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Abstract: Monte Carlo (MC) simulations, built around chain-connectivity-altering moves and a 

wall-displacement algorithm, allow us to simulate freely-jointed chains of tangent hard spheres of 

uniform size under extreme confinement. The latter is realized through the presence of two 

impenetrable, flat, and parallel plates. Extreme conditions correspond to the case where the distance 

between the plates approaches the monomer size. An analysis of the local structure, based on the 

characteristic crystallographic element (CCE) norm, detects crystal nucleation and growth at 

packing densities well below the ones observed in bulk analogs. In a second step, we map the 

confined polymer chains into self-avoiding random walks (SAWs) on restricted lattices. We study 

all realizations of the cubic crystal system: simple, body centered, and face centered cubic crystals. 

For a given chain size (SAW length), lattice type, origin of SAW, and level of confinement, we 

enumerate all possible SAWs (equivalently all chain conformations) and calculate the size 

distribution. Results for intermediate SAW lengths are used to predict the behavior of long, fully 

entangled chains through growth formulas. The SAW analysis will allow us to determine the 

corresponding configurational entropy, as it is the driving force for the observed phase transition 

and the determining factor for the thermodynamic stability of the corresponding crystal 

morphologies.  

Keywords: confinement, crystallization, entropy, hard sphere, polymer, random walk, Monte Carlo, 

phase transition, lattice model, cubic crystal system, direct enumeration 

 

1. Introduction 

Polymer based thin films have been used extensively for several decades in a varied range of 

applications from optical coatings and energy storage to smart appliances, semiconductors and 

pharmaceutics [1–19]. Further inclusion of nanoparticles or adhesion to complex interfaces allows 

efficient control, tuning, and magnification of the already exceptional base macromolecular 

properties. To achieve superior characteristics, it is paramount to understand the complex structural 

and dynamic behavior of macromolecules, ideally at the level of atoms and molecules, under 

confinement and to relate them with macroscopic properties of the end material.  

Especially relevant for numerous applications is the phase behavior, as macromolecular crystals 

exhibit distinctly different characteristics compared to polymer glasses. While phase transition, as 

observed in complex atomic systems, is extensively studied it is still far from being fully understood. 

The early work of Alder and Wainwright, based on collision-driven molecular dynamics (MD), 

demonstrated that monomeric hard spheres crystallize at high concentrations [20]. It is now 

established that given enough observation time, hard spheres or corresponding colloidal entities 



Polymers 2020, 12, x FOR PEER REVIEW 2 of 34 

 

show spontaneous crystallization under a variety of conditions (microgravity, impurities, size 

polydispersity etc) once a critical range of packing densities is reached [21–42]. Given the athermal 

nature of such systems, entropy is the driving force of crystal nucleation and growth and dictates the 

resulting, thermodynamically stable, ordered morphologies. Recently, it has been demonstrated that 

dense packing of chains of hard spheres also crystallize [43–46]. It is possible to effectively control the 

phase behavior and/or the state of jamming [47–50] for polymers by properly tuning the bond gaps 

(or bond tangency) between successive monomers along the chain [51,52] or the bending angles that 

dictate chain flexibility [53,54]. Similar control can be achieved by applying spatial confinement; in 

the most trivial case this can be realized through the presence of flat, impenetrable, and parallel walls 

in at least one dimension. 

In the past, we used a Monte Carlo (MC) scheme [55], built around chain-connectivity-altering 

MC moves [56–59], to generate and equilibrate freely-jointed chains of hard spheres of uniform size 

in the bulk. This allowed us to systematically study the effect of packing density, chain length and 

bond tangency/gaps on the local and global structure of athermal macromolecules [48,60,61], on the 

primitive path network of entanglements [49,62] and on the ability of chains to crystallize [43–46,52]. 

Recently, based on the original scheme of Ref. [55], we introduced a more general method including 

a wall-displacing algorithm which allows the simulation of athermal polymer packings under 

confinement [63]. This more general method has allowed us to simulate systems of very long chains 

under extreme confinement and at very high packing density and at high cell shape anisotropy. For 

the linear chains considered here the number of monomers is, Nmon = N + 1, where N is the number of 

bonds. Confining agents are flat, parallel and impenetrable surfaces (walls). Packing density, ϕ, is 

defined as the volume occupied by all chain monomers divided by the volume of the simulation cell. 

The number of confined dimensions, dconf, ranges from zero (unconstraint, bulk case) to three (fully 

confined). Extreme confinement is reached when the distance between the walls, dwall, in at least one 

dimension approaches the size of sphere monomers, σ. Cell shape anisotropy is quantified through 

the cell aspect ratio, ζ, which is the ratio of longest length(s) divided by the shortest one(s). In all cases 

cell shape corresponds to an orthogonal parallelepiped.  

Through the proposed MC scheme we equilibrate dense athermal chain packings under extreme 

confinement that correspond to quasi-1D (tube-like) and quasi-2D (plate-like) polymer thin films [63]. 

In both cases as a critical combination of concentration and confinement is reached polymers transit 

to ordered morphologies characterized by structural defects. For plate-like packings this ordered 

state is a blend of hexagonal close packed (HCP) and face centered cubic (FCC) domains. Given that 

the system is athermal, any phase transition is driven by a change (increase) in the total entropy. 

Accordingly, to predict the phase transitions and to identify the thermodynamically stable phase, a 

first step is to calculate the configurational entropy of chains. Towards this, we map the 

corresponding atomistic chains onto self-avoiding random walks (SAWs) grown step-by-step on 

regular lattices subject to specific spatial restrictions. During the growth, the next position to lattice 

has to be adjacent to the current one. Self-avoidance condition dictates that no lattice point can be 

visited twice. In addition, the imposed spatial restrictions on SAW lattices mimic the ones 

encountered at the atomistic level. In a previous paper we enumerated the total number of SAWs for 

two different lattices SC (simple cubic) and FCC as a function of the system geometry and the number 

of chain bonds (or equivalently SAW steps) for quasi-1D, tube-like morphologies [64]. Here, we 

employ the same methodology to identify the SAW number and size distribution in quasi-2D, plate-

like polymer films. Apart from the direct enumeration for moderately long chains our goal is to 

provide the scaling exponents in the growth formulas that can be used to predict the SAW behavior 

as a function of chain size, crystal structure, and level of confinement for significantly longer chains. 

 The concept of random walk is central to stochastic processes and is applicable to a very wide 

range of scientific fields and research topics from mathematics, economics, image processing, and 

social networks to computer science, biology, genetics, and materials [65–91]. Self-avoiding random 

walks have been used extensively to study randomness as observed in kinetics, dynamics, 

propagation, growth, percolation phenomena and molecular conformations in soft matter [92–98]. Of 

particular importance is the SAW model in polymer science as it is directly related to the free-flight 
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models describing chain conformations under various conditions (bulk, confinement, surface 

adsorption, non-linear chain architecture, chain flexibility, nanofillers etc.) [99–121]. From the 

technical perspective, since the early work of Orr [112], significant progress has been made towards 

the development of algorithms that allow efficient SAW enumeration and calculation of the critical 

exponents in scaling expressions [87,122–133]. These are important algorithmic milestones in the 

SAW enumeration problem that becomes more than exponentially difficult as the number of steps 

increases.  

