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Abstract: Protein adsorption on solid surfaces provides either beneficial or adverse outcomes,
depending on the application. Therefore, the desire to predict, control, and regulate protein adsorption
on different surfaces is a major concern in the field of biomaterials. The most widely used surface
modification approach to prevent or limit protein adsorption is based on the use of poly (ethylene
oxide) (PEO). On the other hand, the amount of protein adsorbed on poly(2-(dimethylamine)ethyl
methacrylate) (PDMAEMA) coatings can be regulated by the pH and ionic strength of the medium.
In this work, ultra-thin PEO/PDMAEMA coatings were designed from solutions with different ratios
of PEO to PDMAEMA, and different molar masses of PEO, to reversibly adsorb and desorb human
serum albumin (HSA), human fibrinogen (Fb), lysozyme (Lys), and avidine (Av), four very different
proteins in terms of size, shape, and isoelectric points. X-ray photoelectron spectroscopy (XPS),
quartz crystal microbalance (QCM), and atomic force microscopy (AFM) were used to characterize the
mixed polymer coatings, revealing the presence of both polymers in the layers, in variable proportions
according to the chosen parameters. Protein adsorption at pH 7.4 and salt concentrations of 10−3 M
was monitored by QCM. Lys and Av did not adsorb on the homo-coatings and the mixed coatings.
The amount of HSA and Fb adsorbed decreased with increasing the PEO ratio or its molar mass in a
grafting solution. It was demonstrated that HSA and Fb, which were adsorbed at pH 7.4 and at an
ionic strength of 10−3 M, can be fully desorbed by rinsing with a sodium chloride solution at pH 9.0
and ionic strength 0.15 M from the mixed PEO5/PDMAEMA coatings with PEO/PDMAEMA mass
ratios of 70/30, and 50/50, respectively. The results demonstrate that mixed PEO/PDMAEMA coatings
allow protein adsorption to be finely tuned on solid surfaces.

Keywords: stimuli-responsive coatings; protein adsorption; smart coatings

1. Introduction

Adsorption of proteins at solid surfaces and their interactions are major concerns in many fields
such as medicine, biology, biomaterials, biotechnology and plays an important role in a system’s
performance [1]. For example, blood contact with a biomaterial initiates rapid adsorption of plasma
proteins, which often elicits the foreign body reaction heralded by a massive inflammatory response [2].
On the other hand, an adsorbed protein layer on biomaterials regulates a variety of cell behaviors such
as attachment, spreading, proliferation, migration, and differentiation [3]. From a chemical point of
view, proteins are the most structurally complex and functionally sophisticated molecules known [4].
Due to their amphiphilic properties, they are intrinsically surface-active molecules; thusly, the problem
is not how to adsorb them to interfaces, but how to control their interfacial adsorption. The adsorbing
molecules are large, and, thus, the surface-protein interactions are usually long range and include
Coulombic forces, van der Waals forces, Lewis acid-base forces, and more entropically based effects
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such as hydrophobic interactions, conformational entropy and restricted mobilities. Furthermore,
due to the large size and the shape of the molecules, the interactions between them on the surface are
nontrivial and can be strongly influenced by the fact that the particles may undergo conformational
changes upon adsorption [5,6].

Many different strategies have recently been developed to partially or temporally control protein
adsorption, mostly based on polymer modified surfaces [7,8]. Polymer layers made from responsive
coatings are especially relevant for biological and biosensing applications [9] because external stimuli
such as pH, ionic strength or temperature can switch the coatings between, at least, two states tuning
their surface properties [10–17]. Coatings composed of weak polyelectrolytes are especially interesting
due to their sensitivity to pH because the charge of the chains depends on the protonation/deprotonation
of their ionic groups [13]. The interactions of proteins with charged surfaces and their adsorption are
mainly regulated by electrostatic interactions but they can nonspecifically adsorb to charged surfaces,
regardless of the protein’s net charge [18].

