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Abstract: The use of biopolymers can reduce the environmental impact generated by plastic materials.
Among biopolymers, blends made of poly(lactide) (PLA) and poly(butylene-adipate-co-terephthalate)
(PBAT) prove to have adequate performances for food packaging applications. Therefore, the present
work deals with the production and the characterization of blown films based on PLA and PBAT
blends in a wide range of compositions, in order to evaluate their suitability as chilled and frozen food
packaging materials, thus extending their range of applications. The blends were fully characterized:
they showed the typical two-phase structure, with a morphology varying from fibrillar to globular in
accordance with their viscosity ratio. The increase of PBAT content in the blends led to a decrease of
the barrier properties to oxygen and water vapor, and to an increase of the toughness of the films.
The mechanical properties of the most ductile blends were also evaluated at 4 °C and —25 °C. The
decrease in temperature caused an increase of the stiffness and a decrease of the ductility of the films
to a different extent, depending upon the blend composition. The blend with 40% of PLA revealed to
be a good candidate for chilled food packaging applications, while the blend with a PLA content of
20% revealed to be the best composition as frozen food packaging material.

Keywords: biopolymers; PLA/PBAT; blown films; food packaging; film for frozen food

1. Introduction

In recent years, the growing interest of the population towards environmental issues, and the
increasingly stringent directives that various countries are adopting to fight against environmental
pollution deriving from plastic materials, have directed research towards the development of ecofriendly
materials that can substitute the conventional plastic ones [1]. The packaging sector is the one that
uses the highest amount of plastic [2], and thus, the use of so-called “biopolymers” in the food
packaging field could be a strategy to reduce the environmental impact generated by the traditional
plastics materials [3]. Moreover, since a considerable amount of foods requires sub-ambient storage
temperatures (e.g., chilled and frozen food), the retention of satisfactory performance properties at
low temperatures has a key role to extending the range of applications of a material in the food
packaging field.

Different examples can be found in literature on the effect of sub-ambient temperature upon the
mechanical and barrier response of conventional polyolefin-based systems [4-7], since, currently, these
are the most employed materials for low temperature packaging applications.
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As a general trend, in terms of mechanical response, the temperature lowering gives a decrease
in the material ductility and shock absorption power; instead, in terms of barrier properties, it gives
a decrease of permeability to gases and a change in perm-selectivity. To our best knowledge, no
literature data are available on the effect of sub-ambient temperatures on the functional performances
of biopolymer-based packaging systems, and their applications for refrigerated food storage are still
very limited.

Among the biopolymers, PLA is one of the most promising and widespread ones that can replace
petrochemical plastics [8-10]. PLA is a compostable and bio-based polymer, it is a linear aliphatic
polyester, and its properties can be turned varying the relative content of D- and L-enantiomers [11].
It can be easily processed with conventional process such as extrusion, spinning, injection and
compression molding [12-15]. However, its high brittleness limits its use, thus different strategies are
tested in order to improve its toughness [16-19]. Among them, blending of PLA with PBAT has shown
promising results.

PBAT is a compostable aliphatic aromatic co-polyester that consists of two types of comonomer, a
rigid butylene terephthalate segment made of 1.4 butanediol and terephthalic acid monomers, and a
flexible butylene adipate section made of 1.4 butanediol and adipic acid monomers [20]. This polymer
is flexible and tough, and it has complementary properties to PLA [21].

Several researchers have blended PLA with PBAT, through several techniques, like single-screw
extrusion, twin-screw extrusion and solvent casting [20,22-26]. Results showed that, even if these
polymers have very close solubility values [27], they are not thermodynamically miscible.

Li et al. [28] studied the morphology of this system in a wide range of compositions. They showed
that for a PBAT content lower than 20 wt%, the blend surface appeared uniform, characterized by
the presence of featured small droplets suspended in the continuous phase. When the PBAT content
increased between 20 and 50 wt%, the system became heterogeneous, with a co-continuous phase
structure formed at 50 wt%. Furthermore, when the PBAT content exceeded 70 wt%, the morphology
turned into droplets. In addition, Deng at al. [29] investigated the morphology of these systems, and
they found a fibrillar morphology with a co-continuous phase structure when the PBAT content was
between 20 wt% and 40 wt%, and PLA dispersed particles in the PBAT matrix when the content of the
latter polymer was between 60 wt% and 80 wt%.

However, even if these polymers are not miscible, their blending allows us to obtain several
advantages. Hongdilokkul et al. [30] reported that the addition of 20 wt% of PBAT into the PLA
matrix considerably improved the processability for film blowing by increasing the melt strength of
the system. Moreover, the presence of PBAT influenced the crystallization behavior of PLA; in fact, it is
reported that PBAT can act as a nucleating agent for PLA [30,31], increasing its crystallization rate.