2. Materials and Methods 

In a first step, Monte Carlo simulations have been conducted using the algorithm described in 

Ref. [63] to generate and successively equilibrate freely-jointed chains of tangent hard spheres of 

uniform size under plate-like confinement (dconf = 1). Average chain lengths range from Nmon = 8 to 

1000 and packing densities from ϕ = 0.20 to 0.55. We recall here that the freezing and melting points 

for monomeric hard spheres in the bulk correspond to 0.494 and 0.545, respectively. For chains of 

tangent hard spheres in the bulk, given the crucial effect of bond tangency/gaps [51,52], the melting 

point is delayed until a concentration range of ϕ ≈ 0.58 is reached [43–46].  

Initial system configurations correspond to cubic cells (ζ = 1) under full confinement (dconf = 3) 

which have been generated at dilute conditions and compressed through the wall-displacement 

(MRoB) algorithm [63] until the desired volume fraction is reached. Then, MRoB is further employed 

to progressively increase the cell aspect ratio. This process results in the inter-wall distance, Dwall, 

being reduced until the limit of extreme confinement Dwall → σ. System configurations are generated 

at regular intervals during the box transformation phase. Subsequent long MC simulations undertake 

the task of equilibration with a duration that exceeds hundreds of billions of steps.  

As will be demonstrated in the continuation flexible chains, under extreme plate-like 

confinement, crystallize into well-defined patterns at concentrations significantly lower than the ones 

in the bulk. Based on this, in the second phase we map the flexible polymer chain onto a SAW on 

restricted lattice. Here, we follow the original concept presented by Benito et al. [64] according to 

which in such spatially restricted polymer crystals monomers adopt positions which closely 

approach the sites of regular lattices. Accordingly, information on the configurational entropy of the 

freely-jointed chains in plate-like templates can be extracted by analyzing the corresponding SAWs 

on restricted crystal lattices under the same geometry and conditions (SAW length, lattice type).  

We enumerate all possible distinct SAWs on regular lattices corresponding to cubic crystals (SC, 

BCC and FCC with coordination numbers 6, 8, and 12, respectively). The reference case is the 

unrestricted one: SAWs on bulk systems under periodic boundary conditions applied in all 

dimensions. For the bulk lattices and given a specific chain model (i.e., fully flexible one) the number 

of distinct SAW configurations, cN, and the average SAW size, as quantified through the mean square 

end-to-end distance 〈|𝜔𝑁|2〉, depend solely on the number of SAW steps, N. However, by introducing 

plate-like confinement, the spatial group symmetry of the original unrestricted system is reduced 

from the original Ia3̅d. As a result of this, and of the heterogeneity of the confined system, three 

additional parameters must be considered: level (or intensity) of confinement, the relative orientation 

of the regular lattice with respect to the axis of confinement, and the initial position (origin) of the 

SAW, which will be referenced to as “Type” throughout the manuscript. The confinement level can 

be expressed in terms of the number of crystal layers, n, between the parallel plates or as the 

corresponding inter-plate distance, Dwall, measured in units of the SAW step length.   

The inclusion of the SAW origin (or Type) parameter is a result of the spatial restrictions and the 

break of symmetry imposed by the plate confinement: the symmetry of Ia3̅d of the bulk case is 

reduced to I41/acd due to the presence of the flat, impenetrable walls along the confined dimension. 

As in Ref. [64] the orientation of the plate axis is defined by direction indices according to the 

crystallographic practice: [ijk]. Given that the crystalline domains are formed with their orientation 

aligned along the plate section the confining plates are contained in the planes of the crystallographic 

form [100]. Effectively, a SAW grows on a restricted lattice, RL(Dwall) defined as:  

𝐑𝐋(𝐷) = {𝑥| 𝑥1, 𝑥2 ∈ 𝒁, |𝑥3| < 𝐷wall } 
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where 𝑥 defines the coordinates of every lattice node and Z is the unit hypercube of dimension one. 

Due to the symmetry of the cubic system any axis can be designated as the confined one, denoted in 

the equation above as x3. The enumeration process and successive analysis take into account the SAW 

Type as an additional system parameter: For a given number of steps SAWs starting from origins 

close to the plate boundaries are expected to show smaller cN number than the ones growing far from 

them. Figure 1 shows various cases of plate confinement and the corresponding distinction of lattice 

sites belonging to different types. For simplicity, a 2-D square lattice is displayed with a varied 

number of layers, n. For the cubic (or square) lattice the number of layers coincides with the inter-

plate distance (measured in units of SAW step length). However, this is not the case for the BCC and 

FCC lattices. Due to symmetry, all nodes that belong to the same layer are characterized by the same 

Type. Layers are colored according to their Type (SAW origin), which in turn depends on the distance 

from the closest confining boundary. For example, for n = 2, two layers of lattice points exist but both 

correspond to the same SAW Type as they are similarly adjacent to a different plate wall. The value 

n = 3 leads to two different SAW origins, one in the center and one touching the wall. In general, for 

the cubic crystal system (SC, BCC and FCC) under plate confinement for even values of the number 

of layers, n, there exist in total n / 2 distinct SAW Types, while for odd ones the corresponding number 

changes to (n – 1) / 2 + 1. In the present work, the assignment of Type starts from the layers adjacent 

to the walls (Type 1) and ends at the ones in the middle. In Figure 1 for n = 6, red (closest to the 

confining plates), green and yellow (furthest from the confining planes) layers have been assigned 

Types of 1, 2, and 3, respectively. Multiplicity corresponds to the number of crystallographically 

equivalent restricted lattices points. For even numbers of n all Types have a multiplicity equal to 2, 

and the same is true for odd numbers with the only exception being the points of the central layer 

which show cardinality of unity. Multiplicity of SAW Type is important to determine symmetry as it 

effectively reduces the number of studied systems and the corresponding computational time in SAW 

enumeration.    

 

Figure 1. Schematic representation (side view) of distinct origins to be considered for the enumeration 

of self-avoiding random walks (SAWs) for systems under plate-like confinement. Black lines at the 

top and bottom parts mark the confining boundaries (plates). Level of confinement is quantified 

through the number of crystal layers between the plates, n, along the axis of confinement. Labeling 

according to SAW origin depends on the distance from the closest plate. Different color corresponds 

to different SAW origin (Type). Red, green and yellow colors correspond to Type 1 (closest to the 

plates), 2 and 3 (furthest from the plates). 
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A distinction between the different lattices of the cubic system can be established once the 

number of layers between plates becomes equal or exceeds 2. Obviously, the most extreme case 

corresponds to a single layer under confinement, i.e., n = 1. In such 2-D templates the corresponding 

lattices, studied in the present work, are honeycomb (coordination number of 3), square (coordination 

number of 4) and triangular (coordination number of 6) as seen in Figure 2. 

 

Figure 2. Schematic representation (top view) of the 2-D lattice templates studied here corresponding 

to extreme thin-film confinement (one layer between confining plates, n = 1). From left to right: 

honeycomb (coordination number of 3), square lattice (coordination number of 4) and triangular 

(coordination number of 6) lattices. 

To summarize, for the given chain architecture (fully flexible linear chains) the number and size 

of SAWs depend on i) number of steps, N, ii) lattice type, iii) level of plate confinement, quantified 

primarily here through the number of crystal layers between the parallel plates, n and iv) Type (point 

of SAW origin). The parametric analysis per regular lattice is as follows: SC: N  [1, 18], n  [1, 5]; 

BCC: N  [1, 15], n  [1, 5]; FCC: N  [1, 13], n  [1, 5]. Obviously, in direct enumeration for a fixed 

number of SAW steps computational time increases as the coordination number of the lattice 

increases. Accordingly, the longest chains were accessed for the SC lattice and the shortest SAWs 

were modeled for the FCC crystal.  