Polycationic coatings consisting of poly (2-dimethylamino ethyl methacrylate) (PDMAEMA) are
widely studied in the literature. PDMAEMA is a weak cationic polyelectrolyte in aqueous solutions.
It has been found that electrostatic repulsions between the protonated tertiary amine groups lead to
PDMAEMA swelling at low pH values. In contrast, at high pH values, most of the amine groups are
deprotonated and neutral, which leads to a more compact PDMAEMA conformation. The increase of
ionic strength also leads to a collapsed conformation of PDMAEMA as a result of charge screening in
the protonated polymer [19]. The formation of polymer layers composed of two different polymers
leads to the formation of mixed polymer coatings that might switch individually to external stimulus,
and, thusly, a smart surface with a response(s) to the environment can be achieved [20–23].

Kusumo et al. [24] monitored the binding of bovine serum albumin (BSA) and lysozyme (Lys) to
cationic poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) coatings grafted onto gold surfaces
as a function of the chain length and grafting density. The expected adsorption was observed for
negatively charged BSA with a very high binding capacity. However, due to electrostatic repulsion,
positively charged Lys was rejected by PDMAEMA coatings. Complete repulsion of proteins by
surfaces having the same charge was not always observed. The authors reported a complete lack of
BSA desorption from the PDMAEMA coatings when rinsing with diluted NaCl solutions.

Lei et al. [25] studied lysozyme adsorption on silicon surfaces modified by a poly(2-(dimethylamino)
ethyl methacrylate)-block-poly (methacrylic acid) (PDMAEMA-b-PMMA) diblock copolymer and both
polyelectrolytes separately in a pH range of 4-10. The authors demonstrated that Lys adsorption was
low on PDMAEMA coatings and high on PMMA coatings over the studied pH range. Adsorption on
PDMAEMA-b-PMMA diblock copolymer coatings showed the influence of both polyelectrolytes.
At low pH, the adsorption was low, while at high pH, the adsorption increased with increasing pH and
increasing thickness of the PMMA block. When the thickness was greater than 10 nm, the Lys-resistance
properties of PDMAEMA were screened, and the diblock copolymer exhibited adsorption similar to the
PMMA homopolymer coating. However, Lys desorption from the homo and diblock was not studied.

Wang et al. [26] studied fluorescently labelled BSA adsorption/desorption on PDMAEMA coatings
with sub-100 nm features over large areas. The patterned polymer coatings were formed by a
combination of block copolymer micelle lithography and surface-initiated atom transfer radical
polymerization. The authors confirmed significant adsorption of BSA at pH 5.8. After desorption
performed at pH 4, pH 9 and 1 M NaCl only 53 % of proteins were released from the surface.

As it was recently shown, mixed polymer coatings composed of protein-repellent
and protein-adsorbing polymers are very promising due to their ability to control protein
adsorption/desorption processes [27–31]. For example, Välimäki et al. [31] used poly (ethylene
glycol) PEO-PDMAEMA block copolymers for efficient heparin binding. The authors reported two
optimized polymers (PEO114PDMAEMA52 and PEO114PDMAEMA100) that can neutralize heparin
in a dose-dependent manner. The purpose of using PEO was to regulate the amount of heparin.
These complexes, due to applying non-toxic PEO, had only a limited effect on cell viability.
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This work will bring more insight into the rational design of such smart coatings by introducing,
except for PEO, a cationic polymer, poly (2-(dimethylamine) ethyl methacrylate) (PDMAEMA)
to adsorb and desorb proteins in a reversible and repetitive way. The effectiveness of protein
adsorption/desorption was investigated in terms of polymer coating composition, pH and ionic strength.

Mixed PEO/PDMAEMA polymer coatings were formed on a gold substrate according to the
“grafting to” method [32]. The polymer layer was formed by simultaneously grafting PEO and
PDMAEMA to the gold substrate. The properties of the mixed polymer coatings were adjusted
by the ratio of PEO/PDMAEMA and the PEO chain length. Four proteins, human serum albumin
(HSA), human fibrinogen (Fb), lysozyme (Lys), and avidine (Av), all very different from each other,
were chosen to study their adsorption on PEO/PDMAEMA coatings.

