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Abstract: In the majority of photocatalytic applications, the photocatalyst is dispersed as a suspension
of nanoparticles. The suspension provides a higher surface for the photocatalytic reaction in respect
to immobilized photocatalysts. However, this implies that recovery of the particles by filtration or
centrifugation is needed to collect and regenerate the photocatalyst. This complicates the regeneration
process and, at the same time, leads to material loss and potential toxicity. In this work, a new
nanofibrous membrane, g-C3N4/PMMA/PUR, was prepared by the fixation of exfoliated g-C3Ny
to polyurethane nanofibers using thin layers of poly(methyl methacrylate) (PMMA). The optimal
amount of PMMA was determined by measuring the adsorption and photocatalytic properties
of g-C3N4y/PMMA/PUR membranes (with a different PMMA content) in an aqueous solution of
methylene blue. It was found that the prepared membranes were able to effectively adsorb and
decompose methylene blue. On top of that, the membranes evinced a self-cleaning behavior,
showing no coloration on their surfaces after contact with methylene blue, unlike in the case of
unmodified fabric. After further treatment with H,O,, no decrease in photocatalytic activity was
observed, indicating that the prepared membrane can also be easily regenerated. This study promises
possibilities for the production of photocatalytic membranes and fabrics for both chemical and
biological contaminant control.

Keywords: exfoliated carbon nitride; self-cleaning surfaces; immersion coating; polyurethane
nanofibers; photocatalysis; polymers; membrane; poly(methyl methacrylate)

1. Introduction

Rapid growth in population and industrialization is the main factor responsible for the increase in
chemical and biological contaminants in our environment. In recent decades, many modern methods
have been used for the purification of water including ultrafiltration [1-3], solvent extraction [4,5],
electrochemical treatment [6,7], chemical precipitation [8], membrane technologies and adsorption [9,10].
However, most of these methods suffer from various drawbacks such as the need for large tanks to
obtain high effectivity in the case of chemical precipitation processes. The adsorption technique is
widely used due to its simple and effective elimination of pollutants (organic and inorganic) from
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aqueous solutions [11-14]. Adsorption by activated carbon is the most used method of dye removal
due to good removal efficiency of a wide variety of dyes. Performance is dependent on the type
of carbon used and the characteristics of the wastewater. The removal rate can be improved using
massive doses of activated carbon. However, the re-use of regenerated activated carbon results in a
steep reduction in adsorption capacity and the efficiency of dye removal becomes unpredictable and
dependent on massive doses of such re-used activated carbon. Activated carbon is also very expensive
and its reactivation results in 10%—-15% loss of the sorbent [15-17].

A promising method in order to overcome issues such as limited sorption capacity and regeneration
is the use of materials with photocatalytic activity. Carbon nitride (g-C3Njy) is a metal-free organic
semiconductor. This material is an attractive candidate in the field of photocatalysis due to its chemical
stability, non-toxicity, straightforward preparation procedure and ability to absorb light efficiently in
the visible range due to a narrow band gap (2.7 eV) [18-20]. g-C3Ny has been used in photocatalytic
applications such as water splitting [21,22], the photocatalytic degradation of air pollutants, such
as NOx [23,24], water pollutants such as the dyes, rhodamine B [25-27], methyl orange [28], and
methylene blue [29-31], and other industrial pollutants such as antibiotics [32] or phenols [33-35].
In recent years, g-C3Ny was also successfully tested for the degradation of pharmaceuticals, such
as sulfamethazine [36] or ciprofloxacin [37], which has become a worldwide issue. In particular,
in our previous work, thermally exfoliated carbon nitride already showed very good photocatalytic
efficiency in the degradation of dyes and phenol under visible light irradiation [38,39]. To enhance
its photocatalytic activity, g-CsNy can also be combined with other photocatalytic materials such
as TiO,, NiFeP, MnO, or Bij;TiOy to obtain synergic effect. Enhanced photocatalytic activity of
combined photocatalyst can be observed by the significantly increased reaction rate compared to when
photocatalysts (e.g., g-C3Ny and TiO;) are used separately [40—-43].

Most of the photocatalysts are tested in suspension, which provides a high surface to volume
ratio. However, the post-recovery process of this suspension of photocatalyst requires a separation
procedure, such as filtration or centrifugation. These recovery processes are not effective enough
to avoid mass loss of the photocatalyst and the difficulty and the required time for the separation
increase with decreasing size of the photocatalyst. For example, the widely used and well-known TiO,
photocatalyst will clog the filter membrane and eventually penetrate through the porous filter [44,45].
As a result, the immobilization of photocatalysts has gained higher interest, since it can provide a
much easier post-recovery of the photocatalyst and possible self-cleaning properties.