In total 376 different 3-D systems were studied: 150 for SC, 117 for BCC and 109 for FCC 

restricted lattices. In the most extreme case, corresponding to 2-D polymer films, 58 systems were 

studied: 25 for the honeycomb, 18 for the square, and 15 for the triangular lattices. The main 

parameters of the modeled systems are reported in Table 1. A home-made SAW code for direct 

enumeration was developed and all simulations were conducted on Linux-based Intel i7-8700K CPU 

architectures with 32 Gb of memory. 

Table 1. Regular lattices studied in three dimensions (simple cubic (SC), body centered cubic (BCC) 

and face centered cubic, (FCC)), and in two dimensions (honeycomb (HON), square (SQU) and 

triangular (TRI)). Also shown are the number of layers, n, and the distance, Dwall, between the 

confining plates and the different SAW Types (points of origin). Inter-plate distance is measured in 

units of the SAW step length. 

Lattice 

Type 

Number of layers between 

plates, n 

Distance between plates, 

Dwall 

Type (SAW 

origin) 

SC 2 1 1 

 3 2 1, 2 

 4 3 1, 2 

 5 4 1, 2, 3 

BCC 2 1/√3 1 

 3 2/√3 1, 2 

 4 3/√3 1, 2 

 5 4/√3 1, 2, 3 

FCC 2 1/√2 1 
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 3 √2 1, 2 

 4 3/√2 1, 2 

 5 2√2 1, 2, 3 

HON 1 0 1 

SQU 1 0 1 

TRI 1 0 1 

3. Results 

3.1. Monte Carlo Simulations 

Snapshots at the end of the MC equilibration for the Nmon = 12 system can be seen in Figure 3. 

The system contains 100 chains with a minimum and maximum chain length of 8 and 16, respectively, 

at ϕ = 0.50 under unidimensional, plate confinement (dconf = 1) and for various cell aspect ratios. The 

packing density ϕ = 0.50 of all structures in Figure 3 is well below the transition point for athermal 

chains in the bulk (ϕ ≈ 0.58). Still, as can be seen from a visual inspection of the bottom-right panel of 

Figure 3, which corresponds to extreme confinement (ζ = 12 and Dwall = 2), monomers on both surfaces 

show very clear signs of ordering. 

 

 

Figure 3 (3D image). Snapshots of the 100-chain Nmon = 12 hard sphere system at ϕ = 0.50 and under 

unidimensional confinement (dconf = 1) for various cell aspect ratios, ζ, corresponding to plate-like 

geometries. From left to right and from top to bottom: ζ = 1 (10.8), 3 (5.2), 7 (3.0) and 12 (2.0). Number 

in parenthesis indicates the inter-wall distance in the direction of confinement (in units of sphere 

diameter). Sphere monomers are color-coded according to the parent chain. Image panels created 

with the VMD software [134]. 

Crystal nucleation and growth can be accurately identified and then quantified by applying the 

characteristic crystallographic element (CCE) norm, which is able to distinguish between different 

competing crystal structures [44,135,136]. As the athermal chain packings correspond to high 

concentration, we employ the CCE norm with respect to the FCC and HCP crystals as well as the 

fivefold local symmetry. The CCE norm is applied on all sites/monomers present in the system. Once 

the value of the CCE norm with respect to a specific crystal X, εX, is lower than a critical threshold (εX 
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< 0.245), the site is identified as of X similarity. Due to the distinguishing nature of the 

crystallographic elements, no site can possess dual crystal similarity. Figure 4 hosts configurations, 

as the MC simulation evolves, for the 10-chains Nmon = 1000 system at ϕ = 0.55 (still quite below the 

bulk melting point of athermal polymers), showing only monomers with HCP (blue), FCC (red) and 

fivefold (green) local environment. All other sites, labeled as “amorphous”, are not shown for clarity 

purposes. Starting from the initially amorphous state (upper panel), the system shows a clear 

disorder–order transition with the stable crystal increasing in size as the observation time increases. 

The final stable configuration is highly close packed with predominant HCP character.  
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Figure 4 (3D Image). Snapshots of the 10-chain Nmon = 1000 system at ϕ = 0.55 under plate-like 

confinement with cell anisotropy index, ζ = 5 and interwall distance, Dwall ≈ 7. Top: very early in the 

simulation (109 MC steps); middle: (left) 2  1010 and 5  1010 (right) MC steps; bottom: 12  1010 (left) 

and at the end of simulation, 14  1011 (right) MC steps. Monomers with HCP, FCC and fivefold 
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similarity as identified by the CCE norm, are shown in blue, red and green, respectively. All other, 

“amorphous” sites do not appear for clarity. Image created with the VMD software [134]. 

3.2. Verification with Available Literature Data 

As mentioned in Section 2, centers of the spherical monomers adopt positions that resemble 

closely nodes of a perfect crystal. For example, this tendency is particularly evident for the case shown 

in the bottom-right panel of Figure 3. Thus, we model linear flexible polymers in confined space as 

self-avoiding random walks on restricted lattices.  

First, results are compared against literature data on the well-studied SAWs on bulk 3-D SC, 

BCC and FCC lattices and on most extremely confined ones that correspond to 2-D lattices (HON, 

SQU and TRI). The unrestricted (bulk) case can be modeled either by removing any spatial conditions 

related to confinement or by having the number of lattice layers, n, to be larger than the maximum 

possible chain extension, i.e. n > N + 1. Data on the number of distinct SAWs, cN, and on the mean 

square end-to-end distance, 〈|𝜔𝑁|2〉, as a function of SAW steps, N, can be found in Table A1 and A2 

of the Appendix for the extremely confined 2-D and the unrestricted 3-D lattices, respectively. For all 

regular lattices studied here extreme confinement (n = 1) involves a single SAW origin (Type 1); the 

same is true for the 3-D bulk cases due to symmetry considerations. Results for the bulk SC and FCC 

lattices are in perfect quantitative agreement with our past work conducted through a different 

numerical algorithm [64]. Furthermore, for both SAW populations and average sizes our 

enumeration data coincide with the ones in Refs. [131] and [132] for SC; in Ref. [133] for bulk BCC 

and FCC; in Ref. [137] for the 2-D triangular and in Ref. [128] for square, honeycomb, and SC lattices. 

We should note here that, given the large number of systems to be studied (three different lattice 

types, different Types and levels of confinement), our goal is not to exceed or even reach the current 

state-of-the-art in modeled SAW lengths but rather to establish asymptotic scaling formulas for the 

confined cases. These will allow us to predict the behavior of long SAWs (and equivalently of long 

chains) from results on short or intermediate ones and establish a systematic connection between 

plate-like confinement and properties of the corresponding SAWs. Tables A3–A12 host the properties 

of SAWs (cN and 〈|𝜔𝑁|2〉) for all confined lattices with the number of layers between plates lying in 

the interval n  [2, 5]. An interesting trend can be observed for the BCC lattice with n = 2 (Table A3): 

the number of distinct SAWs coincides with the one extracted for the SQU lattice (Table A1). This is 

because with respect to connectivity there is no distinction between the square and the 2-layer BCC 

lattices.  