Furthermore, several works deal with the mechanical properties of this system. Wang et al. [32]
have melt blended PLA and PBAT, and showed that the brittleness and ductility of PLA could be
improved by adding 10% PBAT, which increased the elongation at break from 7.71% to 357.8%, and
decreased the tensile strength from 65.21 MPa to 47.52 MPa. Li et al. [33] have analyzed a wide range
of the composition of PLA/PBAT blends, showing an increase of the elongation at break with the PBAT
content in the blend, and a reduction of the elastic modulus that, in the blend with the 20% of PBAT,
was decreased of more than 30% compared to the pure PLA. Farsetti et al. [34] made an impact analysis,
and they reported an increase of the GIC (critical release rate of strain energy) value at compositions
ranging from neat PLA down to PLA mass fraction equal to 0.8, due to a toughening effect of PBAT.
In general, the addition of PBAT lead to an increase of the ductility, but to a decrease of the elastic
modulus in the tensile strength of the blends.

Moreover, interesting results of these blends are reported also for the food packaging field.
Tabasi et al. [35] reported that the sealability properties of PLA/PBAT blends can be tailored by varying
the blend composition and PBAT crystallinity degree. Higher content of PLA in the blend and the
lower crystallinity of PBAT provide lower hot-tack initiation temperature.
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Li et al. [33] investigated the oxygen permeability of these blends in a wide range of compositions,
and with the addition of the 0.15 wt% of a compatibilizer, they found that the oxygen permeability of
PBAT was two times higher than PLA, and the permeability of the blends increased as the content of
PBAT in the blend increased. Wang et al. [23] reported that the presence of PBAT can considerably
improve the UV-screening properties compared to neat PLA and PLA/PBAT films, which proved to be
effective in preventing the greening of fresh potatoes. Moreover, the high-water vapor permeability of
these films can be useful to prevent fogging on the surface of packaging film, as revealed for fresh,
green onions.

However, there is a lack of literature on the effect of the temperature on the mechanical properties
of these systems. Only Gigante et al. [36] studied the effect of temperature on the fracture behavior
of different PLA/PBAT blends, in which PLA was the matrix phase. By the estimation of the
ductile-to-brittle transition temperature (DBTT), they highlighted that the ductile behavior for these
blends appeared at temperatures higher than the PBAT glass transition temperature, and particularly,
for the blends with a PBAT content between 15 wt% and 25 wt%, this happened around —23 °C.

Moreover, the decrease of the ductility is a problem particularly relevant for materials with low
thickness, so for the flexible packaging. Thus, the knowledge of the mechanical behavior at low
temperatures is essential information to evaluate the suitability for packaging foods requiring low
storage temperatures.

Therefore, in this work, PLA/PBAT blown films in a wide range of compositions were developed
and fully characterized, and the mechanical properties of the most ductile films were evaluated at
three different temperatures (25 °C, 4 °C and —25 °C), in order to extend the range of application of
these blends for chilled and/or frozen food flexible packaging.

2. Experimental

2.1. Materials

PLA 4032D, supplied by NatureWorks™ (Minnetonka, MN, USA), has a content of D-isomer
equal to 1.5 wt%, a specific gravity of 1.24 g/cm® and a melting temperature between 155-170 °C.
Ecoworld PBAT 009 was manufactured by Jin Hui Zhaolong (Liiliang, China); it is composed by the
29% of adipic acid, 26% of terephthalic acid and 45% of 1,4-butanediol, it has a density of 1.26 g/cm3
and a melting temperature around 110-120 °C. Both materials comply with USA Food and Drug
Administration (FDA) and European Union (EU) regulations for direct food contact. They also conform
the standards of compostability under controlled composting conditions, i.e., standards EN13432 and
ASTM D 6400.

2.2. Preparation of the Films

PLA and PBAT pellets were dried under vacuum at 70 °C for 20 h prior to processing. PLA and
PBAT at different PLA/PBAT concentrations (100/0, 80/20, 60/40, 40/60 20/80 0/100 by weight) were
mixed in a Collin ZK25 co-rotating twin extruder (D = 25 mm, L/D = 42), with a screw speed equal
to 100 rpm, a temperature profile ranging from 140 °C to 190 °C, and a mass flow ranging from 50
to 54 g/min. Then, the materials were cooled in a water bath. After, pure materials and each blend
were dried under vacuum at 70 °C for 20 h before processing. The blown films were prepared in a
multilayer plant, using two single screw extruders GIMAC (D = 12 mm, L/D = 24), with a screw speed
equal to 50 rpm and a take up speed of 1 m/min. The temperature profile ranged from 190 °C to 180 °C
for pure PLA, from 180 °C to 135 °C for the blends and from 160 °C to 125 °C for pure PBAT. Films
were produced with a blow-up ratio (BUR) and a take-up ratio (TUR) equal to 2.5 and with constant
thickness of 75 + 5 um.
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2.3. Rheological Characterization