The most common self-cleaning materials are derived from nature, such as wings of butterflies
or leaves of lotus. However, these self-cleaning surfaces are related to the superhydrophobic effect.
The superhydrophobic effect occurs when the contact angle formed between the surfaces of the
liquid drop and the surface of the solid is more than 150° [46,47]. In 2001, the TiO, photocatalyst
was used as a different kind of self-cleaning material. Instead of using the superhydrophobic effect,
TiO, surfaces combine photocatalysis and hydrophilicity. During photocatalysis, organic dirt and
other impurities present on the catalyst surface are chemically degraded by the absorption of light.
Hydrophilicity, on the other hand, causes the formation of a water layer on the surface of the catalyst,
washing away the dirt [48]. Many researchers already published studies on the immobilization
of TiO, on different types of polymers or other materials. In most cases, TiO, was immobilized
on polypropylene fabric (PPF) [49-51], polyamide fabric (PA 6) [52-55], poly(methyl methacrylate)
(PMMA) [56], poly(vinylidene difluoride) (PVDEF) [57,58] and widely used cotton fabrics [59-61].
However, the research into the immobilization of photocatalysts activated by sunlight such as g-C3Ny
was not thorough like in the case of the above-mentioned wide band gap semiconductor TiO,, which
suffers from many drawbacks such as being UV light dependent. This drawback makes TiO,-based
fabrics less attractive for practical application in the future unlike visible light-responsive g-C3Ny.
Moreover, the Scientific Committee on Consumer Safety has described the genotoxic, carcinogenic,
and photosensitization behavior of TiO, nanoparticles (SCCS/1516/13), and several in vitro and in vivo
studies have shown the adverse effects of TiO, nanoparticles in biological systems [62]. The small-sized
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(1020 nm) TiO, nanoparticles may induce oxidative DNA damage, lipid peroxidation, and increased
H,0O; and nitric oxide production in BEAS-2B cells (the human bronchial epithelial cell line) without
photoactivation [63,64].

Unlike TiO,, g-C3Ny4 was demonstrated to be activated by visible light, non-toxic and with
self-cleaning properties similarly to TiO, [65-67].

A few experiments with g-C3Ny were performed such as the immobilization of g-C3Ny on
ceramic foam by an in situ thermal approach [68] or on a nickel foam using a facile dip-coating
method followed by a hydrazine hydrate reduction process [69]. In addition, g-C3N4 nanosheets
were immobilized on diatomite via electrostatic adsorption [70] and on cotton fabric assembled via
electrostatic interaction [71].

Recently, the immobilization of the photocatalysts shows vast potential for commercial usage
because the final photocatalysts are environmentally friendly and of low cost, thus being very
economical. Moreover, such novel materials could be used for both chemical and biological
contaminant control and defense purposes for civilians and military against harmful substances
in air. The immobilization of visible-light active g-C3N4 by PMMA is a very promising method for
depositing of g-C3Ny or other visible-light photocatalysts on fibrous fabrics for the reason that PMMA
has very good visible light transmittance (92%) and the visible light can easily reach the surface of
fixed photocatalyst. [72]. PMMA is well-known as a clear, colorless polymer with a glass transition
temperature of 100 to 130 °C, with a water absorptivity of 0.3%. In addition, PMMA belongs to a
group of polymers that have higher resistance to sunshine exposure, because it undergoes only small
variations under the effect of UV irradiation. Degradation caused by UV exposure is minimal because
PMMA absorbs only trace amounts of light and UV radiation due to its transparency. This small
amount of absorbed radiation lacks the energy necessary to break down the chemical bonds within
PMMA. This is a unique property for a polymer, and makes PMMA especially suited for photocatalytic
application [73]. PMMA has very good thermal stability, and is known to withstand temperatures as
high as 100 °C and as low as —70 °C. The next advantage worth mentioning consists of the low thermal
conductivity (A = 0.2 Wm~! K~!) and high mechanical stability of PMMA [74]. PMMA also possesses
very good optical properties, with a refractive index of 1.490, and a good degree of compatibility with
human tissue [75-77]. All these properties are very important for preserving the high photocatalytic
activity of the deposited photocatalysts. PMMA has also been used in biomedical applications due to its
non-toxic properties, low cost, easy processability, compatibility and minimal inflammatory reactions
with tissues, and greater fracture resistance, especially when used in cranioplasty [78-80]. It is also
worth noting that PMMA is stable during photocatalysis and it is not decomposed by photogenerated
electrons and holes or by reactive oxygen species created during photocatalytic processes. Zhang et al.
synthesized highly visible transparent and UV-blocking ZnO@PMMA nanocomposite films which can
almost completely absorb the UV radiation of wavelengths lower than 340 nm and no degradation of
PMMA was observed [81].

In this study, we decided to use the very well-known methylene blue (MB) dye as a model
pollutant because its concentration can be easily measured by UV-Vis absorption spectrophotometry,
monitoring the removal efficiency of the selected simulant by the prepared membranes. It is known
that MB belongs to toxic chemical compounds that can cause burns on contact with eyes, leading to
possible permanent injury to humans and animals. On inhalation, it can give rise to a short period
of rapid or difficult breathing and ingestion produces a burning sensation, and may cause nausea,
vomiting and mental confusion [82]. Therefore, it is extremely important to prepare materials that
can remove such hazardous pollutants from the environment. We also chose MB dye as a pollution
simulant in our adsorption and photocatalytic experiments because MB is one of the most tested dyes
in the field of photocatalysis and its degradation mechanism is well known [83-86].

