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Abstract: With the rapid development of thermal protection systems for the aerospace industry
and power electronics, polyarylacetylene (PAA) resin plays an important role because of its good
mechanical properties, high glass transition temperature (Tg), low water absorption, high char yield
(Yc), and the fact that there is no byproduct released in the curing process. In order to further
improve the thermal property of PAA based FRP for the thermal protection field, the introduction of
a zirconium element into arylacetylene is promising. In this paper, zirconium modified arylacetylene
(ZAA) resin was prepared by two-step synthesis. The FTIR analysis characterized its molecular
structure and confirmed the products. The viscosity of ZAA was about 6.5 Pa·s when the temperature
was above 120 ◦C. The DSC analysis showed that the ZAA had a low curing temperature, and its
apparent activation energy was 103.86 kJ/mol in the Kissinger method and 106.46 kJ/mol in the Ozawa
method. The dielectric constant at 1 MHz of poly(zirconium modified arylacetylene) (PZAA) was
3.4. The TG analysis showed that the temperatures of a weight loss of 5% (Td5) and char yield (Yc)
at 800 ◦C of PZAA were 407.5 ◦C and 61.4%, respectively. The XRD results showed the presence of
SiO2 and ZrO2 in the PZAA residue after ablation. The XRF results showed that the contents of SiO2

and ZrO2 in PZAA residual after ablation were, respectively, 15.3% and 12.4%. The SEM showed
that the surface of PZAA after ablation had been covered with a dense and rigid ceramic phase
composed of ZrO2 and SiO2. Therefore, the introduction of Zr into arylacetylene greatly improved
the densification of the surface after ablation, and improved the heat resistant property.
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1. Introduction

With the rapid development of thermal protection systems for the aerospace industry and power
electronics, high thermally stable fiber reinforced polymer composites (FRP) have been playing
important roles because of their low density, high temperature resistance, high strength and high
modulus [1–4]. The thermal property of FRP is mainly determined by the matrix resin. The matrix
resin must maintain a reliable structure and provide a good mechanical property in high temperature.
As it possesses a high crosslinking degree and a high carbon residue rate, polyarylacetylene (PAA)
resin is used as a resin matrix for high thermally stable FRP [5–7]. Compared with traditional
phenolic resins applied in thermal protection systems, PAA has excellent properties, such as good
mechanical properties, a high glass transition temperature (Tg), low water absorption, high char yield
(Yc) and the fact that there is no byproduct released in the curing process. The curing mechanism of
arylacetylene mainly contains a Dielse Alder addition, the ring trimerization and radical polymerization.
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Nevertheless, the thermal stability of PAA is not enough to meet the high requirements for materials in
aerospace and power electronics. As a result, there is a need to further enhance the thermal stability
and widen its application.

At present, the arylacetylene polyimide resin and silicon-containing arylacetylene resin have been
played much emphasis. Therein, arylacetylene polyimide resin was studied in many research papers,
and the obtained resins had good processing properties, thermal stability, thermal oxidation resistance
properties and mechanical properties [8–10]. The introduction of a silicon element into the molecular
structure of arylacetylene, mainly modified organic silicon, can greatly improve the thermally stable
performance [11–15]. Additionally, the comprehensive properties have been improved in the silicon
modified PAA, such as the deceased brittleness, improved toughness and mechanical properties and
extra ceramifiable properties. Li Q. et al. [16] synthesized a novel arylacetylene oligomer containing
polyhedral oligomeric silsesquioxane (POSS) in main chains. The results showed that the temperatures
of a weight loss of 5% (Td5) could reach 503 ◦C and Yc in nitrogen at 800 ◦C could reach 87.1%. Guo K. K.
et al. [17] studied the thermal curing, thermal property and degradation behavior of silicon-containing
arylacetylene composed of [-SiR2-C≡C-Ar-]. The results showed that the Td5 and Yc in nitrogen at
1000 ◦C could reach 715 ◦C and 93%, respectively.