The rheological properties in the oscillatory mode of pellets of PLA, PBAT and their blends were
evaluated using an oscillatory shear strain-controlled rheometer, ARES. Samples were dried under
vacuum at 70 °C for 16 h prior to testing. Tests were performed with a parallel-plate geometry (d = 25
mm) with a gap of 1 mm at 180 °C under a nitrogen atmosphere, in order to minimize thermo-oxidative
degradation. A strain sweep test was initially conducted to guarantee the linear viscoelastic regime for
each formulation. Frequency sweep tests were conducted in triplicate, with a standard deviation less
than 2%.

2.4. Differential Scanning Calorimetry (DSC)

Thermal analysis on the pellets of pure materials and their blends and on the produced films was
performed using a Differential Scanning Calorimeter (DSC mod. 822, Mettler Toledo, Columbus, OH,
USA) under a nitrogen gas flow (100 mL/min), in order to minimize thermo-oxidative degradation
phenomena. The temperature programming consisted of three steps: The samples were heated from
—70 to 200 °C with a speed of 10 °C/min, and held at 200 °C for 5 min. They were then cooled at
—70 at 10 °C/min, and reheated to 200 °C at 10 °C/min. The crystallinity degrees, Xc, were calculated
according to the following formula:

- AHm — AHcc

Xc = € %100 1)
AHmO x @i

where AHm and AHcc (J/g) are the respective heat of melting and heat of cold crystallization of PBAT
and PLA, the AHmV is equal to 93.6 J/g for PLA [37] and 114 for PBAT [38], and i is the relative weight
fraction of PLA or PBAT in the blends.

2.5. Fourier Transformation Infrared Spectroscopy (FT-IR)

Infrared spectra of the film of pure materials and their blends were obtained with a Thermo Nicolet
NEXUS 600 spectrometer in attenuated total reflectance (ATR) mode, with a diamond crystal collecting
64 scans. Each spectrum was obtained within the range of 4000-400 cm~! with the wavelength

resolution of 4 cm™1.

2.6. Morphological Characterization

Film samples were cryo-fractured and then coated with a thin gold layer (Agar Auto Sputter
Coater mod. 108 A, Stansted, UK) at 30 mA for 160 s to improve their conductivity. Afterwards,
their cross sections parallel to the transversal direction (TD) were scanned by field emission scanning
electron microscope (FESEM) (LEO 1525 model, Carl Zeiss SMT AG, Oberkochen, Germany). Length
evaluation was performed through the SigmaScan Pro™ Software.

2.7. Oxygen Transmission Rate (OTR)

OTR measurements were carried out through a permeabilimeter (GDP—C 165 of Brugger), with
a manometric operation, connected to a thermo-controlled bath (ThermoHaake). Before testing, the
evacuation of the upper and the bottom half-cell was performed to drive away humidity and residual
gases. The test temperature was set at 23 °C, and the oxygen flow to 80 mL/min, according to ISO
15105-1. The area of the tested films was 9 cm?. The values of the permeability coefficients (P O,) were
obtained by multiplying the measured value of OTR by the respective thicknesses (mm) of the films.

2.8. Water Vapor Transmission Rate (WVTR)

Water vapor permeability tests were performed through a Water Vapor Permeation Analyzer
(Model 7002—Systech Illinois, Princeton, NJ, USA), which provides a modular system for the
determination of water vapor permeability using a sensor based upon P,Os. Tests were carried
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out according to ASTM F 1249-90 standard (with the only exception of sensor technology) at 23 °C
and 50% of relative humidity. The area of the tested films was 5 cm?. The values of the permeability
coefficients (P H,O) were obtained by multiplying the measured value of WVTR by the respectively
thickness (mm) of the films.

2.9. Mechanical Properties

Tensile testing of blown films was performed on a SANS dynamometer (Sans Testing Machine
Co. Ltd., Shenzhen, China) equipped with a 100 N load cell. The rectangular shape specimens (width
= 12.7 mm and length = 30 mm) were extended at a crosshead speed set according to ASTM D822
standard. Mechanical properties were evaluated in the machine direction (MD).