Nanofibrous fabric, NnF MBRANE®-PUR, from the company PARDAM was chosen for its
good chemical resistance and the possibility of making single-fiber coating according to our previous
work [87].
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In this work, g-C3Ny was immobilized with different amounts of PMMA on polyurethane (PUR)
nanofibrous fabric. The appropriate amount of PMMA was investigated with the aim to obtain a novel
g-C3Ny/PMMA/PUR membrane with high photocatalytic activity towards the photodegradation of
the cationic dye methylene blue. Regeneration of our materials with highly preserved photocatalytic
activity is also very important for practical application and this was one of our major goals in our
research. So, after testing the performance during the photodegradation of MB, the material used
was regenerated using irradiation and hydrogen peroxide to completely remove non-toxic aliphatic
residues resulting from MB decomposition adsorbed on the surface of the membrane. After this
procedure, the already used membrane was subjected to new photocatalytic tests.

2. Experimental Section

2.1. Materials

Melamine (>99%) was purchased from Merck KGaA (Darmstadt, Germany). The material
used for the immobilization of the photocatalysts was the nanofibrous fabric, NnF MBRANE®-PUR
(weight of fabric 5 g/m?), from the company PARDAM (Roudnice n/L, Czech Republic). Poly(methyl
metacrylate) BS 150N was obtained from Altuglas® (Saint-Avold, France). Hydrogen peroxide (30%
p-a.) was purchased from Merck KGaA (Darmstadt, Germany). The ultrapure water was produced
by a MembraPure Astacus system (MembraPure GmbH, Hennigsdorf, Germany), methylene blue
(C.I. 52015) was purchased from Merck KGaA (Darmstadt, Germany) and acetone (>99.8%, AnalaR
NORMAPUR® ACS, Reag. Ph. Eur. analytical reagent) was purchased from VWR Chemicals GmbH
(Dresden, Germany).

2.2. Preparation of g-C3Ny

In a typical synthesis, 5 g of melamine was put into a ceramic crucible with a ceramic cup and
heated for 4 h in air at 550 °C, with the heating rate set at 3 °C min~!. After the heating period, the
sample was cooled down to room temperature naturally. The obtained bulk g-C3N4 material was
milled into fine powder for further use. The exfoliated g-C3N,4 was prepared from bulk g-C3Ny by
further thermal exfoliation for 2 h at 500 °C in the air according to our previous work [39]. The resulting
material was denoted in this work as exfoliated g-C3Ny (ECN).

2.3. Preparation of g-C3N4/PMMA/PUR

The acetone-PMMA solutions were prepared by adding 100, 250, 375, 500, 750 or 1000 mg of
solid PMMA powder into 10 mL of acetone. The acetone-PMMA solutions were covered to minimize
evaporation of acetone and thoroughly mixed through mechanical stirring for 6 h to completely
dissolve PMMA. In the next step, 30 mg of ECN was transferred into 10 mL of acetone and sonicated for
2 min (solution acetone-ECN) to enhance the de-agglomeration of ECN in acetone and then transferred
into the Petri dish (100 X 15 mm). The final materials were prepared by a dip-coating method as
follows: the acetone-PMMA solution was transferred into Petri dish (100 X 15 mm), the depth of
acetone-PMMA solution in Petri dish was 0.3 mm. The PUR fabric with a diameter of 5.5 cm was
immersed in acetone-PMMA solution for 1 min to adsorb molecules of PMMA. The as-prepared
PMMA-PUR fabric was removed from acetone-PMMA solution and immediately immersed into a
Petri dish (100 x 15 mm) with the acetone-ECN solution only for 2 min. After 2 minutes, the fabric was
removed from the acetone-ECN solution, dried in air and washed several times by demineralized water
and ethanol. Prepared fabrics were denoted as S1 (containing 100 mg PMMA), S2 (250 mg PMMA), S3
(375 mg PMMA), 54 (500 mg PMMA), S5 (750 mg PMMA) and S6 (250 mg PMMA). The compositions
of both solutions are presented in Table 1.
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Table 1. Experimental setup codes.

Sample PMMA (mg) ECN (mg) Acetone (mL)
S1 100 30 10
52 250 30 10
S3 375 30 10
S4 500 30 10
S5 750 30 10
S6 1000 30 10

2.4. Material Characterization

Prepared materials were studied by scanning electron microscopy (SEM) FEI Quanta 650 FEG
(Thermo Fisher Scientific, Waltham, MA, USA) and transmission electron microscopy (TEM) Jeol JEM
1230 (JEOL, Tokyo, Japan), operating at 80 kV.

A high-resolution scanning electron microscope (HRSEM), FEI Nova NanoSEM 450 (FEI Company,
Hillsboro, OR, USA), equipped with a circular backscatter detector (CBS), was used to study the
morphology of prepared samples. Every sample was deposited on a conductive carbon adhesive disc
and measured at an acceleration voltage of 5 kV in the high-vacuum mode.