3.3. Direct SAW Enumeration 

Data (cN vs. N and 〈|𝜔𝑁|2〉 vs. N) as presented in Table A1 to A12, obtained from SAWs of short 

to intermediate length, can be used in the asymptotic formulas [131,133,137] for the scaling of the 

number of distinct SAWs in the limit of N → ∞: 

  𝑐𝑁~𝐴𝜇𝑁𝑁𝛾−1     (1) 

and of the mean-square, end-to-end distance: 

 〈|𝜔𝑁|2〉~𝐷𝑁2𝑣     (2) 

where γ and υ are the critical exponents, A and D are the critical amplitudes, and μ is the connective 

constant. While A, D, and μ depend on lattice type the critical exponents γ and υ are considered 

universal [133,137–139]. As proven by Duminil-Copin and Smirnov [140] the connective constant for 

the honeycomb lattice is equal to 𝜇 = √2 + √2, as originally conjectured by Nienhuis [141,142]. 

Figures 5–7 present the logarithm of the number of distinct SAWs versus the logarithm of the 

number of SAW steps for the restricted SC, BCC, and FCC lattices, respectively. For all systems 

studied here, the combination of SAW size (chain length) and applied confinement force the self-

avoiding random walks to “feel” the imposed spatial constraints. In all cases the obvious trend is 

fully established: the stronger the restrictions imposed by the film-like confinement the smaller the 
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number of available SAWs, or equivalently, the fewer the number of distinct chain configurations 

and accordingly reduced configurational entropy. The most extremely confined system (n = 1 for SC 

(SQU) or n = 2 for BCC and FCC) is the one that deviates markedly from the unrestricted bulk case. 

As film thickness (inter-plate distance) increases SAW properties converge to the ones in the bulk. 

Between different Types, the lattice nodes and layers lying closer to the confining surfaces are 

characterized systematically by smaller cN than the ones near the center. This is manifestly valid for 

the SC and FCC lattices, but not always true for the BCC, as can be readily observed by comparing 

the different Type columns in the Appendix Tables. This difference in trends can be explained by the 

coordination number which remains the same for SC but depends on the layer index for BCC. In 

general, the effect of SAW origin (Type) on SAW properties is smaller in plate-like (quasi 2-D) 

confinement, as established here, than in tube-like (quasi 1-D) restricted lattices, as reported in Ref. 

[64].  

 

Figure 5. Logarithm of the number of distinct SAWs, cN, versus the logarithm of the number of SAW 

steps, N, as obtained from direct enumeration on the SC lattice under plate-like confinement. n 

corresponds to the number of layers between the confining plates. Label “Type” corresponds to 

different SAW origin as explained in Figure 1 and related text. The most extremely confined case of n 

= 1 corresponds to the 2-D square lattice (SQU). 
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Figure 6. Logarithm of the number of distinct SAWs, cN, versus the logarithm of the number of SAW 

steps, N, as obtained from direct enumeration on the BCC lattice under plate-like confinement. 

 

Figure 7. Logarithm of the number of distinct SAWs, cN, versus the logarithm of the number of SAW 

steps, N, as obtained from direct enumeration on the FCC lattice under plate-like confinement. 

Comparing the different restricted lattices of the cubic system trends analogous to the bulk case 

are established as the number of distinct SAWs increases significantly with the coordination number. 

For example, for a fixed number of SAW steps (N = 12), film thickness (n = 3), and SAW origin (Type 

1), SAW population starts from cN = 33,574,732 (SC), increases to 47,788,288 (BCC), and end ups at 

56,963,463,220 (FCC); an increment that spans three orders of magnitude for identical conditions of 

spatial restriction and which can be purely attributed to the increase in coordination number. 
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The dependence of SAW size, as quantified by the mean square end-to-end distance, on the 

number of SAW steps is presented in Figures 8, 9 and 10 for the SC, BCC, and FCC restricted lattices, 

respectively.  

 

Figure 8. Logarithm of the mean square end-to-end SAW distance, 〈|𝜔𝑁|2〉, as a function of the 

logarithm of SAW steps, N, as obtained for the SC lattice under plate-like confinement. n corresponds 

to the number of layers between the confining plates. Label “Type” corresponds to different SAW 

origin as explained in Figure 1 and related text. The limiting case of n = 1 corresponds to the 2-D 

square lattice (SQU). Dashed black line corresponds to best linear fit on bulk SAW data. 
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Figure 9. Logarithm of the mean square end-to-end SAW distance, 〈|𝜔𝑁|2〉, as a function of the 

logarithm of SAW steps, N, as obtained for the BCC lattice under plate-like confinement. Dashed black 

line corresponds to best linear fit on the bulk case over the whole range of available data. 

 

Figure 10. Logarithm of the mean square end-to-end SAW distance, 〈|𝜔𝑁|2〉, as a function of the 

logarithm of SAW steps, N, as obtained for the FCC lattice under plate-like confinement. Dashed black 

line corresponds to best linear fit on the bulk case over the whole range of available data. 

Based on the log(cN)-vs.-log(N) (Figures 5–7) and the log(〈|𝜔𝑁|2〉)-vs.-log(N) (Figures 8–10), non-

linear fits on the growth formulas in Equations (1) and (2) yield all critical parameters (A, D, μ, γ and 

ν). Results from such statistical analysis can be found in Table 2–4 for the restricted SC, BCC, and 

FCC lattices, respectively. In all cases data are compared with the reference bulk crystal. The 

connectivity constant, μ, decreases as the spatial restriction becomes stronger. It adopts the lowest 

value for the most extremely confined system and as the number of layers increases it progressively 

converges to the limiting value of the bulk counterpart. Compared to the connectivity constant the 

critical amplitude, A and the exponent γ depend rather weakly on level of confinement and SAW 

origin. Under the same conditions of confinement, connectivity constant increases as the lattice 

coordination number increases (μSC < μBCC < μFCC). In general, for SC and FCC restricted lattices, for 

layers closer to the confining agents, μ is higher than for layers near the center, i.e., the connectivity 

constant decreases with increasing Type index for SC and FCC while the opposite trend is observed 

for the BCC lattice.  

Table 2. Critical parameters of the asymptotic formulas (Equations (1) and (2)) as obtained from non-

linear fits on the SAW data presented in Figure 5 and Figure 8 for the confined SC lattice. Also shown 

for comparison are the results for the bulk (unrestricted) SC. 

N Type A μ γ D υ 

2 1 1.375 3.622 1.181 0.958 0.631 

3 1 1.214 4.090 1.097 0.903 0.619 

 2 1.515 3.963 1.236 0.761 0.650 
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4 1 1.137 4.373 0.988 1.267 0.552 

 2 1.430 4.188 1.226 0.942 0.598 

5 1 1.102 4.523 0.919 1.445 0.535 

 2 1.377 4.353 1.165 1.103 0.569 

 3 1.387 4.308 1.258 0.983 0.585 

Bulk  1.270 4.717 1.103 1.026 0.607 

Table 3. Critical parameters of the asymptotic formulas (Equations (1) and (2)) as obtained from non-

linear fits on the SAW data presented in Figure 6 and Figure 9 for the confined BCC lattice. Also 

shown for comparison are the results for the bulk (unrestricted) case. 

