Supporting Information for

Bio-based Aromatic Copolyesters: Influence of Chemical Microstructures on Thermal and Crystalline Properties

Keling Hu^{1,2,*}

¹ Key Laboratory of Functional Polymer Materials of MOE, College of Chemistry, Nankai University, Tianjin 300071, China.

² Current address: Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.

Correspondence to: hukl@ntu.edu.sg

1. Experimental Section

Chemical Reagents and Materials

Eugenol (99%, Sigma-Aldrich, St. Louis, USA), nipagin (99%, Sigma-Aldrich), methyl Sigma-Aldrich), thioglycolate (99%, methyl chloroacetate (98%, Sigma-Aldrich), 2,2-dimethoxy-2-phenylacetophenone (DMPA, 99%, Sigma-Aldrich), tetrabutyl titanate (TBT, 99.5%, Sigma-Aldrich), 1,6-hexanediol (98%, Aladdin, Shanghai, China), 1,4-dibromobutane (98%, Aladdin), potassium carbonate (K₂CO₃, 98%, Tianjin Chemical Reagent Corporation, Tianjin, China), potassium iodide (KI, 99%, Tianjin Chemical Reagent Corporation), acetonitrile (99.5%, Tianjin Chemical Reagent Corporation), chloroform (CHCl₃, 99.5%, Tianjin Chemical Reagent Corporation), tetrahydrofuran (THF, 99.5%, Tianjin Chemical Reagent Corporation), deuterated chloroform (CDCl₃, 99.8%, Oingdao Tenglong Weibo Technology. Co. Ltd., Oingdao, China), deuterated trifluoracetic acid (CF₃COOD, 99.5%, Qingdao Tenglong Weibo Technology), were used as received without further purification. Silica-gel slices used for thin-layer chromatography (TLC) were purchased from Qingdao Haiyang Chemical Co. Ltd., Qingdao, China.

General Instrumentation and Methods

¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ or CF₃COOD at 25 °C on a Bruker AVANCE III NMR spectrometer operating at 400 MHz and 100.6 MHz, respectively. Tetramethyl silane was used as the internal reference. Fourier transform infrared spectra (FTIR) were recorded on a Bio-Rad FTS6000 spectrophotometer at 25 °C. Polymer samples were prepared by grinding the polymeric materials adequately with potassium bromide powder, followed by compressing the mixture to form a pellet. Molecular weight and dispersity (D) of the materials were determined by size exclusion chromatography (SEC, Waters 2414 differential refraction detector) at 35 °C. THF or CHCl₃ was used as the eluent at a flow rate of 1.0 mL min⁻¹. The average molecular weights were calibrated against monodisperse polystyrene (PS) standards. Thermogravimetric analysis (TGA) was carried out using a NETZSCH TG209 instrument. In a typical method, polymer sample was heated from 25 to 800 °C under a nitrogen atmosphere at a rate of 10 °C min⁻¹. The temperature leading to 5% weight loss, the temperature for maximum degradation rate, and residue weight (%) at 800 °C were recorded. Differential scanning calorimetric (DSC) analysis was carried out using a Mettler-Toledo DSC Q100 calorimeter from TA Instruments. Polymer samples after precipitation from methanol were first heated from room temperature to 210 °C and hold at this temperature for 10 min to erase thermal history, then cooled to -30 °C. The glass transition temperatures (T_{gs}) were obtained from the second heating run. All runs were carried out at a rate of 10 °C min⁻¹. Indium was used as the calibration standards for temperature. Wide X-ray diffraction (WXRD) patterns were recorded on a D/max-2500 diffractometer using CuKa radiation with a wavelength of 0.1542 nm for powder samples after precipitation from methanol.

Synthesis of Nipagin and Eugenol based Dimethyl Esters

The preparation methods for nipagin and eugenol based dimethyl esters N2, E1 and E2 have been reported previously.^{1,2} The synthetic routes of these monomers can also found in Scheme S1.