HSA is the most abundant protein in human plasma and plays a very important role in many
processes such as osmotic pressure regulation, the transport of fatty acids, drugs, metals, etc. The protein
is globular with a molecular mass of 66 kDa and an iep close to 5.0 [33,34]. Fibrinogen is also a very
important protein that is responsible for the regulation of thrombosis, and hemeostasis. It is a linear
molecule with a molecular mass of 340 kDa and an iep at pH 5.8. This protein was chosen due to its
ability to adsorb below and above its iep, as reported in the literature [30,35–38]. The third protein
chosen was Lys, a small protein (14.3 kDa), with its iep at 11 [25,39,40]. The last protein was Av,
a fascinating protein because of its high binding affinity for the vitamin biotin. The molecule is a
tetramer composed of four glycosylated subunits having a molecular mass of about 68 kDa. It is a
small molecule (4 nm) with iep at pH 10.5 [41,42]. The adsorption of the proteins was performed at pH
7.4 and I = 10−3 M.

2. Experimental Section

2.1. Materials

Gold substrates for X-ray photoelecton spectroscopy (XPS) were prepared by the thermal
evaporation of gold (thickness of 100 nm) onto silicon wafers with a titanium interlayer. Next,
they were cut into pieces approximately 1 cm2 in size. Before every measurement, the gold substrates,
and QCM quartz sensors coated with a 100 nm Au layer, were cleaned in a mixture of 95% sulfuric acid
(H2SO4, VWR BDH Prolabo, Leuven, Belgium) and hydrogen peroxide (30%, VWR BDH Prolabo) in a
volume ratio of 2:1 for 2 min. In the next step, the gold substrate was rinsed 10 times with deionized
water, once with absolute ethanol, and dried out in a stream of nitrogen gas. Afterwards, the gold was
exposed in a UV/ozone environment (Jelight Inc., Irvine, CA, USA) for 15 min. In the end, the substrate
was rinsed again with absolute ethanol and dried using a nitrogen flow.

The polymers containing the thiol groups were purchased from Polymer Source Inc. (Dorval, QC,
Canada). Poly (2-(dimethylamine) ethyl methacrylate) (PDMAEMA) with a disulfide bond had a molar
mass of Mn = 8500 g/mol, 2 × 28 repeating units, and a polydispersity index of 1.30 (see Figure 1a).
Thiolated poly (ethylene glycol) methyl ether was used with three molar masses: Mn = 1100 g/mol (~23
units-PEO1), Mn = 2000 g/mol (~43 units-PEO2), Mn = 5000 g/mol (~112 units-PEO5) (see Figure 1b),
and polydispersity indices of 1.08, 1.09, and 1.08, respectively. Stock solutions of PDMAEMA and PEO
(PEO1, PEO2, PEO 5) were prepared in ultrapure water at a concentration of 3 and 5 g/L, respectively.
Before each experiment, they were diluted in water to the desired concentration of 1g/L. Formation of
polymer coatings was conducted by the immersion of cleaned gold substrates in mixtures of PEO and
PDMAEMA solutions, with PEO/PDMAEMA mass ratios of 100/0 (PEO), 50/50 (PEO/PDAEMA 50/50),
60/40 (PEO/PDMAEMA 60/40), 70/30 (PEO/PDMAEMA 70/30) and 0/100 (PDMAEMA).
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Figure 1. Chemical structure of PDMAEMA (a) and PEO (PEO1, n = 23 units, PEO2, 43 units, PEO5, 
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(Kratos, Analytical, Manchaster, UK) with an Al X-ray source. The samples were placed on an 
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between the sample and the analyzer was 55°. Charge stabilization was achieved by applying a flood 
gun at 8 eV and a Ni grid was placed 3 mm above the analyzed sample. The applied pass energy was 
150 eV and the following spectra was collected: survey spectrum, C 1s, O 1s, N 1s, S 2p, Au 4f and C 
1s. After this step the stability of the charged compensation and degradation of the samples were 
checked. The characteristic peak corresponding to the binding energy of C–(C, H) was fixed at 284.8 
eV. The obtained data was analyzed using the CasaXPS Program (Casa Software Ltd, Teignmouth, 
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Figure 1. Chemical structure of PDMAEMA (a) and PEO (PEO1, n = 23 units, PEO2, 43 units, PEO5,
n = 112 units) (b).