N Type A μ γ D υ 

2 1 1.480 2.658 1.228 0.625 0.725 

3 1 1.087 3.765 1.559 0.553 0.720 

 2 1.783 4.326 0.849 0.597 0.709 

4 1 0.888 4.548 1.527 0.602 0.682 

 2 1.634 4.860 1.116 0.603 0.682 

5 1 0.782 5.133 1.384 0.847 0.605 

 2 1.455 5.420 1.058 0.662 0.651 

 3 1.580 5.115 1.308 0.641 0.656 

Bulk  1.214 6.580 1.108 1.101 0.600 

Table 4. Critical parameters of the asymptotic formulas (Equations (1) and (2)) as obtained from non-

linear fits on the SAW data presented in Figure 7 and Figure 10 for the confined FCC lattice. Also 

shown for comparison are the results for the bulk (unrestricted) case. 

N Type A μ γ D υ 

2 1 1.358 5.888 1.257 0.606 0.707 

3 1 1.088 7.346 1.307 0.653 0.659 

 2 1.605 7.473 1.163 0.604 0.676 

4 1 0.941 8.462 1.145 0.889 0.586 

 2 1.468 8.178 1.233 0.687 0.634 

5 1 0.869 9.171 1.010 1.217 0.525 

 2 1.356 8.836 1.148 0.860 0.584 

 3 1.425 8.439 1.359 0.625 0.649 

Bulk  1.191 10.08 1.129 0.975 0.587 

The SAW generating function (Equation (1)) is valid for the whole range of available data, 

independently of dimensionality, lattice type, level of confinement, and point of origin (Type). 

However, the same is not true for the dependence of SAW size on number of SAW steps (Equation 

(2)). While the unrestricted lattices show linear scaling all confined ones at short-N deviate 

significantly from linearity. Such trends have also been observed in the SAW analysis of restricted 

lattices under tube-like confinement [64]. The larger the lattice coordination number and the closer 

to the confining plates (low Type index), the most prolonged the duration of the anomalous regime, 

as can be seen in Figure 11 where the SAW size evolution is presented for the SC, BCC, and FCC 

lattices with n = 3 and Type 1.  
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Figure 11. Logarithm of the mean square end-to-end SAW distance, 〈|𝜔𝑁|2〉 , as a function of 

logarithm of number of SAW steps for the SC, BCC and FCC lattices under plate confinement (n = 3, 

Type 1). Also shown are the lines that correspond to best linear fits in the large-N data range once 

normal scaling has been established. 

Based on the parameters extracted from the linear fitting in the range of large-N data the 

following conclusions can be established: in general, the critical exponent, v, adopts its maximum 

value under the most confined case while its minimum corresponds to the unrestricted (bulk) case. 

All confined systems are characterized by amplitude values D which are significantly different than 

the ones of the bulk lattice. For restricted SC and FCC lattices, SAW origin (practically the distance of 

the layer from the confining agents) has an appreciable effect on D and v values. As Type index 

increases D decreases appreciably and the opposite trend is observed for v. The behavior of the BCC 

restricted lattice does not follow the trends of the other two crystals. Accordingly, no systematic 

behavior can be identified for BCC crystal. 

3.4. SAW Size Distribution 

Information is also available not only on the average SAW size but also on the probability 

distribution function (PDF) and cumulative distribution function (CDF) as a function of lattice type, 

level of confinement and SAW origin (Type). Additional information can be extracted from the 

analysis of the folded CDF variant focusing on the median and the corresponding deviation. Given 

the plethora of systems studied and due to space limitations, in the following only selected systems 

are presented for the size distribution. Figure 12 shows the PDF of size as a function of the number 

of layers between confinement, n, for the restricted SC having fixed N = 16 and Type 1. As stated 

before, the case of n = 1 corresponds to the 2-D square lattice. The number of confined layers has a 

significant effect on the size distribution: the most extreme confinement (n = 1) and the least confined 

(n = 5) cases correspond to the broadest and narrowest distributions, respectively. In general, as 

confinement increases, the size distribution becomes broader and shifts to higher values.  
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Figure 12. Probability distribution function (PDF) of the square end-to-end distance for the SC 

restricted lattice for SAWs of fixed length (N = 16) and point of origin (Type 1). Different curves 

correspond to differ number of layers between the confining plates, n. The case of n = 1 corresponds 

to the 2-D square lattice (SQU). 

Not surprisingly, the number of SAW steps has a stronger effect on the SAW size distribution as 

seen in Figure 13 for the BCC restricted lattice (n = 5, Type 3). As chain length increases the 

distribution becomes broader, it shifts to higher values and the corresponding maxima get 

significantly reduced. The effect of point of SAW origin (Type) on the SAW distribution is presented 

in Figure 14 for the FCC lattice (N = 11, n = 5). For up to two layers in plate-like confinement there is 

no distinction in SAW Type. Based on the results in Figure 14 it can be concluded that Type (in other 

words the starting layer) has a minor effect on SAW size, which is further diminishing as the number 

of SAW steps increases.   
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Figure 13. Probability distribution function (PDF) of the square end-to-end distance for the BCC 

restricted lattice for SAWs of fixed number of layers between confining plates (n = 5) and point of 

origin (Type 3). Different curves correspond to different number of SAW steps, N. 

 

Figure 14. Probability distribution function (PDF) of the square end-to-end distance for the FCC 

restricted lattice for SAWs of fixed length (N = 11) and number of layers between confining plates (n 

= 5). Different curves correspond to different point of origin (Type). 



Polymers 2020, 12, x FOR PEER REVIEW 18 of 34 

 

Cumulative distribution functions and the folded variants for SAW size, as quantified by the 

square end-to-end distance, are presented in Figure 15 (SC lattice with fixed n = 5, Type 3 and varied 

N), Figure 16 (BCC lattice with fixed N = 14, n = 5 and varied Type), and Figure 17 (FCC lattice with 

fixed N = 11, Type 1 and varied n).   

 

  

Figure 15. (Left Panel) Cumulative distribution function (CDF) and (Right Panel) the folded variant 

of the square end-to-end distance for the SC restricted lattice for SAWs of fixed number of confined 

layers (n = 5) and point of origin (Type 3). Different curves correspond to different number of SAW 

steps, N. 

 

Figure 16. (Left Panel) Cumulative distribution function (CDF) and (Right Panel) the folded variant 

of the square end-to-end distance for the BCC restricted lattice for SAWs of fixed length (N = 14) and 

number of layers between confining planes (n = 5). Different curves correspond to different SAW 

origins (Types). 
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Figure 17. (Left Panel) Cumulative distribution function (CDF) and (Right Panel) the folded variant 

for the square end-to-end distance for the FCC restricted lattice for SAWs of fixed length (N = 11) and 

point of origin (Type 1). Different curves correspond to different number of layers between the 

confining plates, n. 

The same conclusions can be drawn from the data of the cumulative and folded distributions. 

As the number of SAW steps increases, the distribution of size becomes broader, shifts to higher 

values, and the intensity of the observed maxima drops. SAW origin has a minor effect on size 

statistics. The inter-plate thickness has the strongest effect as the more confined the polymer chain, 

the more extended it becomes. The statistics of the selected folded distributions (most probable, 

median, and deviation values) can be found in Tables A13–18 of the Appendix. All lattice types show 

identical trends, especially the strong dependence on film thickness and the very weak one on SAW 

origin, as validated by the comparison of the mean value and the corresponding deviation.  