The organic-inorganic hybrid polymer material is also a considerable option for better properties
in thermal protection systems [18,19]. Therein, ceramifiable polymer composites are paid more
attention in the field of thermal protection system due to their advantages of low heat conduction,
excellent mechanical properties and ablation resistance [20,21]. The silicon, nitrogen and zirconium
elements have been used as ceramifiable precursors. Wang M. C. et al. [22] prepared a novel liquid
poly(silylacetylene)siloxane resin, as a novel precursor of silicon carbide and silicon oxycarbide
ceramics. The results showed that the Td5 and Yc in nitrogen at 900 ◦C were above 400 ◦C and 80%,
respectively. Additionally, silicon oxycarbide ceramic was obtained at a yield of >75% by pressureless
pyrolysis at 900–1200 ◦C, and silicon carbide ceramic was obtained at 1500 ◦C.

There are some studies about the polymer materials modified by zirconium element, which is
commonly used in the field of ceramics, because zirconium dioxide is an excellent toughening ceramic
material [23]. In our previous study [24], silicone rubber composites filled with zirconium silicide were
prepared by physical blending. The results showed that the Td5 and Yc at 1000 ◦C in air were 399.7 ◦C
and 45.48%, respectively. When heated to a high temperature, the zirconium would be oxidized to
produce the ZrO2 ceramic phase and dispersed evenly on the surface of materials, and prevent further
heat oxidation and decomposition. Introducing zirconium-containing filler into the resin matrix was
a good way to improve heat resistance, but it also increased the viscosity, which definitely caused
trouble for the preparation of FRP.

In order to further improve the thermal property of PAA based FRP for the thermal protection
field, the introduction of the zirconium element into arylacetylene will be promising. In this paper,
zirconium modified arylacetylene resin was prepared by a two-step synthesis. The molecular chemical
structures were investigated by Fourier transform infrared spectroscopy (FT-IR). The curing kinetics
were studied by differential scanning calorimetry (DSC). The thermal stability was researched using
a thermogravimetric analyzer (TGA) to identify the effect of zirconium on the silicon-containing
arylacetylene. The ceramifiable mechanism was studied by the X-ray diffraction (XRD), X-ray
fluorescence (XRF) and scanning electron microscope (SEM).

2. Experimental

2.1. Materials

The solution of hydrogen chloride in ethyl acetate (1 mol/L) was obtained from Changtai
Pharmaceutical Co. Ltd (Zhenjiang, China). The anhydrous ether (AR, purity 99.7%), ammonium
chloride (AR, purity 99.5%) and tetrahydrofuran (AR, purity 99.0%) were purchased from Sinopharm
Chemical Reagent Co. Ltd (Shanghai, China). The zirconium tetrachloride (AR, 99.9%), m-amino
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arylacetylene (purity 99.0%) and trimethylchlorosilane (GC, purity 99.0%) were provided by Aladdin
Industrial Co. Ltd (Shanghai, China). All of the chemicals were used as received without
further purification.

2.2. Synthesis of silane terminated m-amino arylacetylene (SAA)

The synthesis of silane terminated m-amino arylacetylene (SAA) is shown in Scheme 1. The
m-amino arylacetylene (0.2 mol, 23.4g) was dropwise added into the solution of hydrogen chloride
dissolved in ethyl acetate (200 mL). With the reaction processing, the white crystals (m-ammonium
arylacetylene) precipitated in the bottom of the round-bottom flask. Then, the white crystals were
washed twice by ethyl acetate and dried in a vacuum drying oven at 80 ◦C for 4 h, to obtain
m-ammonium arylacetylene. The whole reaction process of the synthesis of SAA was protected by
nitrogen atmosphere and controlled at 0 ◦C by ice-water bath. The Anhydrous ether (40mL) and
tetrahydrofuran (40mL) were added into a 250 mL round-bottom flask. Then the m-ammonium
arylacetylene (4.72g, 0.04 mol) was added into the flask. The reaction was maintained at 0 ◦C and
stirred for 20 min. After that, trimethylchlorosilane was dropwise added into the solution. The solution
was also maintained at 0 ◦C and stirred for 60 min. After the reaction, the reaction mixture was filtered,
and brown powder solid (silane terminated m-ammonium arylacetylene, abbreviated as SAA+) was
obtained on the filter paper. Then, the brown powder solid was dissolved in distilled water and titrated
by NaOH solution (1 mol/L), until the pH value of the solution was 7. After the reaction, the reaction
mixture was filtered, and brown powder solid (silane terminated m-amino arylacetylene, abbreviated
as SAA) was obtained. At last, the brown powder was put into the vacuum drying oven at 40 ◦C for 24
h to get rid of the solvent and obtain the SAA.
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Scheme 1. Synthesis of silane terminated m-amino arylacetylene (SAA).