Tests were carried out at ambient temperature (25 °C) and at controlled environment temperatures
(4 °C and -25 °C), using an Environmental chamber connected to a WK650 High Precision
Temperature controller and to a Liquid nitrogen container. All of the data are the average of at
least seven measurements.

3. Results and Discussion

3.1. Rheological Characterization of the Pellet

Rheological oscillatory analysis was carried out to investigate the morphology and processability
of the blends. First, a dynamic strain sweep test was performed for both the pure materials at a
frequency of 10 rad/s, with the aim to determine the limit of linear viscoelasticity that was found to be
greater than 5% of deformation. Thus, all of the rheological tests were performed at a strain equal to
5%. Dynamic time sweep tests were then performed to investigate the thermal stability during the flow
in an inert atmosphere at the rate of 1 rad/s. These tests revealed a percentage of complex viscosity
reduction in a time of 7 min (duration of a frequency sweep test) of less than 1% for both materials.
Frequency sweep tests were then performed with a frequency ranging from 0.1 to 100 rad/s. The trend
of the complex viscosity versus the frequency is reported in the Figure 1.

10000

——PLA
—m—PLA/PBAT 80/20
——PLA/PBAT 60/40
PLA/PBAT 40/60
$-¢ ——PLA/PBAT 20/80
PBAT

100

0.1 1 10 100
w [rad/s]

Figure 1. Complex viscosity of the extruded pellets.

Results show that both the pure materials exhibit shear thinning behavior, and a low-frequency
Newtonian plateau. Furthermore, it is evident that the complex viscosity of the PLA is higher than that
of PBAT for all of the frequency tested, particularly at the viscosity ratio of 100 rad/s, when PBAT is the
dispersed phase, and is equal to 0.25, and when PBAT is the matrix phase, and is equal to 4. It is well
known that the viscosity ratio has a great influence on the morphology of the blends [39]. In fact, for a
viscosity ratio lower than one, the application of high shear determines the formation of the fibrillar
morphology of the dispersed phase. Instead, for viscosity ratio higher than one, the dispersed phase
has a moderate deformation and keeps its spherical shape [40]. So, a fibrillar morphology is expected
when PLA is the matrix phase, and a globular morphology is expected when PBAT is the matrix phase.
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Moreover, the complex viscosity graph shows that the blends had a shear thinning behavior more
accentuated than the pure materials, and the increase of PLA content led to an increase of their complex
viscosity. Particularly, the PLA/PBAT 80/20 blend not only exhibited a higher viscosity, but, at low
frequencies, that viscosity was higher than both PLA and PBAT, suggesting higher interactions of the
two polymers at this composition [28].

Figure 2 shows the trend of the storage modulus (G’) in function of the frequency. The storage
modulus of the blends, for high frequencies values, increased as the content of PLA in the blend
increased, and instead, at low frequencies, it is higher for all the blends than the pure materials.

For PLA/PBAT 80/20 and 20/80, G’ shows a typical shoulder that has been reported for many
immiscible blends [28]. This behavior of G’ is due to the “additional” elastic response originating
from the surface tension of the dispersed phase in the continuous matrix. Moreover, a large G’ plateau
at low frequencies is seen for the blends PLA/PBAT 60/40 and 40/60, reflecting a sort of solid-like
behavior. This behavior has been reported in many investigations [41] for immiscible blends that form
co-continuous structures, and this is due to extra stresses associated with the shape relaxation of the
inter-connective structures [42]. In fact, as reported by Omonov et al. [43], when a continuous network
structure is formed, the relaxation times shift to very low frequency values that cannot be observed
experimentally, thus they used this criterion to set the composition limits of a co-continuous structure.
Therefore, the 40 wt% and the 60 wt% of PBAT can be the beginning and the ending points of the
co-continuous structure, which are in accordance with the values found in literature that vary from
20 wt% to 60 wt% [28,29,44].
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—o=—PLA
= 1000 | —&—PLA PBAT 80 20
& AR —#=PLA PBAT 60 40
o - =7 = X » PLA PBAT 40 60
10 //ﬁ' —#—PLA PBAT 20 80
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Figure 2. G’ of the extruded pellets.

3.2. Thermal Analysis (DSC) of the Films

All the films were subjected to the same thermal cycle described in the experimental part. The
main thermal parameters related to the first heating are shown in the Table 1.

Table 1. Differential Scanning Calorimetry (DSC) results of the 1st Heating scan of the films.