2.2. Methods

2.2.1. X-Ray Photoelectron Spectroscopy (XPS)

Gold substrates with anchored polymers were analyzed using a Kratos Axis Ultra spectrometer
(Kratos, Analytical, Manchaster, UK) with an Al X-ray source. The samples were placed on an
insulating ceramic holder and placed inside a chamber having a pressure of 10−6 Pa. The angle between
the sample and the analyzer was 55◦. Charge stabilization was achieved by applying a flood gun
at 8 eV and a Ni grid was placed 3 mm above the analyzed sample. The applied pass energy was
150 eV and the following spectra was collected: survey spectrum, C 1s, O 1s, N 1s, S 2p, Au 4f and C
1s. After this step the stability of the charged compensation and degradation of the samples were
checked. The characteristic peak corresponding to the binding energy of C–(C, H) was fixed at 284.8 eV.
The obtained data was analyzed using the CasaXPS Program (Casa Software Ltd., Teignmouth, UK).

2.2.2. Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D)

Formation of polymeric layers was monitored by Quartz Crystal Microbalance (Q-Sense E4
System, Q-Sense, Gothenborg, Sweden) at 298 K using gold quartz sensors. At the beginning of
each measurement ultrapure water was flowed into a cell until a stable baseline was obtained. Next,
the polymer solution (PEO, PDMAEMA, PEO/PDMAEMA 50/50, PEO/PAA 60/40 or PEO/PAA 70/30)
was introduced into the cell with a flow rate of 20 µL/min. When stable signals (frequency and
dissipation) were obtained, the cell was rinsed with ultrapure water in order to remove unbound
polymer molecules with a flow rate of 50 µL/min. Afterwards, a solution of I = 10−3 M and pH = 7.4
(flow rate = 50 µL/min) was flowed into the cell to test the stimuli-responsive behavior. In the next
step, the protein solution, having a concentration of 0.2 mg/mL, was introduced to the system with a
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flow rate of 20 µL/min. After obtaining a stable signal, the flow with the protein solution was stopped
and rinsed with the same saline solution (I = 10−3 M and pH = 7.4, see Figure 2, R1) and ultrapure
water (R2). The final desorption step consisted of the following steps: introduction of 0.15 M NaCl, pH
9.0 (R3), and rinsing with ultrapure water (R4) with a flow rate of 50 µL/min.

Polymers 2020, 12, x FOR PEER REVIEW 5 of 15 

 

step, the protein solution, having a concentration of 0.2 mg/mL, was introduced to the system with a 
flow rate of 20 μL/min. After obtaining a stable signal, the flow with the protein solution was stopped 
and rinsed with the same saline solution (I = 10−3 M and pH = 7.4, see Figure 2, R1) and ultrapure 
water (R2). The final desorption step consisted of the following steps: introduction of 0.15 M NaCl, 
pH 9.0 (R3), and rinsing with ultrapure water (R4) with a flow rate of 50 μL/min. 

Figure 2. QCM graph of PEO/PDMAEMA mixed coatings formed on a gold surface followed by steps 
of adsorption/desorption of proteins: a) HSA adsorption on PEO1/PDMAEMA 70/30, b) HSA 
adsorption on PEO5/PDMAEMA 70/30 coatings, c) Fb adsorption on PEO1/PDMAEMA 70/30, d) Fb 
adsorption on PEO5/PDMAEMA 50/50 coatings (adsorption at pH 7.4 and I = 10−3 M, desorption at I 
= 0.15 M, pH 9.0), R1- rinsing with the saline solution of the same pH and ionic strength as used for 
protein adsorption, R2 - rinsing with ultrapure water, R3 - introduction of a saline solution of 0.15 M 
and pH 9.0, R4 - rinsing with ultrapure water. 