2.3. Synthesis of zirconium modified arylacetylene (ZAA) Resin

The synthesis of zirconium modified arylacetylene (ZAA) resin is shown in Scheme 2. The whole
reaction process of the synthesis of ZAA was protected by a nitrogen atmosphere at room temperature.
Anhydrous ether (100 mL) and prepared SAA (7.56 g) were added into a 250 mL round-bottom flask.
The solution of zirconium tetrachloride (2.33 g, 0.01 mol) dissolved in tetrahydrofuran (40 mL), was
dropwise added into a 250 mL round-bottom flask and stirred for 20 h to react. After the reaction, the
solution was filtered by a separatory funnel to obtain the upper oil phase. The oil phase was washed
by an ammonium chloride saturated solution, until the pH value of the filtrate was near 7. Rotary
evaporator and vacuum drying were utilized to get rid of solvent, to obtain the brown solid of ZAA.

2.4. Preparation of poly(zirconium modified arylacetylene) (PZAA) and poly(silane terminated m-amino
arylacetylene) (PSAA)

The SAA and ZAA resin were grinded by a planetary ball mill to get a small particle sample.
The grinding balls were made of ZrO2, and the diameter of each ball was 2 mm. The samples were
grinded for 40 min at 360 rpm. The mold was preheated in an oven at 130 ◦C for 0.5 h. The release
agent was evenly sprayed on the surface of the mold to facilitate demoulding. SAA and ZAA (12 g)
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were respectively weighed and put into the mold. The SAA and ZAA were cured in an air circulating
oven by the following steps: 130 ◦C (1 h), 150 ◦C (2 h), 180 ◦C (4 h) and 225 ◦C (2 h).
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Scheme 2. Synthesis of zirconium modified arylacetylene (ZAA) resin.

2.5. Instruments

Fourier transform infrared spectroscopy (FT-IR) was recorded on KBr pellets from 4000 to 400 cm−1

by a Nicolet Nexus IR Spectra, made in Madison, WI, USA.
A viscosity-temperature relationship was performed from 70 ◦C to 160 ◦C at a heating rate of

5 ◦C/min, using a TA instrument (AR-2000 rheometer, made in TA Instruments, Newcastle, UK), with a
25 mm diameter.

The differential scanning calorimetry (DSC) studies were conducted on the blends in hermetically
sealed pans. The heating and cooling experiments were performed at 5, 10, 15, 20 ◦C/min, with Perkin
Elmer DSC7, made in Waltham, MA, USA. The sample (10 mg) was sealed under nitrogen in aluminum
pans. Temperature ramping DSC studies during curing were performed from 50 to 300 ◦C.

The thermal stability of samples was measured with a Mettler SDTA 851 thermogravimetric
analyzer (TGA, made in Zurich, Switzerland) at a heating rate of 10 ◦C/min.

The morphology of the blends was studied by examining the fracture surfaces, using a German
Leica polarizing microscope DM4500P (made in Leica, Weztler, Germany. The specimens were
freeze-fractured using liquid nitrogen and then sputter-coated with silver and mounted on a carbon
tape prior to the scanning electron microscope (SEM) examination.

An X-ray diffraction (XRD) analysis was conducted to analyze the chemical component of the
product after ablation at 1000 ◦C. The samples were measured by monitoring the diffraction angle
2 θ from 10◦ to 80◦ on a D8Wance X-ray powder diffractometer of AXS Corporation made in Brock,
Karlsruhe, Germany.

X-Ray Fluorescence (XRF) Spectroscopy was recorded to analyze the element content in the
product after ablation at 1000 ◦C. The samples were measured by the AXIOS XRF spectrum instrument
(made in Almelo, Holland) with a Cu target, Kβ filter of Ni, voltage 35–45 kV, current 30–40 mA.