I Heating
Tg Tg T AH Tm1 Tm2 AHp, Tm AHp, XC XC
PBAT PLA [° CC‘] 0/ C]C PBAT PBAT PBAT PLA PLA PBAT PLA
[°Cl [°C] 8 [°Cl [°Cl /gl [°Cl /gl [%] [%]
PLA / 63.5 97.6 35.3 / / / 170.3 36.6 / 15
PLAPBAT 8020 -33.1 62.1 97.2 21.7 / / / 168.6 27.9 / 8.3

PLAPBAT6040 -339 613 960 149 475 1180 08 1692 228 1.7 14.1

PLAPBAT4060 -341 615 964 8.0 482 1118 23 1688 153 33 19.4

PLAPBAT2080 -351 632 955 1.7 480 1126 79 1672 60 8.7 227
PBAT -35.4 / / / 488 1106 172 / / 15.1 /
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The thermograms of the films of the 1st heating scan are reported in Figure 3.

Thermal properties have a great influence on the mechanical behavior of the films. Particularly,
the glass transition temperature (Tg) represents the transition point between the glassy and brittle
behavior and the ductile behavior [45]. The glass transition temperature of PLA and PBAT are at 63 °C
and —34 °C, respectively. This means that PLA has a brittle behavior at ambient temperatures (around
25 °C), and also for lower temperatures, while PBAT keeps its ductile behavior for temperatures above
—34 °C. Moreover, the thermograms of the first heating of these materials show the presence of one
endothermic peak for PLA at 171 °C, and two endothermic peaks for PBAT, at the temperatures of
36 °C and 107 °C.

The first melting peak, not very intense, can be attributed to the melting of the crystalline phase of
the butylene-adipate (BA) fraction [46], while the second melting peak, more intense and widened, is
between 70 °C and 140 °C. All the blends showed two different glass transition temperatures, and this
is a further confirmation that PLA and PBAT are not thermodynamically miscible [47]. The presence
of PBAT led to a decrease of the cold crystallization temperature (Tcc) of PLA, indicating that PBAT
increases the crystallization rate of PLA, as previously reported [33,48]. Moreover, as reported by
Deng et al. [29], the crystallinity degree (X.) of PLA increases with the increase of the PBAT content in
the blend. This behavior could be due to the greater mobility of the PLA chains in the presence of the
PBAT. On the other hand, the opposite behavior is shown for the degree of crystallinity of PBAT, which
decreases as the PLA content in the blend increases. Since PLA has a lower chain flexibility and higher
viscosity than PBAT, it restricts the mobility of the PBAT chains, and therefore reduces its crystallinity
degree [20].

——PLA
\3 ——PLA PBAT 80 20
=
2 ——PLA PBAT 60 40
T
- PLA PBAT 40 60
[}
T

——PLA PBAT 20 80

“ PBAT

-60 -20 20 60 100 140 180
T [°C]

Figure 3. DSC thermograms of the 1st heating scan of the films.

3.3. FI-IR

FTIR spectroscopy investigations were performed on the films in order to obtain information on
blends morphology, and the results are reported in the Figure 4.

According to Al-Itry et al. [49], the following main characteristic peaks for PLA can be observed:
The symmetric stretching vibration of the axial CH groups in saturated hydrocarbons at 2800-3000 cm ™,
the intense peak originating from the C=0 stretching vibrations located at around 1747 cm™!, a weaker
band at 1250-1050 cm™! as a result of the C-O carboxyl groups, and two weak peaks at 866.5 cm™! and
75,464 cm™! as a result of the C-OCC bond stretching and CO bending, respectively. The functional
groups of PBAT can be described as: Peaks at around 3000 cm™! representing C-H stretching in
aliphatic and aromatic portions; at around 1710 cm~! representing carbonyl groups (C=0) in the ester
linkage; at 1267 cm~! representing C-O in the ester linkage; and a sharp peak at 720 cm ™! representing
four or more adjacent methylene (-CH2-) groups. Bending peaks of the benzene substitutes are located
at wave numbers between 700 and 900 cm~!. In the blends, some peak shifts were detected: The peak
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of the PLA carbonyl group shifts as the PBAT content increased from 1747 cm™~! to 1753 cm™! in the
PLA/PBAT 60/40 blend; the peak of the carbonyl group of PBAT moved as the PLA increases from
1710 em ™! to 1714 cm~! in the PLA/PBAT 60/40 blend; the peak at 866.5 cm~! of PLA C-OCC moved
progressively to values between 870 and 872 cm™! as the content of PBAT in the blend increased, and
the peak relative to the CO bending moved up to 750 cm™! in the blend PLA/PBAT 20/80. These shifts
indicate that these polymers, even though they are immiscible, have some interactions, and a certain
degree of compatibility.