A scanning/transmission electron microscope (S/TEM), Talos F200X (Thermo Fisher Scientific,
Waltham, MA, USA), combined with high-resolution S/TEM and TEM imaging, was used for further
study of the morphology of all samples. The sample was placed on a copper-silicon dioxide grid and
then measured.

Photoluminescence spectra were measured by the fluorescence spectrometer FL5920 (Edinburgh
Instrument Ltd., Livingston, UK), equipped with a 450 W Xenon lamp (Xe900). The excitation
wavelength was set at 325 nm. The emission spectra were measured from 360 to 590 nm.

Textural parameters such as surface roughness and the outer diameter of the nanofibers was
characterized by a digital 4K ultra high-accuracy microscope (VHX-7000, Keyence, Osaka, Japan).

UV-Vis DRS spectra were measured with a Shimadzu UV-2600 (IRS-2600Plus) (Shimadzu, Kyoto,
Japan) spectrophotometer at room temperature. All spectra were measured in the range of 220-1400 nm
and then transformed to Kubelka—-Munk units.

The UV-Vis absorbance spectra of methylene blue during adsorption and photocatalytic
experiments were measured by a Varian Cary 100 Bio UV-Vis spectrophotometer (Agilent Technologies,
Santa Clara, CA, USA) in the range of 290-800 nm.

The portable fluorospectrometer NanoDrop 3300 Fluorospectrometer (Thermo Fisher Scientific,
Waltham MA, USA) was used for the estimation of the concentration of released ECN material.

2.5. Adsorption and Photocatalytic Experiments

The photocatalytic activity of the prepared ECN/PMMA/PUR fabrics (further denoted as modified
fabrics with the specific sample numbering S1-56) was tested in an aqueous solution of methylene
blue (total volume was 6 mL with concentration of 2 mg L1). The tested surface area in the reactor
was equal to 24 cm?
light-emitting diode (LED) with a maximum emission at 416 nm (FWHM = 17 nm) situated 10 cm
above the surface of the immersed fabric. The experimental setup used in our work is depicted in
Figure 1. Direct adsorption tests were also performed. Prior to irradiation, fabrics were kept in contact
with the methylene blue solution in the dark for 1 h to achieve adsorption—-desorption equilibrium.
After that, irradiation with the LED was started. A 1 mL aliquot of the solution was extracted from
the reactor at pre-specified time intervals. The absorbance of the aliquot was measured at 664 nm
(maximum absorbance peak of MB) by an UV-Vis spectrophotometer and the same amount was
returned back into tested solution. Using a calibration curve, the absorbance was converted to the

. The reactions were performed under visible light irradiation using a 10 W

concentration and the observed rate constant (k,s) was calculated. The stability of the fabric was
investigated by recycling the photocatalysts after MB degradation experiments.
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Figure 1. The experimental setup used in our work (dimensions: d = 55 mm, h = 2.5 mm).
2.6. Regeneration Studies

The regeneration procedure was conducted employing different approaches using the sample
denoted S4 (for details see Table 1). In the first method, the already used modified fabric (54) was
irradiated by 416 nm LED for 1 h in demineralized water. Afterwards, the fabric was re-used for the
photodegradation of MB dye for 3 cycles (the 2nd, 3rd and 4th cycle) and in between each cycle, the
LED treatment was repeated. The second cleaning method was based on irradiation, for 2 h, in 30%
H,0; to clean all the unwanted contaminants created during the photocatalytic degradation of MB.
After 2 h, the tested fabric was washed with demineralized water and irradiated for a further 30 min
prior to re-use for the photodegradation of MB for another 2 cycles (the 5th and 6th cycle).

3. Results and Discussion

3.1. Preparation of the Membrane

In this work, g-C3N4/PMMA/PUR membranes were prepared by the immobilization of the ECN
photocatalyst on the fabric using PMMA and then their photocatalytic and adsorption properties in
the model dye methylene blue was investigated. The regeneration and the re-utilization of the most
effective membrane was also tested.

Dissolution of polymer plays an important role in creating membranes and thin films—specifically
during the process known as phase inversion, which is used for the formation of asymmetric membranes.
During this process, a polymeric thin film is created on a substrate from a polymeric solution that
is exposed to air (dry phase inversion) to cause polymer precipitation. The final structure of the
polymeric membrane is determined by the extent of polymer dissolution. The dissolution of the
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polymer involves two steps (solvent diffusion and chain disruption) unlike dissolution in the case of
non-polymeric materials [88]. In our work, the polymeric solution used is an acetone-PMMA solution
and the substrate consists of PUR nanofibers. These fibers were immersed in the acetone-PMMA
solution for 1 min because the dry phase inversion started to occur almost immediately. To stop this
process, we had to immediately transfer the fabric into an acetone-ECN solution to disrupt the partially
already polymerized PMMA on the surface of PUR and to fix the ECN on the fabric. This immersion
lasted for 2 min. Based on scanning electron microscopy observation, it took 2 min to incorporate ECN
material into the PMMA-PUR top layers. Then dry phase inversion occurred again. It should be noted
that the short time for immersion was necessary to preserve structure of PUR nanofibers. It is well
known that polar polymer PUR is not resistant to polar solvents such as acetone for the reason that
polar solvents dissolve polar solutes [89]. This procedure was followed for the preparation of all the
different g-C3N4/PMMA/PUR membranes containing different amounts of PMMA.