4. Conclusions and Future Plans 

In the present contribution, we have studied the behavior of athermal polymer chains under 

extreme confinement realized through the presence of parallel, flat, and impenetrable walls in one 

dimension. The inter-plate distance is so small that it practically adopts values similar to the size of 

the spherical monomers. Presently, Monte Carlo simulations show that dense packings of highly 

confined chains tend to crystallize at volume fractions which are significantly lower than the 

corresponding threshold of the bulk case. In an effort to identify the thermodynamic stability of the 

corresponding structures and the entropic origins of the phase transitions, we have mapped the 

athermal chains onto self-avoiding random walks (SAWs) on lattices which are further spatially 

confined as the atomistic analogs. Given that the applied confinement breaks the original maximal 

symmetry of the original crystal, we have analyzed the effect of number of SAW steps (chain length), 

the level of confinement (film thickness quantified by the number of lattice layers between the plates), 

and point of origin on the size of chains and on their number of distinct conformations. The latter is 

important as it is directly related to the configurational entropy of the chains.  

The present work on plate-like (quasi 2-D) confinement, as well as the past on tube-like (quasi 

1-D) restrictions [64], constitute the first step of an ongoing research effort. The final goal is to 

investigate and predict phase (disorder-order) transitions in confined athermal polymeric systems, 

for which entropy is the sole driving force. The entropy of the freely-jointed chains in plate-like 

templates can be obtained by direct enumeration of SAWs on restricted crystal lattices under the same 

geometry and conditions (SAW length, lattice type).  

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1: An interactive, 3-D 

version of the manuscript; 3-D versions of Figure 3 and Figure 4; 3-D video showing animated the panels of 

Figure 4. 
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Appendix A 

In the following Tables, we present the number of distinct configurations, cN, and the mean 

square end-to-end distance, 〈|𝜔𝑁|2〉, for the self-avoiding random walks (SAWs) as a function of the 

number of SAW steps, N, under plate-like confinement. System parameters include lattice type, 

number of layers between confining plates, n, and Type (SAW origin). Also shown for comparison 

are the results obtained from simulations on corresponding 2-D lattices (honeycomb (HON), square 

(SQU) and triangular (TRI)) corresponding to extreme (single-layer) confinement.  

Table A1. Properties of SAWs on 2-D regular lattices corresponding to extreme, plate-like 

confinement: honeycomb (HON), square (SQU) and triangular (TRI). In all cases n = 1 and Type 1. 

 HON (n = 1, Type 1) SQU (n = 1, Type 1) TRI (n = 1, Type 1) 

N  cN 〈|𝝎𝑵|𝟐〉 cN 〈|𝝎𝑵|𝟐〉 cN 〈|𝝎𝑵|𝟐〉 

1  3  1.000  4  1.000  6  1.000 

2  6  3.000  12  2.667  30  2,400 

3  12  5.500  36  4.556  138  4,217 

4  24  8.250  100  7.040  618  6.350 

5  48  11.13  284  9.563  2,730  8.741 

6  90  15.00  780  12.57  11,946  11.36 

7  174  18.69  2,172  15.56  51,882  14.20 

8  336  22.50  5,916  19.01  224,130  17.24 

9  648  26.42  16,268  22.41  964,134  20.47 

10  1,218  31.18  44,100  26.24  4,133,166  23.87 

11  2,328  35.59  120,292  30.02  17,668,938  27.43 

12  4,416  40.34  324,932  34.19  75,355,206  31.16 

13  8,388  45.14  881,500  38.30  320,734,686  35.03 

14  15,780  50.49  2,374,444  42.79  1,362,791,250  39.06 

15  29,892  55.59  6,416,596  47.22  5,781,765,582  43.22 

16  56,628  61.13  17,245,332  51.99   

17  106,200  66.60  46,466,676  56.72   

18  199,350  72.53 124,658,732 61.77   

19  375,504  78.29     
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20  704,304  84.46     

21  1,323,996  90.53     

22  2,479,692  97.01     

23  4,654,464  103.4     

24  8,710,212  110.1     

25 16,328,220 116.7     

 

Table A2. Number of distinct configurations of SAWs on 3-D regular lattices without spatial 

restrictions (bulk case): simple cubic (SC), body center cubic (BCC) and face center cubic (FCC). Due 

to symmetry all nodes correspond to a single SAW origin (Type 1). 

 SC (bulk, Type 1) BCC (bulk, Type 1) FCC (bulk, Type 1) 

N  cN cN cN 

1 6 8 12 

2 30 56 132 

3 150 392 1,404 

4 726 2,648 14,700 

5 3,534 17,960 152,532 

6 16,926 120,056 1,573,716 

7 81,390 804,824 16,172,148 

8 387,966 5,351,720 165,697,044 

9 1,853,886 35,652,680 1,693,773,924 

10 8,809,878 236,291,096 17,281,929,564 

11 41,934,150 1,568,049,560 176,064,704,412 

12 198,842,742 10,368,669,992 1,791,455,071,068 

13 943,974,510 68,626,647,608 18,208,650,297,396 

14 4,468,911,678 453,032,542,040  

15 21,175,146,054 2,992,783,648,424  

16 100,121,875,974   

17 473,730,252,102   

18 2,237,723,684,094   

Table A3. Properties of SAWs on the SC, BCC and FCC lattices with two layers between the confining 

plates (n = 2, Type 1). 

 SC (n = 2, Type 1) BCC (n = 2, Type 1) FCC (n = 2, Type 1) 

N cN 〈|𝝎𝑵|𝟐〉 cN 〈|𝝎𝑵|𝟐〉 cN 〈|𝝎𝑵|𝟐〉 

1  5  1.000 4 1.000  8  1.000 

2  20  2.400 12 1.778  56  2.000 

3  80  3.800 36 3.370  368  3.152 

4  304  5.421 100 4.693  2,336  4.510 

5  1,168  7.000 284 6.709  14,576  6.037 

6  4,348  8.854 780 8.383  89,928  7.713 
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7  16,336  10.68 2,172 10.70  550,504  9.523 

8  60,208  12.77 5,916 12.68  3,349,864  11.46 

9  223,352  14.83 16,268 15.27  20,290,360  13.51 

10  817,852  17.14 44,100 17.50  122,445,504  15.68 

11  3,008,872  19.43 120,292 20.35  736,685,008  17.95 

12  10,968,400  21.94 324,932 22.79 4,421,048,016 20.32 

13  40,123,760  24.42 881,500 25.87   

14  145,783,980  27.12 2,374,444 28.52   

15  531,100,496  29.78 6,416,596 31.81   

16  1,924,770,512  32.65     

17  6,990,248,624  35.49     

18 25,282,157,540 38.52     

Table A4. Properties of SAWS on SC lattice with 3 layers between the confining plates (n = 3, Type 1, 

2). 

SC (n = 3, Type 1) SC (n = 3, Type 2)   

N 𝒄𝑵 〈|𝝎𝑵|𝟐〉 𝒄𝑵 〈|𝝎𝑵|𝟐〉 

1  5  1.000  6  1.000 

2  21  2.476  28  2.286 

3  92  3.957  124  3.581 

4  392  5.571  516  5.054 

5  1,684  7.090  2,156  6.492 

6  7,036  8.748  8,804  8.125 

7  29,396  10.35  36,388  9.717 

8  120,776  12.10  148,452  11.50 

9  497,196  13.81  609,812  13.25 

10  2,026,220  15.68  2,478,484  15.19 

11  8,278,076  17.53  10,113,692  17.10 

12  33,574,732  19.53  40,934,604  19.18 

13  136,456,380  21.52  166,170,388  21.23 

14  551,445,764  23.67  670,410,548  23.44 

15  2,232,227,600  25.81  2,711,129,404  25.63 

16  8,995,089,168  28.09  10,911,074,820  27.97 

17  36,297,709,788  30.36  43,995,500,972  30.28 

Table A5. Properties of SAWs on SC lattice with four layers between the confining plates (n = 4, Type 

1, 2). 