~————
_ W
3
-SE—
8 v
5
E
n
S —ra \
= |——PLA/PBAT 80120
PLA/PBAT 60/40
—— PLA/PBAT 40/60
PLA/PBAT 20/80
——PBAT
— . —— — ————————
4000 3500 3000 2500 2000 1500 1000

-1
a) Wavenumber (cm™)

Transmittance (a.u.) —

M
C 0

Transmittance (a.u.) —

T T T T T
1800 1700 900 850 800 750 700
Wavenumber (cm™) C)  wavenumber (em™)

Figure 4. Fourier transform infrared spectroscopy (FTIR) spectra of the films: (a) in the full x-axis scale
(b) zoom of the carbonyl bonds (c) zoom of the C-OCC and CO bonds.

3.4. Morphological Characterization

Figure 5 gives the FESEM images of the fracture surface of the films for the neat polymers and
their blends. PLA and PBAT show homogeneous fracture surfaces. On the contrary, all the blends
exhibit a typical two-phase structure characterized by the presence of voids and inclusions of variable
shape and dimension. Different morphologies of the dispersed phase can be observed for these blends.
When PBAT was the dispersed phase, the blends showed an elongated fibrous morphology, yet instead
when PBAT became the matrix phase, the morphology turned into globular, in accordance with their
viscosity ratios. Particularly, the blend with the 80% of PLA showed an elongated dispersed phase
with thin fibrils that confirms the higher interactions of the two polymers in this composition supposed
in the rheological analysis. Moreover, the blends with a content of the dispersed phase equal to 40%
showed bigger inclusions than the other blends.

In fact, higher concentrations of the dispersed phase can lead to higher coalescence, and so to
bigger dimensions of the aggregates [44]. However, discrete domains that are not part of a network
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structure can be observed for both the blends with a dispersed phase content of 40 wt%, suggesting
that the “fully co-continuous structure” could be formed in a composition between this range.

[

H e PLA 40 PBATE0 . i 1S D PLA 20 PBAT 80 e s

Figure 5. Field emission scanning electron microscope (FESEM) images of: (a) neat poly(lactide) (PLA),
(b) neat poly(butylene-adipate-co-terephthalate) (PBAT), (c) PLA PBAT 80/20, (d) PLA PBAT 60/40 (e)
PLA PBAT 40/60, (f) PLA PBAT 20/80.

3.5. Barrier Properties

Oxygen and moisture barrier properties are among the most important issues to be considered
in materials intended to be used in food packaging, since their presence in some cases may lead to
detrimental changes in quality that result in a decrease of the food shelf-life. In Table 2 the permeability
coefficient to oxygen and water vapor are reported.
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Table 2. Oxygen and water vapor permeability coefficients of the films.

P O; [ecm3® mm/m?-d-bar] P H,0 [g-mm/(d-m?)]
PLA 33.4 1.3
PLA PBAT 80 20 40.9 14
PLA PBAT 60 40 50.3 2.8
PLA PBAT 40 60 61.9 2.9
PLA PBAT 20 80 71.8 3.0
PBAT 84.0 3.1

From the reported table it is clear that PBAT showed significant lower barrier properties to both
oxygen and water vapor than neat PLA; in fact, from the above-reported results, it is clear that adding
PBAT to PLA results in an increase of the coefficient of permeability, as reported in literature [23,33].
This could be related to the different glass transition temperatures of these polymers. PLA at 23 °C is
in the glassy state, which means a lower fraction of free volume between the polymer chains, and a
reduced mobility compared to PBAT that has a Tg under 23 °C. These factors greatly influence the
permeability of gas molecules, whose permeability is facilitated with high chains mobility and free
volume fractions.

Moreover, for polymer blends, it is useful to predict the macroscopic properties, thus different
models were applied in order to find the best fitting for the oxygen permeability of PLA/PBAT blends.
In the Maxwell equations, the two different polymers are replaced with two bars consisting of a rubbery
and a glassy phase.

In the parallel model, the two bars are connected in parallel, and in the series model they are
connected in series. These models represent the highest and lowest limits for the permeability coefficient
of a polymeric blend. The Maxwell series and parallel model [49,50] are respectively:

P, =Py - Po/(@1-Po + @2 - Pq)

Pp=¢1-P1+ ¢y P

where Pb is the permeability of the blend, P1, and P; are the permeabilities of the respective phases,
with @1 and ¢;, being the corresponding volume fractions.

Robeson’s equation describes the effect of a spherical filler on the overall composite
permeability [51]. The equation is reported below:

Pb=Pm - [Pd + 2Pm — 2 - ¢@d - (Pm — Pd)]/[Pd + 2Pm + ¢d - (Pm — Pd)]

where Pb is the permeability of the blend, Pm is the permeability of the matrix, Pd is the permeability
of the disperse phase, and @d is the volume fraction of dispersed phase.