3.2. Microscopy Characterization

Electron microscopy was used to determine any relevant changes in the PUR fabric surface when
modified with photocatalysts.

In Figure 2, SEM images of pure ECN and modified fabrics (S1, S2 and S6) are shown. SEM images
of bulk g-C3N, and a STEM image of the detailed thin structure of ECN are depicted in Figure S1
(Supplementary Materials). It was observed that g-C3Ny does not create stable solution in acetone
and weak agglomeration may occur (Figure 2a). This was confirmed by other researchers as well [90].
With the addition of PMMA, the PUR nanofibers are covered by a bumpy surface composed of a
mixture of ECN and PMMA (Figure 2b,c). Increasing amounts of PMMA form layers with an increasing
thickness between the PUR nanofibers. When the amount of used PMMA reaches 1000 mg, a very
thick continuous monolithic multi-layered surface is created between the PUR fibers. This leads to a
decrease in the adsorption capacity of the modified fabrics (Figure 2d). Moreover, the higher amount
of PMMA (1000 mg) in the modified fabric reduces the flexibility of the final membrane, causing it to
be more plastic and stiffer.

Figure 2. SEM images of (a) exfoliated g-C3N, (ECN) and the modified (b) S1, (¢) S2 and (d) S6 fabrics.
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In Figure 3, the detailed SEM images of sample S4 (see Table 1) are shown. From these images,
we can clearly observe a denser structure than for sample S2 (Figure 2c), but with enough free spaces
compared to sample S6 (Figure 2d). In Figure 3d, the very smooth surface of PMMA interlaced with
ECN material is visible. In Figure S2, we can clearly distinguish all materials used. Other parameters
such as the outer diameter of the PUR nanofibers and the surface roughness of unmodified and
modified 54 fabrics were measured by 4K digital microscope. After analysis, we can clearly see that
the commercial material used here and denoted as NnF MBRANE®-PUR is composed of fibers with an
outer diameter ranging from 300 nm to 1.8 um, and only a few fibers had an outer diameter greater
than 2 um (Figure S3). The roughness analysis (Figure S4) revealed that the mean roughness depth
(Rz) is lowered from 23.43 to 17.62 pm after modification. The roughness was probably lowered due to
the preparation method. When the fabric was immersed in the PMMA solution, thin layers of PMMA
were created around the PUR nanofibers and the fibers were connected via PMMA bridges (Figure 3b).
The average roughness (Ra) of the modified 54 fabric was 3.25 um, and the unmodified fabric had an
Ra = 3.72 um. The roughness profile of S4 shows the creation of a more uniform layer with a lower
depth of valleys and a lower height of peaks (Figure S4b) compared to the unmodified PUR fabric
(Figure S4a).

Figure 3. HRSEM images of the modified S4 fabric at different magnifications: (a) 400x%, (b) 6000x,
(c) 12,000x and (d) 20,000x.

In Figure 4, some uncovered fibers are shown and it is apparent that the outer diameter of the
PUR nanofibers was not affected by the preparation method using acetone. No swelling or dissolution
of the PUR nanofibers was observed and their outer diameter ranged from 300 nm to 1.5 um.
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Figure 4. A HRSEM image of the modified S4 fabric with histogram of the outer diameter of PUR fibers
inserted as an inset.

3.3. UV-Vis DRS and Photoluminescence Characterization

UV-Vis spectra of the ECN, the unmodified and the modified (S4) fabrics are shown in Figure 5.
Both fabrics show significant differences in UV-Vis diffuse reflectance spectra. The PMMA-ECN
modified fabric has a higher absorbance than the unmodified fabric, in the measured spectrum starting
at 419 nm, similar to pure powder ECN nanomaterial. Therefore, the optical properties of ECN and its
band gap energy did not significantly change even after fixation on the PUR fabric. The band gap was
determined by plotting (KM * /)% vs. hv. It is worth noting that thermally exfoliated g-C3Nj always
consists of more exfoliated nanosheets, with a small amount of bulk-like g-C3Ny residuals [91].

5
3.08{—— Modified fabric (S4)
ECN
g 2.64
3 220
2 176
s
g 132
3 =
0.884 Epg =2.93eV
E 0.4 ¢ Epg = 2.96 &V
2 4

0.0 —
2.00 225 250 2.75 3.00 325 350 3.75 4.00
hv (eV)

————— Unmodified fabric
\ Modified fabric (S4)
i === ECN

R T e e
250 300 350 400 450 500 550 600 650 700 750 800 850 900
Wavelength (nm)

Figure 5. UV-Vis DRS spectra of the ECN, unmodified and modified S4 fabrics and Tauc plot with
estimated band gap energy inserted as an inset.