Scheme S1. Synthetic routes for the preparation of the nipagin and eugenol based dimethyl esters

2. Experimental Results

PHN2 Homopolyester. ¹H NMR (400 MHz, CF₃COOD, 25 °C, TMS): $\delta = 8.20$ -7.98 (m, 4·H, Ar-*H*), 7.16-6.94 (m, 4·H, Ar-*H*), 4.63-4.37 (m, 4·H, -COO-CH₂-), 4.36-4.11 (m, 4·H, ArO-CH₂-), 2.20-2.02 (m, 4·H, ArOCH₂-CH₂-), 2.02-1.85 (m, 4·H, -COOCH₂-CH₂-), 1.79-1.54 (m, 4·H, -COOCH₂CH₂-CH₂-) ppm; ¹³C NMR (100.6 MHz, CF₃COOD, 25 °C, TMS): $\delta = 170.25$ (Ar-CO-), 163.27 (Ar-C), 161.63 (solvent), 161.20 (solvent), 160.77 (solvent), 160.34 (solvent), 131.81 (Ar-C), 121.56 (Ar-C), 118.61 (Ar-C), 115.79 (solvent), 114.38 (Ar-C), 112.98 (solvent), 110.16 (Ar-C), 68.04 (ArO-CH₂-), 66.40 (-COO-CH₂-), 27.85 (-COOCH₂-CH₂-CH₂-), 25.19 (-COOCH₂CH₂-CH₂-), 25.05 (ArOCH₂-CH₂-) ppm.

PHN2_{1-x}E1_x **Copolyesters.** ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): δ = 8.01-7.86 {m, (1-x)·4H; Ar-*H*}, 6.95-6.78 {m, (1-x)·4H; Ar-*H*}, 6.77-6.67 (m, x·3H; Ar-*H*), 6.67-6.57 (m, x·H; Ar-*H*), 4.61 (s, x·2H; ArO-*CH*₂-CO-), 4.32-4.18 {m, (1-x)·4H; ArCOO-*CH*₂-}, 4.18-4.11 (m, x·4H; -COO-*CH*₂-), 4.11-3.93 {m, (1-x)·4H; ArO-*CH*₂-}, 3.82 (s, x·3H; ArO-*CH*₃), 3.17 (s, x·2H; -S-*CH*₂-CO-), 2.72-2.50 (m, x·4H; Ar-*CH*₂-*CH*₂-*CH*₂-S-), 2.06-1.91 {m, (1-x)·4H; ArOCH₂-*CH*₂-}, 1.91-1.81 (m, x·2H; ArCH₂-*CH*₂-*CH*₂S-), 1.80-1.67 {m, (1-x)·4H; ArCOOCH₂-*CH*₂-}, 1.67-1.53 (m, x·4H; -COOCH₂-*CH*₂-), 1.53-1.15 {m, (1-x)·4H+x·4H; -COOCH₂*CH*₂-*CH*₂-} ppm; ¹³C NMR (100.6 MHz, CDCl₃, 25 °C, TMS): δ = 170.47 (-SCH₂-CO-), 169.17 (ArOCH₂-*CO*-), 166.26 (Ar-*C*), 162.61 (Ar-*C*), 149.55 (Ar-*C*), 145.59 (Ar-*C*), 135.72 (Ar-*C*), 131.47 (Ar-*C*), 122.79 (Ar-*C*), 120.24 (Ar-*C*), 114.62 (Ar-*C*), 114.00 (Ar-*C*), 112.59 (Ar-*C*), 67.54 (ArO-*C*H₂-CH₂-), 66.68 (ArO-*C*H₂-CO-), 65.14-64.44 (-COO-*C*H₂-), 55.87 (ArO-*C*H₃), 34.16 (-S-*C*H₂-CO-), 33.59 (Ar-*C*H₂-CH₂CH₂S-), 31.99 (-S-*C*H₂-CH₂CH₂Ar), 30.50 (ArCH₂-*C*H₂-SCH₂-), 28.64-28.34 (m, -COOCH₂-*C*H₂-), 25.77 (ArOCH₂-*C*H₂-), 25.62-25.32 (m, -COOCH₂CH₂-*C*H₂-) ppm.