Figure 6 shows that the experimental values of oxygen permeability are between the Maxwell
series and the parallel equations. The curve that fits best the experimental results is the Robeson
equation, particularly for the PLA/PBAT 80/20 and 20/80 samples, likely due to dispersed morphology
of these compositions. Thus, the Robeson equation could be applied for the prediction of the oxygen
permeability coefficient of the PLA/PBAT blends.
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Figure 6. Oxygen Permeability in function of the blends’ composition.

3.6. Mechanical Properties

Results of the tensile tests performed at ambient temperature are reported in Figure 7 and in

Table 3.
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Figure 7. Tensile stress—strain curves, obtained at 25 °C, for all the films.

Table 3. Tensile properties of the films at 25 °C.

Mechanical Properties at Ambient Temperature

Blend E (MPa) eb (%) oy (MPa)
PLA 2411.0 + 164.3 6.7+12 453 +54
PLA PBAT 80 20 1432.1 £ 119.7 154 +3.8 39.1+£25
PLA PBAT 60 40 819.6 £ 73.1 183.0 £20.1 221+23
PLA PBAT 40 60 288.0 +27.4 220.8 £12.9 9.7+12
PLA PBAT 20 80 1109 +£ 6.6 531.9 +43.2 6.1+0.7
PBAT 69.1 +5.0 581.1 +119.9 51+08

From Figure 7, it is evident that PLA and PBAT have an opposite behavior: the first is rigid and
brittle, and the second is flexible and tough. Moreover, the blend films exhibit behavior intermediate
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between that of the neat components, showing a progressive change from fragility to ductility as the
PBAT content grows.

In particular, with respect to the neat PLA film, the blend at the highest PBAT loading has a
decrease of the elastic modulus (E) and yield stress (0y) of an order of magnitude, and an increase of
the elongation at break (eb) of two orders of magnitude.

Similar trends in the mechanical behavior of PLA/PBAT blends are reported in the literature also
by others [32,33]. On the contrary, Deng et al. [29], reporting on a series of melt-blended PLA/PBAT,
found a drop of the elongation at break for a PBAT mass content between 50% and 60%.

Moreover, as for the oxygen permeability, it can be useful to predict the mechanical properties of a
polymeric blend. Particularly, the elastic modulus is strongly dependent on the blend morphology and
composition, and could be useful to assess the miscibility in polymers blends [52]. The Parallel and the
Series Model [53] represent the highest and the lowest bound of the modulus of a polymer system,
respectively:

Ep =E191 + E2 2 ()

1/Bp = 1/(E1 01 + Ex ¢2) 3)

Another model is the Davies Equation [54], which describes the elastic modulus behavior for
macroscopically homogeneous and isotropic blends, thus it is valid for co-continuous systems:

Ep'P =E;"Po; + B, 4)

The experimental result of the modulus and the theoretical predictions of the above-reported
equations are given in Figure 8.

2500
2000
' .
% Experimental Values
@ 1500 Parallel Model
=
S
=} Series Model
= 1000 |
b Davies Model
ki
W o500 |
O 1 1 1 1 ]
0 20 40 60 80 100

PBAT %

Figure 8. Elastic modulus in function of the blends” composition.

From Figure 8, it can be seen that the experimental values of the elastic modulus are between
the highest and lowest limits of the parallel and series models. However, the model that fits best
the experimental values is the Davies ones. Particularly, at 40%, there is a change in slope of the
experimental values’ curve that intersects the Davies Equation in a composition between 40% and 60%
of PBAT, as a further confirmation of the possible formation of a co-continuous phase in this range.
Moreover, the elastic modulus of the blends with a PBAT content of 20% is the closest to the parallel
model, a sign of the highest level of interactions of the two polymers in this composition, as revealed
by the rheological and morphological analysis.
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Few works in literature deal with the application of literature models to the mechanical properties
of PLA/PBAT blends. Deng et al. [29] also found a similar trend with the experimental values of the
elastic modulus comprised between the series and the parallel model, while Gigante et al. [36] found
that the experimental values, up to a PBAT content of 25%, followed the Parallel model.

From the analysis of the mechanical properties at ambient temperature, it is evident that the most
ductile blends are those in which PBAT is the matrix phase (i.e., PLA/PBAT 40/60, PLA/PBAT 20/80 and
PBAT). Therefore, the mechanical behavior of these blends was determined also at 4 °C, which is the
typical fridge temperature, and at —25 °C, which is the typical temperature of the industrial freezer, in
order to test their suitability as chilled and frozen food packaging materials. Figures 9 and 10 show
the stress—strain curves obtained at 4 °C and —25 °C, respectively, whereas Figures 11-13 compare
respectively the elastic modulus, the stress at yield, and the elongation at break for the PLA/PBAT

40/60, PLA/PBAT 20/80 and PBAT films at the three test temperatures.