Due to the use of the dip-coating technique, the lighter exfoliated g-C3N4 material is easily fixed
to the surface of the PUR fabric, while the less exfoliated bulk-like material remains at the bottom
of the Petri dish, and thus the modified fabric contains mostly better exfoliated g-C3Njy. This can be
observed as a small blue shift from 423 to 419 nm in Figure 5. The PL emission spectra of the ECN,
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unmodified and modified S4 fabrics are shown in Figure 6. g-C3Ny is well known for its combination of
photogenerated electrons and holes and thus intense emission band, with a maximum at approximately
430 nm.

425 nm 430 nm

780000 T g Y

Unmodified fabric
Modified fabric (S4)

650000

520000

390000 —

260000

Photoluminescence Intensity (cps)

130000 -

T L
380 400 420 440 460 480 500 520 540 560 580

Wavelength (nm)

Figure 6. Photoluminescence spectra of the ECN, unmodified and modified S4 fabrics.

As shown in Figure 6, the unmodified fabric did not show any emission band, while the modified
fabric showed an emission band similar to the pure ECN material. This measurement also confirmed
that no defects were introduced into the structure of ECN during the preparation method. The small
blue shift observed in the PL spectra of the modified fabric from the pure ECN spectra is in good
agreement with the small blue shift in UV-Vis DRS spectra, confirming that the PUR fabric modified
by PMMA-ECN contains more exfoliated g-C3Ny than the starting powdered ECN material.

3.4. The Adsorption and Photocatalytic Degradation of Methylene Blue

The photocatalytic degradation of MB dye using the unmodified fabric and the
g-C3Ny/PMMA/PUR (further denoted as modified) fabric samples S1-56 was evaluated and the
results from measurements are shown in Figure 7. The heterogeneous reaction rate <> of MB and the
reactive oxygen species (ROS) on the surface of ECN can be described by the Langmuir-Hinshelwood
Equation [92]:

_demp k, Kmpems Kroscros )
dt 1+ Kypeyms + 2Kici 1+ Kroscros

where ky, is a kinetic parameter; Ky, Kros, Ki, and cyp, cros, ¢i, are the adsorption constants and
concentrations of the remaining MB, the reactive oxygen species and the intermediates, respectively.
In the case cros >> cmp and when ZKjc; can be neglected due to expected low concentration of
intermediates, Equation (1) can be simplified to its mostly used form:

(r) =

Kmpems
=k —— 2
(r) WPT LK SCMB (2)

where kgpp is an apparent kinetic parameter, depending on the irradiation intensity, the mass and the
nature of the solid phase (photocatalyst) and the concentration of ROS. It was theoretically proven that
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this model is appropriate for the first-order kinetics. Since MB concentrations were very low (2 mg
L™, Kypeamp << 1 and Equation (2) can be reduced to the pseudo-first-order reaction:
®G)

(r) = kappKnpemp = KopsCmBp

where ks is the observed kinetic constant. The observed kinetic constant (k,;) was obtained by fitting
the measured data to the integrated rate equation of the first-order kinetics (In co/c = k,ps, where cg and

c are the concentrations of MB at time t = 0 and ¢ = t, respectively).
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Figure 7. (a) Measured absorbance of methylene blue at wavelength 664 nm vs time of the adsorption
and photocatalytic processes in the presence of the different samples of fabrics (unmodified and
modified S1-6). In the first hour the adsorption was performed in the dark, then the visible light
irradiation was used (A = 416 nm). (b) Typical absorption spectra of the aqueous MB solution in the
presence of sample S4. The spectra are reported for the initial concentration of MB (wWhen the MB and
the membrane are mixed) to 45 min after irradiation with light (time ¢ = 0 corresponds to the moment
the irradiation light was switched on).

From Figure 7a, it is evident that the unmodified fabric does not have photocatalytic activity and
that it is characterized by low adsorption in dark after 1 h. We also observed that a small amount of
MB dye was released back into the solution by desorption from the unmodified fabric. In addition,
no decrease in the concentration of MB was observed during irradiation, and so the photolysis of
MB can be neglected. In contrast, a photocatalytic effect is observed when using the modified fabric.
In Figure 8, the dependence between the amount of PMMA used during the preparation of the modified
fabric and the performance of the different fabrics is shown. The left y-axis in Figure 8 represents the
photocatalytic activity of different fabrics and the right y-axis represents the adsorption of methylene
blue by different fabrics after 1 h in the dark.