3. Results and Discussion

3.1. FTIR Analysis

The molecular structure of SAA+ was characterized with FTIR, as shown in Figure 1. In the FTIR
spectrum, the small and broad absorption peak located at 3423 cm−1 belongs to N-H of Ar-NH2, which
meant the additive amount of m-amino arylacetylene was in excess than hydrogen chloride. The
absorption peak at 3274 cm−1 is due to the C-H of methyl stretching vibration. The absorption peaks at
3050 cm−1 characterize the C-H stretching vibration in benzene ring structure. The wide absorption
peak around 2873 cm−1 characterizes the N-H of -NH3

+ stretching vibration. The absorption peak
around 2150 cm−1 belongs to -C≡C-Si stretching vibration. The absorption peak 1560 cm−1 is due
to the Ar-N stretching vibration and bending vibration. The absorption peaks at 1440 cm−1 and
1600 cm−1 correspond to C-C stretching vibration of benzene ring skeleton. The absorption peak at
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1250 cm−1 is due to the symmetrical deformation vibration of Si-CH3. The absorption peak at 616 cm−1

is the stretching vibration of the Si-C bond. Based on the above FTIR absorption peaks analysis, the
characteristic functional groups in the structure of the SAA could be determined, and the results
showed that the molecular structure of the SAA accorded with the structure, as shown in Scheme 1.
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Figure 1. The FTIR spectrum of SAA+.

The molecular structure of ZAA was characterized with FTIR, as shown in Figure 2. In the FTIR
spectrum, the broad absorption peaks at 3426 cm−1 and 3375 cm−1 are respectively due to the N-H of
Ar-NH2 and Ar-NH-, which meant the Ar-NH2 of ZAA was not totally consumed. The absorption
peak at 3273 cm−1 is due to the C-H of methyl stretching vibration. The absorption peaks at 3055 cm−1

characterizes the C-H stretching vibration in benzene ring structure. The absorption peak at 2150 cm−1

belongs to -C≡C-Si stretching vibration. The absorption peak 1568 cm−1 is due to the Ar-N stretching
vibration and bending vibration. The absorption peaks at 1440 cm−1 and 1605 cm−1 correspond to
the C-C stretching vibration of benzene ring skeleton. The absorption peak at 1255 cm−1 is due to
the symmetrical deformation vibration of Si-CH3. Compared with SAA, there is a new absorption
peak at 2370 cm−1 in FTIR spectrum of ZAA, which is probably due to the Zr-N group. Based on the
above FTIR absorption peaks analysis, the characteristic groups in the structure of the ZAA could
be determined, and the results showed that the molecular structure of the ZAA accorded with the
structure in Scheme 2.
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3.2. Rheological Analysis

The viscosity-temperature relations of SAA and ZAA were measured at a heating rate of 5 ◦C/min.
As shown in Figure 3, the viscosities of both resins decreased dramatically, with temperature increasing
from 70 ◦C to 85 ◦C, and decreased gently, with temperature increasing from 85 ◦C to 95 ◦C, and finally
became steady with temperature increasing from 95 ◦C to 160 ◦C. Compared with SAA, the ZAA had
an extremely high viscosity above 250 Pa·s at 70 ◦C. Nevertheless, when the temperature was above
120 ◦C, the viscosity of ZAA was about 6.5 Pa·s, which was approximate to SAA (4.9 Pa·s). Therefore,
the results showed that the ZAA resin had as wide processing window as SAA.
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3.3. DSC Analysis

Figure 4 shows the DSC curing exothermic curve of ZAA at the heating rate of 5 ◦C/min, 10 ◦C/min
and 15 ◦C/min, respectively. It could be seen that the exothermic rate increased with the heating rate
increasing, and the peak temperature also drifted towards a higher temperature due to the thermal
hysteresis effect. There is a small endothermic peak around 50–70 ◦C in the curves of heating rates of 5
and 15 ◦C/min, which was caused by the volatilization of some small molecule solvents. The initial
temperature, peak temperature and end temperature of curing exotherm at different heating rates are
tabulated in Table 1. As showed in Table 1, the characteristic temperatures at 5 ◦C/min heating rates
were lowest, compared with others. With the characteristic temperatures at the different heating rate
identified, the characteristic temperatures of heating rate at 0 ◦C/min can be obtained according to the
extrapolation method. The results are showed in Table 1.

