol and the formation of quinone methide. Chem. Eur. J. 2018, 24,
9426–9435. [CrossRef] [PubMed]

26. Patel, M.; Patel, J. Synthesis and characterization of phenolic resins with ethylene bridges. Die Angew.
Makromol. Chem. 1981, 91, 71–77. [CrossRef]

27. Izumi, A.; Nakao, T.; Shibayama, M. Atomistic molecular dynamics study of cross-linked phenolic resins.
Soft Matter 2012, 8, 5283–5292. [CrossRef]

28. Shudo, Y.; Izumi, A.; Hagita, K.; Nakao, T.; Shibayama, M. Structure-mechanical property relationships
in crosslinked phenolic resin investigated by molecular dynamics simulation. Polymer 2017, 116, 506–514.
[CrossRef]

29. Izumi, A.; Shudo, Y.; Hagita, K.; Shibayama, M. Molecular dynamics simulations of cross-linked phenolic
resins using a united-atom model. Macromol. Theory Simul. 2018, 27, 1700103–1700111. [CrossRef]

30. Li, J.; Jumpei, S.; Waizumi, H.; Oya, Y.; Huang, Y.; Kishimoto, N.; Okabe, T. A multiscale model for the synthesis
of thermosetting resins: From the addition reaction to cross-linked network formation. Chem. Phys. Lett.
2019, 720, 64–69. [CrossRef]

31. Manfredi, L.B.; Osa, O.; Fernandez, N.G.; Vazquez, A. Structure-properties relationship for resols with
different formaldehyde/phenol molar ratio. Polymer 1999, 40, 3867–3875. [CrossRef]

32. Grenier-Loustalot, M.F.; Larroque, S.; Grenier, P.; Leca, J.P.; Bedel, D. Phenolic resins: 1. mechanisms and
kinetics of phenol and of the first polycondensates towards formaldehyde in solution. Polymer 1994, 35,
3046–3054. [CrossRef]

33. Monni, J.; Alvila, L.; Pakkanen, T.T. Structural and physical changes in phenol-formaldehyde resol resin,
as a function of the degree of condensation of the resol solution. Ind. Eng. Chem. Res. 2007, 46, 6916–6924.
[CrossRef]

34. Lenghaus, K.; Qiao, G.G.; Solomon, D.H. Model studies of the curing of resole phenol-formaldehyde resins
Part 1. The behaviour of ortho quinone methide in a curing resin. Polymer 2000, 41, 1973–1979. [CrossRef]

35. Sun, H. COMPASS: An ab Initio force-field optimized for condensed-phase applications overview with
details on alkane and benzene compounds. J. Phys. Chem. B 1998, 102, 7338–7364. [CrossRef]

36. Debye, P. Näherungsformeln für die Zylinderfunktionen für große Werte des Arguments und unbeschränkt
veränderliche Werte des Index. Math. Ann. 1909, 67, 535–558. [CrossRef]

37. Hestenes, M.R.; Stiefel, E. Methods of Conjugate Gradients for Solving Linear Systems. J. Res. Natl. Bur. Stand.
1952, 49, 409–436. [CrossRef]

38. Shewchuk, J.R. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain; Technical Report;
Carnegie Mellon University: Pittsburgh, PA, USA, 1994.

39. Nosé, S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 1984, 52,
255–268. [CrossRef]

40. Martys, N.S.; Mountain, R.D. Velocity Verlet algorithm for dissipative-particle-dynamics-based models of
suspensions. Phys. Rev. E 1999, 59, 3733–3736. [CrossRef]

41. Wang, Y.; Wang, W.; Zhang, Z.; Xu, L.; Li, P. Study of the glass transition temperature and the mechanical
properties of PET/modified silica nanocomposite by molecular dynamics simulation. Eur. Polym. J. 2016, 75,
36–45. [CrossRef]

42. Nair, C.P.R. Advances in addition-cure phenolic resins. Prog. Polym. Sci. 2004, 29, 401–498. [CrossRef]

http://dx.doi.org/10.1039/c2ee21189k
http://dx.doi.org/10.1007/978-3-540-74686-71
http://dx.doi.org/10.1016/j.polymer.2015.02.003
http://dx.doi.org/10.3390/polym9020045
http://www.ncbi.nlm.nih.gov/pubmed/30970724
http://dx.doi.org/10.1002/chem.201801543
http://www.ncbi.nlm.nih.gov/pubmed/29677402
http://dx.doi.org/10.1002/apmc.1981.050970116
http://dx.doi.org/10.1039/c2sm25067e
http://dx.doi.org/10.1016/j.polymer.2017.02.037
http://dx.doi.org/10.1002/mats.201700103
http://dx.doi.org/10.1016/j.cplett.2019.02.012
http://dx.doi.org/10.1016/S0032-3861(98)00615-6
http://dx.doi.org/10.1016/0032-3861(94)90418-9
http://dx.doi.org/10.1021/ie070297a
http://dx.doi.org/10.1016/S0032-3861(99)00375-4
http://dx.doi.org/10.1021/jp980939v
http://dx.doi.org/10.1007/BF01450097
http://dx.doi.org/10.6028/jres.049.044
http://dx.doi.org/10.1080/00268978400101201
http://dx.doi.org/10.1103/PhysRevE.59.3733
http://dx.doi.org/10.1016/j.eurpolymj.2015.11.038
http://dx.doi.org/10.1016/j.progpolymsci.2004.01.004


Polymers 2020, 12, 926 12 of 12

43. Roe, R.J. MD simulation study of glass transition and short time dynamics in polymer liquids. In Atomistic
Modeling of Physical Properties; Monnerie, L., Suter, U.W., Eds.; Springer: Berlin, Germany, 1994; Volume 116,
pp. 111–144. ISBN 978-3-540-57827-7.

44. Martyna, G.J.; Tobias, D.J.; Klein, M.L. Constant pressure molecular dynamics algorithms. J. Chem. Phys.
1994, 101, 4177–4189. [CrossRef]

45. Andersen, H.C. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys.
1980, 72, 2384–2393. [CrossRef]

46. Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with
coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690. [CrossRef]

47. Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method.
J. Appl. Phys. 1981, 52, 7182–7190. [CrossRef]

48. Tuckerman, M.E.; Liu, Y.; Ciccotti, G.; Martyna, G.J. Non-Hamiltonian molecular dynamics: Generalizing
Hamiltonian phase space principles to non-Hamiltonian systems. J. Chem. Phys. 2001, 115, 1678–1702.
[CrossRef]

49. Keffer, D.J.; Baig, C.; Adhangale, P.; Edwards, B.J. A generalized Hamiltonian-based algorithm for rigorous
equilibrium molecular dynamics simulation in the isobaric–isothermal ensemble. Mol. Sim. 2006, 32, 345–356.
[CrossRef]

50. Uline, M.J.; Corti, D.S. Molecular dynamics at constant pressure: Allowing the system to control volume
fluctuations via a “shell” particle. Entropy 2013, 15, 3941–3969. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1063/1.467468
http://dx.doi.org/10.1063/1.439486
http://dx.doi.org/10.1063/1.448118
http://dx.doi.org/10.1063/1.328693
http://dx.doi.org/10.1063/1.1378321
http://dx.doi.org/10.1080/08927020600684345
http://dx.doi.org/10.3390/e15093941
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Software and Hardware 
	Initial Unit Cell Construction 
	Script Iterations 
	Geometry Optimisation 
	Molecular Dynamics 

	Tg Simulation 

	Results and Discussion 
	Simulation Outcomes 
	Evaluation of Novel Modelling Concepts 

	Conclusions 
	References