2.2.3. Atomic Force Microscopy (AFM) 

AFM images were acquired with a Nanoscope III instrument (Digital Instruments, Santa 
Barbara, CA, USA) operated in tapping mode. Non-conductive silicon tips, having a spring constant 
between 10 and 130 N/m and resonance frequency 204–497 kHz (Nanosensors, Neuchâtel, Switzerland) 
were used. The scan rate was 1 Hz, and the image size was 2 × 1 μm2. Next, the images were plane-
fitted and flattened using the Gwyddion software (an open source software), http://gwyddion.net/. 

3. Results and Discussion 

3.1. PEO and PDMAEMA Homo-Coating Characterization 

The surface composition of the gold substrate before and after grafting with PEO and 
PDMAEMA was studied by X-ray photoelectron spectroscopy. After grafting PDMAEMA to the gold 
substrate, the N 1s signal ~399 eV (see Figure 3) was recorded which corresponds to the 
dimethylamino group. The intensity of Au 4f signals at ~84.5 eV and ~88.5 eV decreased. This 

Figure 2. QCM graph of PEO/PDMAEMA mixed coatings formed on a gold surface followed by
steps of adsorption/desorption of proteins: (a) HSA adsorption on PEO1/PDMAEMA 70/30, (b) HSA
adsorption on PEO5/PDMAEMA 70/30 coatings, (c) Fb adsorption on PEO1/PDMAEMA 70/30, (d) Fb
adsorption on PEO5/PDMAEMA 50/50 coatings (adsorption at pH 7.4 and I = 10−3 M, desorption at I
= 0.15 M, pH 9.0), R1- rinsing with the saline solution of the same pH and ionic strength as used for
protein adsorption, R2 - rinsing with ultrapure water, R3 - introduction of a saline solution of 0.15 M
and pH 9.0, R4 - rinsing with ultrapure water.

2.2.3. Atomic Force Microscopy (AFM)

AFM images were acquired with a Nanoscope III instrument (Digital Instruments, Santa Barbara,
CA, USA) operated in tapping mode. Non-conductive silicon tips, having a spring constant between
10 and 130 N/m and resonance frequency 204–497 kHz (Nanosensors, Neuchâtel, Switzerland) were
used. The scan rate was 1 Hz, and the image size was 2 × 1 µm2. Next, the images were plane-fitted
and flattened using the Gwyddion software (an open source software), http://gwyddion.net/.

3. Results and Discussion

3.1. PEO and PDMAEMA Homo-Coating Characterization

The surface composition of the gold substrate before and after grafting with PEO and PDMAEMA
was studied by X-ray photoelectron spectroscopy. After grafting PDMAEMA to the gold substrate,
the N 1s signal ~399 eV (see Figure 3) was recorded which corresponds to the dimethylamino group.
The intensity of Au 4f signals at ~84.5 eV and ~88.5 eV decreased. This measurement confirmed the
presence of PDMAEMA on the gold surface. Figure 4a,b illustrates the C 1s peak recorded by XPS on a
gold surface modified with PDMAEMA and PEO1, respectively.

http://gwyddion.net/
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Figure 4. C 1s peaks recorded by XPS on gold surfaces modified with thiol-functionalized polymers: (a)
PDMAEMA, (b) PEO 1, (c) PEO1/PDMAEMA 50/50, (d) PEO1/PDMAEMA 70/30. Peak decomposition
was performed according to the protocol described in the Section S1.
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The method of the C 1s peak decomposition was described in Section S1 (supplementary material).
It can be noticed that in Figure 4a the C–(C, H) component at 284.8 eV attributed to the –CH3,

–CH2–, groups of PDMAEMA is dominating the spectrum. The respective presence of components
at 286.3 eV attributed to C–(N, O) and at 288.8 eV corresponding to C=O also confirms the presence
of PDMAEMA. In Figure 4b, it can be observed that the C–O–C component attributed to PEO is
much larger in comparison to Figure 4a. However, there is also a small C=O component attributed to
contaminants. Surface atomic fraction (%) of component at 286.3 eV attributed to C–O–C after grafting
PEO1, PEO2 and PEO5 to the gold substrate is presented in Table S1. The C–O–C fraction attributed
to PEO increased with increasing PEO molar mass from 25.5 to 46 for PEO1 and PEO5, respectively.