The mechanism of adsorption of cationic MB by PMMA is probably chemisorption due to the
physicochemical properties and functional groups possessed by the adsorbent mixture of PMMA and
ECN. This probably involves the sharing of electrons between MB and ECN/PMMA. MB dye adsorption
may involve physi- or chemi-sorption, including intermolecular interactions such as hydrogen bonding.
Zeta potential analysis shows that the electrostatic interaction between the cationic MB dye molecule
and the negatively charged ECN and PMMA plays a crucial role in the high sorption of MB on these
materials [35]. MB is a cationic dye and the zeta potential of PMMA is known to be negative [93].
Further, the ECN material also possesses electron-rich NH groups. The adsorption of MB on the
modified fabrics is caused not only by PMMA but also by ECN, which adsorbs cationic MB dye by
electrostatic interaction. The adsorption of MB dye increases with an increasing amount of PMMA,
until 750 mg of PMMA is reached. With very high PMMA values (1000 mg), the adsorption capacity
decreases. Such a decrease in adsorption may be caused by the formation of a very thick continuous
monolithic multi-layered surface of PMMA; see Figure 2d. All modified fabrics also show increasing
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photocatalytic activity with an increasing amount of PMMA, until 500 mg of PMMA is reached. Higher
amounts of PMMA do not further enhance the photocatalytic activity. This trend may be caused by an
increased amount of incorporated ECN on the PUR fabric when higher amounts of PMMA are used.
However, when amounts of PMMA higher of 500 mg are used, the incorporation of ECN does not
increase and the higher amount of PMMA hinders the interaction of ECN with the pollutant. Based on
the lower MB adsorption for sample S6 (1000 mg) and its preserved photocatalytic activity (observed
kinetic constant above 0.0517 min~!), we assume that the incorporated ECN material was not covered
by PMMA even at higher concentrations. This observation confirms that the preparation method
appears to be suitable and meets the desired properties such as high amount of incorporated ECN on
the PUR fabric.

60.0
{1 kinetics B —~ L
0.0616 [ adsorption L 525
¢ ] I >
E 0.0528 - F450 &
S 0.0440 1 Fars 2
L | | =]
8 0.0352- - < [ 300 2
o ] o =
£ 0.0264 . F225 %
ks ' - = =
= 0.0176+ L4150 =
@ : I [
O 0.0088 - | 75 =
0.0000 =4 0.0
Unmodified 100 250 375 500 750 1000
fabric

Amount of PMMA (mg)

Figure 8. Measured values of adsorption in the dark and photocatalytic activity with confidence
intervals under visible light irradiation of the unmodified and modified fabrics.

A picture of the unmodified and modified (54) fabric after photocatalytic experiments is shown in
Figure 9. It can be clearly observed that the unmodified fabric was colored in blue by the adsorbed MB
dye, while the modified fabric was colorless due to the complete degradation of MB on its surface.

Figure 9. (Left) A picture of the modified (S4) fabric (self-cleaned) and (right) the unmodified fabric
(colored blue by MB dye) with a marked area of tested surfaces after photodegradation experiments.
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In Figure 10, the absorbance of the MB solution is depicted at different times during the adsorption
and photocatalytic experiments with the four different fabrics. The measured wavelength was set
at 360 nm. This wavelength corresponds to the maximum absorption peak of pure ECN material in
aqueous solution. It can be observed that the absorbance intensity at 360 nm is not increasing with
time during dark adsorption, and thus ECN is fixed very well on PUR by PMMA. A slight increase in
absorbance intensity was nevertheless observed during irradiation experiments. However, this slight
increase could also be caused by intermediates created during the photodegradation of MB and not by
released ECN material from the fabric. For further study to evaluate the stability of the prepared fabric,
photoluminescence spectroscopy was used.
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Figure 10. The absorbance of the MB solution, measured at 360 nm, for the unmodified and the
modified (S1, S4 and S6) fabrics at different times of the adsorption and photocatalytic experiments.

As shown in Figure 10, the amount of released ECN during and after experiments using PMMA
as a binder cannot be evaluated only using UV-Vis absorption spectroscopy because the increased
absorbance during irradiation may have been caused by intermediates created during the photocatalytic
degradation of MB. Thus, we decided to estimate the approximate amount of released ECN from
the fabric by comparing the photoluminescence intensity of pure ECN dispersions with the known
concentration and PL intensity of three aqueous solutions of MB after photocatalysis with a freshly
prepared sample S4. In particular, four known concentrations of ECN dispersions were used for the
calibration curve—0.3, 1.5, 3 and 30 ppm, which correspond to a measured relative PL intensities of 4.1,
71.7, 496 and 3450, respectively. Measured PL intensities of the MB solutions after photodegradation
experiments were 73.4, 11.8 and 71.2. These values correspond to approximate concentrations of
released ECN during experiment to 0.6, 0.07 and 0.6 ppm. These MB solutions after photodegradation
experiments were further analyzed by SEM. As shown Figure 11, very small particles were observed
and even a short thin fiber with deposited ECN was visible. Small particles observed in solution were
expected due to the lamellar structure of g-C3Njy.

These fragments of ECN can be released by shear forces during manipulation. Although ECN is
fixed on the surface of the PUR nanofibers by PMMA, the top layers of g-C3Ny4 could contain other free
g-C3Ny particles also attached to each other by weak van der Waals forces. High amounts of such free
particles were removed during sample preparation by washing the fabric several times with water and
ethanol. According to the results reported above, a negligible quantity of ECN particles was released
after the washing procedure. This proves the great fixation properties of PMMA in the case of ECN on
the PUR fabrics.
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L4

20 pm

Figure 11. SEM image of released fiber and small ECN particles observed in the MB solution after the
experiment with the modified (S4) fabric.