Table 1. The characteristic temperatures at various heating rates of ZAA.

Heating Rate
(◦C/min) Onset (◦C) Peak (◦C) End (◦C)

5 179.4 207.4 232.1
10 190.2 219.2 245.3
15 198.3 227.2 251.4
0 170.4 198.3 224.6
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The Kissinger and the Ozawa methods were commonly used to deal with DSC curve data for all
parameters of the curing reaction kinetics. According to the Kissinger method, it is assumed that the
curing reaction rate maximizes at the peak temperature in DSC curve. Meanwhile, the Ozawa method
assumes that the reaction conversion rate is a constant at the peak temperature. Further transformed,
the Kissinger and the Ozawa Equation are illustrated in Equations (1) and (2), respectively.
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where β is heating rate (K/min); Tp is curing peak temperature (K); Ea is activation energy (kJ/mol); R is
the ideal gas constant (8.314 J/mol·K); C is constant; Qp is exothermic enthalpy; and A is the prefactor.

The Kissinger method and Ozawa method fitting figures of ZAA are showed in Figure 5. The
apparent activation energy of ZAA curing reaction could be calculated to obtain a value of 103.86 kJ/mol
in Kissinger method and 106.46 kJ/mol in Ozawa method.

Polymers 2020, 12, x FOR PEER REVIEW 7 of 13 

 

Table 1. The characteristic temperatures at various heating rates of ZAA. 

Heating rate 
(°C/min) 

Onset (°C) Peak (°C) End (°C) 

5 179.4 207.4 232.1 
10 190.2 219.2 245.3 
15 198.3 227.2 251.4 
0 170.4 198.3 224.6 

The Kissinger and the Ozawa methods were commonly used to deal with DSC curve data for all 
parameters of the curing reaction kinetics. According to the Kissinger method, it is assumed that the 
curing reaction rate maximizes at the peak temperature in DSC curve. Meanwhile, the Ozawa method 
assumes that the reaction conversion rate is a constant at the peak temperature. Further transformed, 
the Kissinger and the Ozawa Equation are illustrated in Equation (1) and (2), respectively.        ln ቆ ௣ଶቇߚܶ = ln ൬ܳ௣ܧܴܣа ൰ − аܴܧ ௣ܶ (1) 

  lnߚ = − аܴܧ1.052 ௣ܶ +  (2) ܥ

where β is heating rate (K/min); Tp is curing peak temperature (K); Ea is activation energy (kJ/mol); 
R is the ideal gas constant (8.314 J/mol·K); C is constant; Qp is exothermic enthalpy; and A is the 
prefactor.  

The Kissinger method and Ozawa method fitting figures of ZAA are showed in Figure 5. The 
apparent activation energy of ZAA curing reaction could be calculated to obtain a value of 103.86 
kJ/mol in Kissinger method and 106.46 kJ/mol in Ozawa method. 

  
Figure 5. Kissinger method and Ozawa method fitting figure of ZAA. 

3.4. Dielectric Constant 

Figure 6 shows the dielectric constant versus frequency from 102 to 106 Hz curves of PSAA and 
PZAA. The dielectric constant displayed little change with the increasing of frequency, which 
indicated the PSAA and PZAA possessed stable dielectric property. The dielectric constant at 1 MHz 
of PSAA and PZAA are 3.0 and 3.4, respectively. This was because that the PSAA and PZAA were 
composed of an aromatic and cross-linked network of cured acetenyl with low dielectric constant. 

Figure 5. Kissinger method and Ozawa method fitting figure of ZAA.