The polymer coating formation was also monitored in situ using quartz crystal microbalance with
dissipation monitoring. A typical QCM polymer coating formation experiment is presented in Figure 2.
After stabilizing the frequency signal in water, the polymer solution (PDMAEMA, PEO, mixture of
PEO/PDMAEMA) was flowed into the cell, allowing a frequency shift to be recorded. The frequency
shift ∆f1 stabilized during the rinsing with water. The corresponding wet mass of polymer (∆m) was
calculated using the Sauerbrey relation and is presented in Table 1. The wet mass of PDMAEMA was
505 ng/cm2, while for pure PEO coatings it increased with increasing their molar mass from 547 to
1195 ng/cm2, respectively. Furthermore, taking into account the density of both polymers (PEO: 1.13
g/cm3; PDMAEMA:1.32 g/cm3) [43], the thickness of the polymer coatings was calculated (Table 1).
The estimated thickness of the pure PDMAEMA coating was 3.8 nm, while the thickness of pure PEO
coating increased with increasing their molar mass from 4.8 to 10.2 nm for PEO1 and PEO5, respectively.

Table 1. Characterization of Polymer Coatings Formed on Gold Surface.

Sample Name VPEO VPDMAEMA ∆m (ng/cm2) d (nm)

Au-PDMAEMA - 1.0 505 +/− 96 3.8

Au-PEO1 1.0 - 547 +/− 56 * 4.8 *

Au-PEO2 1.0 - 675 +/− 63 * 6.0 *

Au-PEO5 1.0 - 1195 +/− 50 * 10.2 *

Au-PEO1/PDMAEMA 50/50 0.61 0.39 480 +/− 104 3.9

Au-PEO2/PDMAEMA 50/50 0.61 0.39 609 +/− 85 5.0

Au-PEO5/PDMAEMA 50/50 0.83 0.17 910 +/− 94 7.4

Au-PEO1/PDMAEMA 60/40 0.52 0.48 508 +/− 63 4.1

Au-PEO2/PDMAEMA 60/40 0.68 0.32 711 +/− 85 5.8

Au-PEO5/PDMAEMA 60/40 0.83 0.17 922 +/− 63 7.5

Au-PEO1/PDMAEMA 70/30 0.62 0.38 511 +/− 102 4.2

Au-PEO2/PDMAEMA 70/30 0.57 0.43 762 +/− 93 6.2

Au-PEO5/PDMAEMA 70/30 0.88 0.12 1055 +/− 65 8.6
* Ref. [30].

The significant presence of C–(N, O) and C=O components proves that PDMAEMA and PEO were
successfully grafted to the gold substrate. Moreover, the estimated wet masses of pure PDMAEMA
and PEO coatings, as well as their corresponding thicknesses, also confirm successful homopolymer
coating formation.

3.2. The Mixed PEO/PDMAEMA Coating Characterization: Effect of PEO/PDMAEMA Ratio and PEO Molar
Mass

Figure 4c,d presents the C 1s peak recorded by XPS on a gold surface modified by the simultaneous
grafting of PEO1/PDMAEMA 50/50 and PEO5/PDMAEMA 70/30, respectively. It can be noticed that
in both cases the C–(N, O) component at 286.3 eV dominates the spectra. Moreover, the fraction of
C=O component at 288.8 eV, attributed to PDMAEMA confirms its presence in the mixed coatings.
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The proportions of both components depend on the PEO/PDMAEMA ratio: a larger C–(N, O) peak
component and a smaller C=O component were recorded when more PEO was introduced in the
grafting solution (see Figure 4d vs Figure 4c).

Furthermore, taking into account the surface atomic fractions (%) (see Table S1) characteristic for
PEO and PDMAEMA components, volume fractions of PEO and PDMAEMA in the mixed coatings
were estimated using a method described in Section S1 (Supplementary Materials).

