Novel anion exchange membrane based on poly(pentafluorostyrene) substituted with mercaptotetrazole pendant groups and its blend with polybenzimidazole for vanadium redox flow battery application

Hyeongrae Cho,¹ Vladimir Atanasov,¹ Henning M Krieg,² Jochen A Kerres^{1,2,3}

¹Institute of Chemical Process Engineering, University of Stuttgart, 70199 Stuttgart, Germany

² Faculty of Natural Science, North-West University, Focus Area: Chemical Resource Beneficiation, Potchefstroom 2520, South Africa

³ Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy, 91058 Erlangen, Germany

Correspondence: <u>hyeongrae.cho@icvt.uni-stuttgart.de;</u> j.kerres@fz-juelich.de

Entry	Solvent	Equivalents of 1-(2-	Reaction conditions	Substitution
		Dimethylaminoethyl)-5-		Results [*]
		mercaptotetrazole		
1	NMP / MEK	5	80 °C, 18 hours	Low substitution
				(1% DOS)
2	MEK	1	55 °C, 72 hours	No substitution
3	NMP / MEK	5	80 °C, 72 hours	Low substitution
				(15% DOS)
4	NMP / MEK	5	95 °C, 72 hours	Used in this study
				(41% DOS)
5	NMP / MEK	5	95 °C, 168 hours	40 % DOS

Table S1. Optimization for PPFSt-MTZ synthesis.

* Degree of substitution (DOS) was calculated by F-NMR



Figure S1. Calculation of degree of substitution confirming 41%.

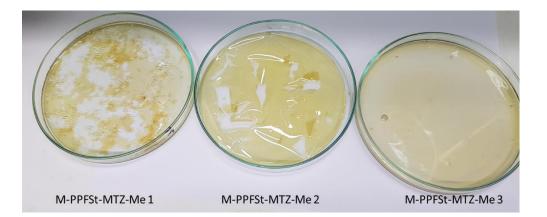
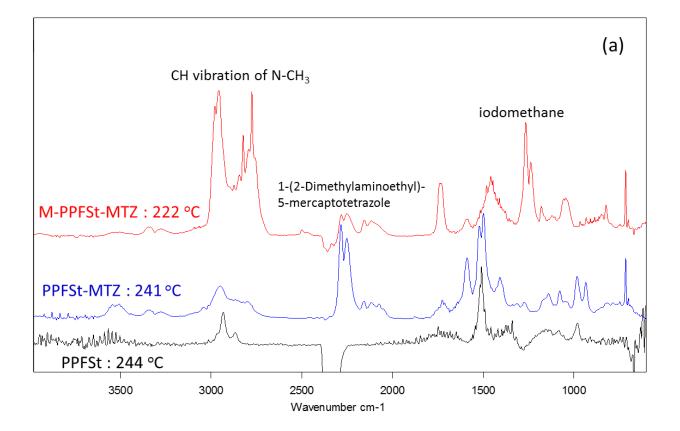


Figure S2. Photographs of the blend membranes.


Table S2.	The	blend	membranes	preparation.
-----------	-----	-------	-----------	--------------

Membrane	M-PPFSt-MTZ : F6-PBI	Membrane formation	
	(by weight)	(see Figure S2)	
M-PPFSt-MTZ-Me 1	9:1	Brittle	
M-PPFSt-MTZ-Me 2	8:2	Brittle	
M-PPFSt-MTZ-Me 3	7:3	Ductile	
M-PPFSt-MTZ-Me 4	6:4	Ductile	

The blend membrane of M-PPFSt-MTZ-Me 3 was mechanically stable after drying the

solvent. Therefore, blend membranes of M-PPFSt-MTZ-Me 3 and M-PPFSt-MTZ-Me 4 were prepared as larger membranes onto glass plate for the investigation in this study.

As seen in the Figure S3 (a), a strong peak 2957 cm⁻¹ can be assigned to C-H vibration of N-CH₃ from the 1-(2-dimethylaminoethyl)-5-mercaptotetrazole. A strong peak at 1264 cm⁻¹ can be assigned to the iodomethane by a nucleophilic substitution of iodide. The peaks at 2200 and 2400 cm⁻¹ can be assigned to the loss of side chains,1-(2-dimethylaminoethyl)-5-mercaptotetrazole. Above 340°C, polymer main back bone degradation was observed for all polymers, PPFSt, PPFSt-MTZ and M-PPFSt-MTZ (Figure S3 (b).

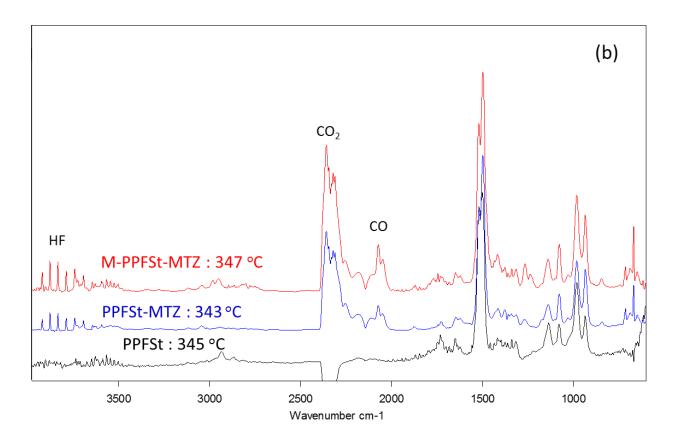


Figure S3. FT-IR spectrum of decomposed gases from first degradation step (a) and polymer main chain degradation (b).