Polymers 2020, 12, 684 8 of 13

3.4. Dielectric Constant

Figure 6 shows the dielectric constant versus frequency from 102 to 106 Hz curves of PSAA and
PZAA. The dielectric constant displayed little change with the increasing of frequency, which indicated
the PSAA and PZAA possessed stable dielectric property. The dielectric constant at 1 MHz of PSAA
and PZAA are 3.0 and 3.4, respectively. This was because that the PSAA and PZAA were composed of
an aromatic and cross-linked network of cured acetenyl with low dielectric constant. The dielectric
constant of PZAA was higher than PSAA, because the zirconium had a high dielectric constant of 33
and the introduction of zirconium decreased the crosslinking density.
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3.5. TGA Analysis

A thermogravimetric analysis (TGA) in air was conducted to provide the thermal property
information of PSAA and PZAA resins. The TGA curves in air atmosphere are showed in Figure 7,
and the characteristic parameters of the thermal decomposition are listed in Table 2. The two cured
arylacetylene exhibited high thermal stability, of which Td5s and Ycs at 800 ◦C were above 400 ◦C and
40%, respectively. This indicated that polyarylacetylene possessed good thermal stability, because
acetylene group could form a highly cross-linked and thermally stable network structure. The Td5 of
PSAA is higher than PZAA by 22.5 ◦C, which indicated that the introduction of zirconium into PZAA
decreased the thermal stability. This is because the star-shaped arylacetylene resin made it difficult for
acetenyl to react with each other and there were decreases in the crosslinking density of PZAA. With
temperature increasing further, the mass of cured resins changed sharply, and the polyarylacetylene
decomposed violently. It is obvious that the mass of PSAA decreased sharply than PZAA and both
resins shared one Yc of 72.3% at 485 ◦C. When the temperature was 700 ◦C, the decomposition of PZAA
was basically over, but the decomposition of PSAA still processed. The Yc at 800 ◦C of PZAA and
PSAA are 61.4% and 41.2%, respectively. Therefore, the introduction of zirconium into PZAA had little
negative effect on Td5, but improved the Yc at 800 ◦C greatly.

Table 2. TGA analysis results of BA and BSA in air.

Resin
In Air

Td5/
◦C Yc at 800 ◦C

PSAA 435.2 41.2%
PZAA 412.7 61.4%
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3.6. XRD Analysis

In order to further characterize the components of the PZAA residues after ablation, an XRD
analysis was performed and the peak spectra is showed in Figure 8. As showed in the figure, the
whole XRD diffraction peak spectrum showed that there was no glass phase in the sample, but only a
crystalline phase structure. The existing crystal phase peaks could be divided into two main types.
The strong diffraction peaks at 28.3◦, 30.2◦, 35.4◦, 50.2◦, 55.7◦ and 60.0◦ are due to zirconium dioxide
(ZrO2), which could be referred to as the standard CARDS with codes 65-0461 (zirconia). Further
analysis showed that the strong diffraction peak at 30.2◦ could correspond to a 111 crystal plane in ZrO2

structure. The diffraction peaks at 50.2◦ and 60.0◦ corresponded to the diffraction peaks on the 202
and 131 crystal face of ZrO2, indicating that PZAA mainly formed a ZrO2 crystal phase after sintering
at 1000 ◦C. The strong diffraction peaks at 24.4◦, 31.67◦ and 40.9◦ are the diffraction peaks of silicon
dioxide (SiO2), and the reference code is 46-1045. The results showed that the PZAA contained a silica
phase in the ablated residues, and formed a SiO2 crystal phase after ablation. The presence of ZrO2

and SiO2 indicated that the resin can form a ceramic structure after ablation in the oxygen-containing
atmosphere, and the thermal insulation and high temperature resistance can protect the internal
structure of the resin.
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In order to figure out the quantitative analysis of PZAA after ablation, XRF spectroscopy was
conducted to obtain the content of components. As showed in Table 3, the loss on ablation of PZAA
is 54.2%. The contents of SiO2 and ZrO2 are 15.3% and 12.4% after ablation, respectively. According
to the structure analysis of the resin, the loss components were mainly C, H, N elements, while the
remaining elements were mainly Zr and Si, with a small amount of elements, including Al, Fe, Ca and
Cl, which further indicated that the purity of the resin was very high. As we knew, the contents of
SiO2 and ZrO2 are 15.3% and 12.4%, so the atomic mole ratio of Si:Zr was 2.3, which meant the ZAA
was principally composed of dibasic and tribasic Zr. The results also showed that the remaining SiO2

and ZrO2 were principally attributed to the high Yc of PZAA, while there was still 13% C, H and N in
the structure.