SC (n = 4, Type 1) SC (n = 4, Type 2)   

N 𝒄𝑵 〈|𝝎𝑵|𝟐〉 𝒄𝑵 〈|𝝎𝑵|𝟐〉 

1  5  1.000  6  1.000 

2  21  2.476  29  2.345 

3  93  4.011  136  3.706 
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4  408  5.745  604  5.205 

5  1,832  7.410  2,676  6.644 

6  8,084  9.192  11,564  8.218 

7  35,752  10.88  50,228  9.737 

8  155,756  12.65  215,492  11.39 

9  677,856  14.34  929,136  13.01 

10  2,920,764  16.11  3,972,948  14.76 

11  12,582,860  17.84  17,048,772  16.48 

12 53,858,044   19.65 72,685,616  18.33 

13 230,643,688 21.45 310,668,724 20.16 

14 983,162,808 23.34 1,320,897,848  22.12 

15 4,193,819,200 25.22 5,626,979,444 24.06 

16 17,824,575,272 27.20 23,868,686,764 26.12 

17 75,809,092,412 29.17 101,405,080,196  28.15 

Table A6. Properties of SAWs on SC lattice with 5 layers between the confining planes (n = 5, Type 1, 

2, 3). 

SC (n = 5, Type 1) SC (n = 5, Type 2)  SC (n = 5, Type 3) 

N  𝒄𝑵 〈|𝝎𝑵|𝟐〉 𝒄𝑵 〈|𝝎𝑵|𝟐〉 𝒄𝑵 〈|𝝎𝑵|𝟐〉 

1 5 1.000 6 1.000 6 1.000 

2 21 2.476 29 2.345 30 2.400 

3 93 4.011 137 3.745 148 3.811 

4 409 5.770 620 5.329 692 5.318 

5 1,852 7.514 2,824 6.875 3,196 6.747 

6 8,308 9.431 12,616 8.547 14,324 8.275 

7 37,620 11.29 56,668 10.14 64,076 9.748 

8 168,768 13.23 251,500 11.83 282,716 11.33 

9 758,340 15.09 1,119,212 13.46 1,251,044 12.88 

10 3,379,476 16.98 4,939,768 15.19 5,493,804 14.54 

11 15,051,324 18.80 21,845,116 16.86 24,207,436 16.17 

12 66,608,060 20.66 96,043,836 18.63 106,083,764 17.92 

13 294,573,648 22.46 422,938,080 20.37 466,189,268 19.64 

14 1,296,739,560 24.31 1,854,194,080 22.21 2,039,686,412 21.47 

15 5,706,787,808 26.13 8,139,479,608 24.01 8,943,399,564 23.28 

16 25,029,783,540 28.01 35,603,096,872 25.91 39,068,913,604 25.20 

17 109,780,078,372 29.87 155,900,872,104 27.79 170,957,960,396 27.09 

 

Table A7. Properties of SAWs on BCC lattice with 3 layers between the confining planes (n = 3, Type 

1, 2). 

BCC (n = 3, Type 1) BCC (n = 3, Type 2) 

N  𝒄𝑵 〈|𝝎𝑵|𝟐〉 𝒄𝑵 〈|𝝎𝑵|𝟐〉 
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1 4 1.000 8 1.000 

2 28 2.286 24 1.778 

3 84 3.032 168 3.032 

4 560 4.495 448 4.381 

5 1,512 5.854 3,024 5.854 

6 10,024 7.471 7,776 7.671 

7 26,016 9.276 52,032 9.276 

8 172,144 11.01 131,392 11.49 

9 437,216 13.21 874,432 13.21 

10 2,888,704 15.04 2,184,192 15.76 

11 7,242,304 17.59 14,484,608 17.59 

12 47,788,288 19.52 35,913,728 20.46 

13 118,793,664 22.37 237,587,328 22.37 

14 783,007,232 24.39 585,931,008 25.53 

15 1,934,717,312 27.53 3,869,434,624 27.53 

Table A8. Properties of SAWs on the BCC lattice with 4 layers between the confining planes (n = 4, 

Type 1, 2). 

BCC (n = 4, Type 1) BCC (n = 4, Type 2) 

N  𝒄𝑵 〈|𝝎𝑵|𝟐〉 𝒄𝑵 〈|𝝎𝑵|𝟐〉 

1 4 1.000 8 1.000 

2 28 2.286 40 2.133 

3 148 3.883 216 2.975 

4 752 4.482 1,100 4.422 

5 3,928 6.279 5,516 5.502 

6 19,240 7.061 27,436 7.195 

7 96,800 9.129 135,308 8.501 

8 471,652 10.12 662,208 10.41 

9 2,324,620 12.42 3,234,984 11.92 

10 11,266,332 13.59 15,695,400 14.02 

11 54,928,996 16.10 76,139,448 15.71 

12 264,967,864 17.44 367,445,292 17.98 

13 1,283,256,176 20.12 1,773,482,796 19.83 

14 6,167,881,032 21.62 8,526,698,460 22.26 

15 29,733,461,768 24.46 41,001,069,836 24.27 

 

Table A9. Properties of SAWs on the BCC lattice with five layers between the confining plates (n = 5, 

Type 1, 2, 3). 

BCC (n = 5, Type 1) BCC (n = 5, Type 2) BCC (n = 5, Type 3) 

N  𝒄𝑵 〈|𝝎𝑵|𝟐〉 𝒄𝑵 〈|𝝎𝑵|𝟐〉 𝒄𝑵 〈|𝝎𝑵|𝟐〉 

1 4 1.000 8 1.000 8 1.000 
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2 28 2.286 40 2.133 56 2.286 

3 148 3.883 280 3.438 264 2.939 

4 1,008 5.376 1,292 4.425 1,752 4.432 

5 4,696 6.361 8,700 5.904 8,008 5.369 

6 31,208 7.957 38,956 7.001 52,600 7.015 

7 140,576 8.985 258,124 8.614 235,096 8.172 

8 923,408 10.70 1,137,676 9.908 1,534,264 9.947 

9 4,088,104 11.93 7,467,996 11.65 6,759,784 11.31 

10 26,673,936 13.75 32,589,060 13.14 43,920,344 13.20 

11 116,790,808 15.20 212,627,204 15.000 191,672,792 14.76 

12 758,669,728 17.14 921,579,828 16.68 1,241,447,848 16.75 

13 3,296,625,336 18.78 5,987,539,924 18.65 5,381,829,176 18.49 

14 21,347,913,984 20.82 25,824,254,724 20.50 34,775,532,088 20.58 

15 92,254,133,376 22.64 167,265,106,124 22.57 150,021,945,496 22.48 

 

Table A10. Properties of SAWS on FCC lattice with 3 layers between the confining planes (n = 3, Type 

1, 2). 