3.5. Recyclability Study

As shown in Figure 12, the re-utilization of the modified fabric was also investigated.
The experiment was conducted initially through the photodegradation method to regenerate the fabrics
after the photocatalytic experiments. The already used 54 fabric was immersed in the demineralized
water and irradiated for 1 h with the LED at 416 nm. After this procedure, the fabric was white
again, without traces of blue color, and then re-used in the photocatalytic degradation of MB again.
This operation was performed three times, and then the fabric was re-generated in a similar way to
the previous regeneration procedure but with the addition of H,O, and then re-used twice for the
photocatalytic degradation of MB. It can be observed that the photocatalytic activity of the 54 fabric
initially significantly decreased after each photocatalytic cycle. However, the adsorption ability was
preserved for each further experiment at 55%. The mechanism of regeneration performed only by
irradiation is limited due to the position of the valence and conduction bands in the energy diagram of
g-C3Ny [94]. The energy diagram for g-C3Nj, indicates that the valence band potential of ECN is more
negative than that of HO*/OH (1.99 v vs. NHE, pH 7), resulting in the fact that it is not possible to
oxidize the adsorbed OH™ groups into hydroxyl radicals by photogenerated holes. The generation
of HO* radicals is the most important advantage of TiO; and also ZnO over this material. However,
TiO, and ZnO lack photocatalytic activity under visible light. The self-cleaning properties of ECN
depend on the electron reduction process of adsorbed oxygen to create superoxygen radicals. However,
superoxygen radicals are not as efficient as hydroxyl radicals. Only the use of irradiation does not
allow a 100% regeneration of the fabric. As shown in Figure 9, the modified fabric after experiment
was clearly white without any blue spots just like before experiment, indicating that the fabric surface
was cleaned, proving the self-cleaning properties of prepared membrane. However, the remaining
intermediates were probably caught on the fixed ECN material. This caused lower photocatalytic
efficiency in repeated photocatalytic experiments. However, the adsorption ability was preserved
because PMMA acts as the major adsorption material towards MB.

Carbon nitride is an organic semiconductor nanomaterial and so lower photocatalytic activity
could not be caused by the photocorrosion of ECN like in the case of metal semiconductors such as
ZnS and CdS [95,96]. However, after washing with 30% H,O, and irradiating for 1 h, we can clearly
see that the photocatalytic activity increased again, and it was similar to the photocatalytic activity
observed in freshly prepared S4 fabric. This indicates that the lower photocatalytic activity in the first
three cycles was probably caused by the contamination of the surface of ECN by intermediates created
during the photocatalytic decomposition of MB. After a proper cleaning (with the addition of HyO5),
the modified (54) fabric restored its photocatalytic performance, which was similar to the performance
of a freshly prepared sample 54.
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Figure 12. Recyclability test of fabric S4, after the regeneration procedure, in five subsequent
photocatalytic MB degradation experiments.

4. Conclusions

In this work, we present a study of a new membrane prepared by the fixation of thermally
exfoliated g-C3N; to polyurethane nanofibers using thin layers of PMMA as a suitable binder.
The photocatalytically active material, ECN, was prepared by thermal polycondensation of melamine
and further exfoliated in a special heat regime in a furnace. To fix the photocatalyst to the nanofibrous
support fabric, PMMA was selected to create films of various thickness. Using several analytical
techniques, we have proven that the method of preparation showed no effect on the intrinsic properties
of the photocatalyst. The samples were characterized and then used in the photocatalytic degradation of
the model dye, methylene blue. It was demonstrated that the modified fabrics show photocatalytic and
adsorption properties in comparison to the unmodified fabric that does not have any of these properties.
Using increasing amounts of PMMA as a binder, an increase in the adsorption and photocatalytic
efficiency of the modified fabrics was observed due to the enhanced area created by PMMA with even
more fixed ECN material. Comparing the photocatalytic activity and adsorption, it was found that
the optimum amount of PMMA as a binder between ECN and polyurethane nanofibers is 500 mg of
PMMA in 10 mL of acetone and a higher amount of PMMA no longer brings any further benefits.
A stability and recyclability study showed that the g-C3N4/PMMA/PUR fabrics are very stable and
retain high adsorption activity and excellent sustained photocatalytic activity even after repeated
reuse. After photocatalytic experiments, the unmodified fabric was colored in blue by the adsorbed
MB dye, while the modified fabric was colorless due to the complete degradation of MB on its surface,
showing that it successfully achieved self-cleaning ability. The results found the possibility of the
development of more easily post-recovered visible light-activated photocatalytic sorption membranes

and fabrics. Such novel materials could be used even for defense purposes for civilians and military
against harmful substances in water and air.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/4/850/s1,
Figure S1: SEM images of bulk g-C3Ny (left) and a STEM image of the detailed thin structure of ECN (right);
Figure S2: A HRSEM image of the modified S4 fabric, indicating the materials; Figure S3: (a) A microscope image
with the measured outer diameter of the PUR nanofibers, and a (b) histogram of the outer diameter; Figure S4:
Images of roughness measurement performed on the (a) unmodified fabric and (b) the modified S4 fabric.
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