Table 3. XRF result of PZAA.

Components Weight Contents/% Components Weight Contents/%

Al2O3 0.3 Fe2O3 0.1
SiO2 15.3 Cl 1.1
CaO 1.0 ZrO2 12.4

Loss on ablation 54.2 —— ——

3.7. SEM Analysis

Figure 9 shows the comparison in the microstructure of PZAA before and after ablation at 1000 ◦C.
Through observation and analysis, it could be found that the resin in Figure 9a agglomerated together
to form a state of similar size and uniform distribution, with close distances between blocks. After
ablation, the residues in the resin were lumpy, and the lumps were distributed evenly with large
differences in the size, which was showed in Figure 9b. The results also showed a loose structure in the
pyrolytic structure, from which lots of gaseous substances ware released due to the degradation of
polyarylacetylene. In Figure 9c, after the increase of the magnification factor, it can be seen that there is
much villous material on the surface of the block which are distributed crosswise. In Figure 9d, the
surface of residues is covered with a dense and rigid structure, which consisted of SiO2 and ZrO2 and
could resist the erosion of high-speed airflow. Through a comparative analysis, the microstructure
changes of PZAA before and after ablation could be observed in the SEM spectrums. After ablation,
the lumps on surface of PZAA became rough and distributed, with larger differences in the size than
the PZAA before ablation. It could be concluded that the surface of PZAA after ablation was packeted
with a ceramic phase composed of SiO2 and ZrO2. The formation of SiO2 and ZrO2 ceramic phase on
the matrix surface could result in the reduction of heat and oxygen gas transferring to the internal
matrix. Therefore, the introduction of Zr into arylacetylene greatly improved the densification of
ceramic products during ablation, and improved the heat resistant property.
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4. Conclusions

In the current study, a high-performance modified zirconium and silicon containing arylacetylene
resin were successfully synthesized. The FTIR analysis characterized and confirmed the products and
their molecular structures. The viscosity of zirconium modified arylacetylene (ZAA) was about 6.5 Pa·s
when temperature was above 120 ◦C, which showed that the ZAA resin had a wide processing window.
The DSC analysis showed that the ZAA had a low curing temperature, and its apparent activation
energy was 103.86 kJ/mol in Kissinger method and 106.46 kJ/mol in Ozawa method. The dielectric
constant at 1 MHz of PZAA was 3.4, which indicated that poly(zirconium modified arylacetylene)
(PZAA) possessed a low dielectric constant. The TG analysis showed that the temperatures of a weight
loss of 5% (Td5) of poly(silane terminated m-amino arylacetylene) (Td5 of 435.2 ◦C, abbreviated as PSAA)
was higher than PZAA (Td5 of 407.5 ◦C) by 22.5 ◦C, because the star-shaped arylacetylene resin made it
difficult for acetenyl to react with each other and decreases of crosslinking density of PZAA. The Yc at
800 ◦C of PZAA and PSAA are 61.4% and 41.2%, respectively. Therefore, the introduction of zirconium
into PZAA had a bad effect on Td5, but improved the Yc at 800 ◦C greatly. The XRD results showed
the presence of SiO2 and ZrO2 in the molecular structure after ablation. The XRF results showed the
contents of SiO2 and ZrO2 in PZAA residual, after ablation were respectively 15.3% and 12.4%, which
meant that ZAA was principally composed of dibasic and tribasic Zr and the remaining SiO2 and ZrO2

were principally attributed to the high Yc of PZAA. The SEM showed that the surface of PZAA after
ablation had been packeted with a ceramic phase composed of ZrO2. The formation of a ZrO2 ceramic
phase on the matrix surface could result in the reduction of heat and oxygen gas transferring to the
internal matrix. Therefore, the introduction of Zr into arylacetylene greatly improved the densification
of ceramic products during ablation, and improved the heat resistant property. According to the above
results, as a high heat resistant resin, the zirconium modified arylacetylene will be promising in the
preparation of fiber reinforced composites for thermal protection systems.
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