30
—— PLA/PBAT 20/80
PLA/PBAT 40/60
20
© i
o
S
0
0 {
o
S 10
w -
0 T T L T T
0 1 2 3 4 5 6

Strain (mm/mm)

Figure 9. Stress—strain curves at + 4 °C for PBAT, PLA/PBAT 20/80 and PLA/PBAT 40/60 films.

50
T=-25°C — PBAT
] —— PLA/PBAT 20/80
40 - PLA/PBAT 40/60
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[ J
=
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=)
(/2]
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or————7 77— L
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Figure 10. Stress-strain curves at —25 °C for PBAT, PLA/PBAT 20/80 and PLA/PBAT 40/60 films.
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From these graphs it is clear that the decrease in temperature caused, for all the tested blends,
an increase in both elastic modulus and yield stress, and a decrease in the elongation at break. These
results are expected, because the decrease in temperature reduces the polymer chain flexibility, and
increases the stiffness of the material. However, this variation had a different extent in the function
of the blend’s composition. In fact, the increase of the elastic modulus was more accentuated as the
content of PBAT in the blend increased, varying from the 30% for PLA/PBAT 40/60 to 170% for pure
PBAT (at —25 °C). This can be explained by the fact that, since the glass transition temperature of PBAT
is close to —25 °C, the Elastic modulus has a higher dependence upon the temperature compared to
PLA, whose elastic modulus in this temperature range (-25 °C to 25 °C) is almost constant. As regards
the ductility, the effect of the composition was the opposite compared to the elastic modulus. In fact,
the decrease in the elongation at break was more evident as the content of PLA increased, ranging from
the 90% PLA/PBAT 40/60 to 30% for pure PBAT (at —25 °C). Particularly, the blend with a PLA content
equal to 40%, at —25 °C turned its failure mode from ductile to brittle. This could be due the fact that,
at all of the tested temperatures, PLA is in the glassy state, and instead PBAT is the rubbery state, so its
ductility is less sensitive than PLA to the temperature decrease. In conclusion, both PLA/PBAT 40/60
and 20/80 could be good candidates for chilled food applications, showing at 4 °C a good compromise
between stiffness and ductility. At —25 °C, the failure mode of PLA/PBAT 60/40 changed from ductile
at ambient temperatures to brittle, while the PLA/PBAT 20/80 kept its ductile failure mode, revealing
that it is the best candidate for frozen food applications.

4. Conclusions

In this study, blown films of PLA and PBAT in a wide range of compositions (100/0, 80/20, 60/40,
40/60 20/80 0/100 by weight) were produced using a lab-scale film blowing plant, and were characterized
in terms of microstructure and functional properties in order to determine their suitability as food
packaging materials for room and low temperature (chilling and freezing) storage conditions.

The two polymers, although immiscible in all the compositions tested, proved to have some
interactions, as inferred by infrared spectroscopy. This causes that the microstructure of the blend
films depends strongly on their composition. In particular, the presence of PBAT raises the crystallinity
degree of PLA (from 8% of pure PLA, to 22% of the PLA/PBAT 20/80 blend), while the presence of
PLA had the opposite effect on PBAT (from 15% of pure PBAT to 2% of the PLA/PBAT 80/20 blend). In
terms of performances, the barrier properties to oxygen and water vapor, while it decreased with the
increase of PBAT content according to the Robeson equation, remained in the same order of magnitude
for all the compositions; P O, varied from 33.4 to 84 (cm®mm)/(m?-d-bar) and P H,O from 1.3 to
3.1 (g'mm)/(d-m?). Moreover, the ductility increases and the stiffness decreases, according to the
Davies model, as the PBAT content in the blends becomes progressively higher, at all test temperatures.
However, at fixed blend composition, the ductility decreased, and the stiffness increased the lower is
the temperature.

On this basis, among the considered blown films, the following two blends were selected as best
candidates as packaging materials for food requiring low storage temperatures, thanks to a balance
of mechanical properties in the typical range of conventional polymer systems used for this kind of
applications. In particular, the blend with a PBAT content of 60% proved to be adequate for chilled
foods: in fact, at 4 °C (which is the typical fridge temperature) it had an elastic modulus equal to 308
MPa, and elongation at break of 67%. Instead, the blend with a PBAT content of 80% was adequate
for frozen foods: in fact, at —25 °C (which is the temperature of an industrial freezer) it had an elastic
modulus of 238 MPa and elongation at break equal to 143%.
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