FCC (n = 3, Type 1) FCC (n = 3, Type 2)   

N 𝒄𝑵 〈|𝝎𝑵|𝟐〉 𝒄𝑵 〈|𝝎𝑵|𝟐〉 

1  8  1.000 12 1.000 

2  72  2.222 100 1.920 

3  608  3.355 796 2.990 

4  4,876  4.523 6,292 4.183 

5  38,332  5.769 49,020 5.499 

6  297,468  7.121 377,996 6.926 

7  2,287,380  8.580 2,893,932 8.452 

8  17,471,516  10.14 22,030,220 10.07 

9  132,758,268  11.80 166,942,556 11.79 

10  1,004,552,340  13.55 1,260,417,828 13.59 

11  7,575,290,444  15.39 9,487,397,172 15.47 

12 56,963,463,220 17.30 71,232,793,460 17.43 

Table A11. Properties of SAWS on FCC lattice with 4 layers between the confining plates (n = 4, Type 

1, 2). 

FCC (n = 4, Type 1) FCC (n = 4, Type 2) 

N 𝒄𝑵 〈|𝝎𝑵|𝟐〉 𝒄𝑵 〈|𝝎𝑵|𝟐〉 

1 8 1.000 12 1.000 

2 72 2.222 116 2.069 

3 672 3.607 1,036 3.147 

4 6,092 4.934 9,024 4.285 

5 53,676 6.208 77,752 5.501 
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6 464,316 7.487 665,008 6.790 

7 3,972,740 8.805 5,653,120 8.153 

8 33,748,832 10.18 47,804,044 9.589 

9 285,181,384 11.62 402,465,316 11.10 

10 2,399,555,928 13.13 3,376,047,476 12.68 

11 20,118,990,904 14.71 28,233,689,900 14.32 

12 168,187,509,900 16.37 235,510,903,272 16.03 

Table A12. Properties of SAWs on FCC lattice with 5 layers between the confining plates (n = 5, Type 

1, 2, 3). 

FCC (n = 5, Type 1) FCC (n = 5, Type 2) FCC (n = 5, Type 3) 

N 𝒄𝑵 〈|𝝎𝑵|𝟐〉 𝒄𝑵 〈|𝝎𝑵|𝟐〉 𝒄𝑵 〈|𝝎𝑵|𝟐〉 

1 8 1.000 12 1.000 12 1,000 

2 72 2.222 116 2.069 132 2.182 

3 672 3.607 1,100 3.313 1,276 3.245 

4 6,348 5.138 10,240 4.558 11,756 4.340 

5 59,564 6.634 93,864 5.810 106,484 5.501 

6 550,524 8.062 852,080 7.087 957,524 6.730 

7 5,021,572 9.447 7,680,816 8.397 8,578,324 8.022 

8 45,364,428 10.82 68,862,952 9.750 76,622,980 9.375 

9 407,048,708 12.21 614,763,576 11.15 682,422,404 10.79 

10 3,634,621,916 13.62 5,469,051,720 12.60 6,060,924,172 12.26 

11 32,334,144,252 15.07 48,511,115,392 14.10 53,692,606,892 13.78 

12 286,791,329,140 16.57 429,222,436,536 15.65 475,067,855,437 16.03 

 

In the continuation, we present results from the statistical analysis based on the PDF and the 

folded variant for the SAW size as a function of lattice type, SAW length, point of origin (Type), and 

level of confinement for selected systems. Calculated statistical variables include the mean value, the 

most repeated one and for the folded variant the top point, μH, corresponding to the half of the 

distribution when the representation changes from upslope to downslope, and the mean absolute 

deviation, σ. 

Table A13. Statistical parameters of SAW size for the SC restricted lattice as a function of system 

characteristics (fixed: N = 16) for selected systems. 

System 
< |𝝎𝟏𝟔|𝟐 > Most repeated 

value (PDF) 

Folded Distribution 

µH (top point) σ (68.3%) 

n = 1, Type 1 51.99 50 50 ±32 

n = 2, Type 1 32.65 26 26 ±22 

n = 3, Type 2 27.97 26 26 ±20 

n = 4, Type 2 26.12 26 22 ±18 

n = 5, Type 1 28.01 14 24 ±16 

n = 5, Type 2 25.91 14 22 ±16 

n = 5, Type 3 25.20 14 20 ±16 
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Table A14. Statistical parameters of SAW size for the SC restricted lattice as a function of SAW steps 

(fixed: n = 5, Type 3) for selected systems. 

N 
< |𝝎𝑵|𝟐 > Most repeated 

value (PDF) 

Folded Distribution 

µH (top point) σ (68.3%) 

13 19.64 14 17 ±13 

14 21.47 14 18 ±14 

15 23.28 17 19 ±16 

16 25.20 14 20 ±16 

Table A15. Statistical parameters of SAW size for the BCC restricted lattice as a function of system 

characteristics (fixed: N = 14) for selected systems. 

System 
< |𝝎𝟏𝟒|𝟐 > Most repeated 

value (PDF) 

Folded Distribution 

µH (top point) σ (68.3%) 

n = 2, Type 1 28.52 34 27 ±19 

 n = 3, Type 2 25.53 34 23 ±17 

n = 4, Type 2 22.26 14 19 ±15 

n = 5, Type 1 20.82 22 19 ±14 

n = 5, Type 2 20.50 14 18 ±14 

n = 5, Type 3 20.58 7 18 ±14 

Table A16. Statistical parameters of SAW size for the BCC restricted lattice as a function of SAW steps 

(fixed: n = 5, Type 3) for selected systems. 

N 
< |𝝎𝑵|𝟐 > Most repeated 

value (PDF) 

Folded Distribution 

µH (top point) σ (68.3%) 

11 14.76 17 12 ±9 

12 16.75 7 14 ±11 

13 18.49 12 17 ±14 

14 20.58 7 18 ±14 

Table A17. Statistical parameters of SAW size for the FCC restricted lattice as a function of system 

characteristics (fixed: N = 11) for selected systems. 

System 
< |𝝎𝟏𝟏|𝟐 > Most repeated 

value (PDF) 

Folded Distribution 

µH (top point) σ (68.3%) 

 n = 2, Type 1 17.95 13 16 ±12 

n = 3, Type 2 15.47 13 13 ±11 

n = 4, Type 2 14.32 13 13 ±10 

 n = 5, Type 1 15.07 7 13 ±10 

 n = 5, Type 2 14.10 7 12 ±10 

n = 5, Type 3 13.78 7 12 ±10 

Table A18. Statistical parameters of SAW size for the FCC restricted lattice as a function of SAW steps 

(fixed: n = 5, Type 3) for selected systems. 
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N 
< |𝝎𝑵|𝟐 > Most repeated 

value (PDF) 

Folded Distribution 

µH (top point) σ (68.3%) 

8 9.375 7 7 ±7 

9 10.79 7 9 ±8 

10 12.26 7 10 ±9 

11 13.78 13 12 ±10 

Abbreviations 

The following abbreviations have been used in this manuscript: 

MC  Monte Carlo 

MD  Molecular Dynamics 

SAW Self-Avoiding Random Walk 

CCE  Characteristic Crystallographic Element (norm) 

SC  Simple Cubic 

BCC  Body Center Cubic 

FCC  Face Center Cubic 

PDF  Probability Distribution Function 

CDF  Cumulative Distribution Function 

HON Honeycomb  

SQU  Square  

TRI   Triangular  
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