PHN2_{1-x}**E2**_x **Copolyesters.** ¹H NMR (400 MHz, CDCl₃, 25 °C, TMS): $\delta = 8.03$ -7.87 {m, (1-x)·4H; Ar-*H*}, 6.95-6.82 {m, (1-x)·4H; Ar-*H*}, 6.82-6.73 (m, x·H; Ar-*H*), 6.73-6.58 (m, x·2H; Ar-*H*), 4.37-4.18 {m, (1-x)·4H; -COO-CH₂-}, 4.17-3.93 {m, x·8H+(1-x)·4H; ArO-CH₂-CH₂-and -COO-CH₂-}, 3.81 (s, x·6H; ArO-CH₃), 3.19 (s, x·4H; -S-CH₂-CO-), 2.75-2.53 (m, x·8H; Ar-CH₂-CH₂-CH₂-S-), 2.08-1.93 {m, (1-x)·4H; ArOCH₂-CH₂-}, 1.93-1.82 (m, x·8H; ArCH₂-CH₂-CH₂-S-), 2.08-1.93 {m, (1-x)·4H; ArOCH₂-CH₂-}, 1.93-1.82 (m, x·8H; ArCH₂-CH₂-CH₂-CH₂-S-), 1.82-1.69 {m, (1-x)·4H; ArCOOCH₂-CH₂-}, 1.69-1.56 (m, x·4H; -COOCH₂-CH₂-), 1.56-1.15 {m, (1-x)·4H+x·4H; -COOCH₂CH₂-CH₂-} ppm; ¹³C NMR

(100.6 MHz, CDCl₃, 25 °C, TMS): δ = 170.51 (-SCH₂-CO-), 166.29 (Ar-CO-), 162.66 (Ar-C), 149.42 (Ar-C), 146.79 (Ar-C), 134.10 (Ar-C), 131.51 (Ar-C), 122.83 (Ar-C), 120.34 (Ar-C), 114.03 (Ar-C), 113.44 (Ar-C), 112.40 (Ar-C), 68.82 (ArO-CH₂-CH₂-), 67.56 (ArO-CH₂-CH₂-), 65.16-64.48 (-COO-CH₂-), 55.94 (ArO-CH₃), 34.18 (-S-CH₂-CO-), 33.64 (Ar-CH₂-CH₂CH₂S-), 32.05 (ArCH₂CH₂-CH₂-S-), 30.63 (ArCH₂-CH₂-CH₂S-), 28.67-28.40 (m, -COOCH₂-CH₂-), 26.04 (ArOCH₂-CH₂-), 25.81-25.43 (m, -COOCH₂-CH₂-) ppm.

Figure S1. SEC traces of polyester samples tested by CHCl₃-phase SEC and the sample names are indicated in the figure.

Figure S2. SEC traces of polyester samples tested by THF-phase SEC and the sample names are indicated in the figure.

Figure S3. ¹H NMR spectra of PHN2_{1-x}E2_x copolyesters.

Figure S4. ¹³C NMR spectra of PHN2_{1-x}E2_x copolyesters.

Figure S5. The splitting situations of the methylene carbons adjacent to the hydroxy-oxygens for $PDN2_{1-x}E1_x$ copolyesters with the indications of the dyads to which they are assigned.

Figure S6. The splitting situations of the methylene carbons adjacent to the hydroxy-oxygens for $PDN2_{1-x}E2_x$ copolyesters with the indications of the dyads to which they are assigned.

Figure S7. TGA curves of PHN2_{1-x}E2_x copolyesters.

Figure S8. TGA derivative curves of $PHN2_{1-x}E2_x$ copolyesters.

Figure S9. The full heating and cooling scan of DSC curves of PHN2 and PHN2_{1-x}E1_x after precipitating from methanol carried out from -30 to 210 °C at a heating/cooling rate of 10 °C min⁻¹.

Figure S10. The full heating and cooling scan of DSC curves of PHN2_{1-x}E2_x after precipitating from methanol carried out from -30 to 210 °C at a heating/cooling rate of 10 °C min⁻¹.

Figure S11. Powder WXRD profiles for PHN2_{1-x}E2_x copolyesters.

3. References

1. K. L. Hu, D. P. Zhao, G. L. Wu and J. B. Ma, Polym. Chem., 2015, 6, 7138-7148.

2. K. L. Hu, D. P. Zhao, G. L. Wu and J. B. Ma, J. Polym. Sci., Part A: Polym. Chem., 2016, 54, 2171–2183.