In Table 1, it can be observed that for coatings PEO1/PDMAEMA and PEO2/PDMAEMA created
in the ratio of 50/50, 60/40, 70/30 the volume fraction of PEO changes between 0.52 to 0.68 while for
PDMAEMA, it changes from 0.32 to 0.48. The highest volume fraction of PEO was observed for
the mixed PEO5/PDMAEMA coatings and it changed from 0.83 for PEO5/PDMAEMA 50/50 and
PEO5/PDMAEMA 60/40 to 0.88 for PEO5/PDMAEMA 70/30. In contrast, the lowest PDMAEMA
fraction was found for the same set of coatings and it changed from 0.12 to 0.17 for PEO5/PDMAEMA
70/30 and PEO5/PDMAEMA (60/40 and 50/50), respectively.

The wet mass of the mixed coatings was also estimated using the Sauerbray relation and is
presented in Table 1. The wet mass of polymer coatings increased with increasing the PEO ratio
in the grafting solution and PEO molar mass. The lowest values of wet masses were observed for
PEO/PDMAEMA 50/50 coatings and it changed from 480 to 910 ng/cm2 for PEO1/PDMAEMA and
PEO5/PDMAEMA. Next, for the series of PEO/PDMAEMA 60/40 the values varied between 508 to
922 ng/cm2 for PEO1/PDMAEMA and PEO5/PDMAEMA. The highest values were observed for the
PEO/PDMAEMA 70/30 coatings which were between 511 to 1055 ng/cm2 for PEO1/PDMAEMA 50/50
and PEO5/PDMAEMA 70/30, respectively. Furthermore, similarly to homo-coatings, the thickness of
the mixed coatings was estimated and presented in Table 1. The thickness increased with increasing
the PEO ratio in a grafting solution and PEO molar mass. For PEO/PDMAEMA 50/50, the thickness
changed from 3.9 to 7.4 for PEO1/PDMAEMA and PEO5/PDMAEMA. Next, for PEO/PDMAEMA
60/40 it varied from 4.1 to 7.5 nm for PEO1/PDMAEMA and PEO5/PDMAEMA. The highest thickness
was observed for the PEO/PDMAEMA 70/30 series with 4.2 nm corresponding to PEO1/PDMAEMA
70/30 and 8.6 nm attributed to PEO5/PDMAEMA 70/30. In order to check the homogeneity of the
formed homo- and mixed coatings, atomic force microscopy measurements were performed (Table S2).
At the presented images, only gold grains could be observed without any aggregates.

The volume fraction of PEO and PDMAEMA in the mixed coatings was similar for both
PEO1/PDMAEMA and PEO2/PDMAEMA coatings. The highest PEO volume fraction was observed
for the coatings containing the longest PEO chain (PEO5) and it was above 0.8. The estimated wet
masses of mixed PEO/PDMAEMA coatings, as well as their corresponding thicknesses, increased with
increasing PEO ratio in grafting solution and PEO molar mass.

3.3. Protein Adsorption on the Homo- and Mixed PEO/PDMAEMA Coatings

Protein-repellent properties of PEO coatings were studied using the QCM-D method. As an
illustration of the PEO properties, a QCM-D experiment of Fb adsorption on the PEO5 coating was
selected and is presented in Figure S1.

The same experiments were performed with HSA, Lys and Av on coatings formed from PEO1,
PEO2, and PEO5. The experimental data showing the repellent properties of PEO1 towards HSA and
Fb are presented in Figure 5a,c. Similar results (not shown) were achieved for PEO2 and PEO5 coatings.

Conversely, the pure PDMAEMA coatings adsorbed HSA and Fb (see Figure 5a,c). The average
adsorbed mass of HSA at I = 10−3 M, pH 7.4 was 1622 ng/cm2. After desorption, performed at I = 0.15
M, pH 9.0, the remaining mass was equal to 633 ng/cm2 (see Figure 5b). Regarding Fb adsorption on
the pure PDMAEMA coatings at I = 10−3 M, pH 7.4, the calculated mass of the protein was 2310 ng/cm2.
Partial desorption of Fb from pure PDMAEMA was also observed and the measured mass of Fb after
desorption was 1779 ng/cm2.

At pH 7.4, PDMAEMA is protonated as presented in Scheme 1 and protein adsorption is governed
by electrostatic interactions between the positively charged PDMAEMA and negatively charged HSA
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and Fb. When pH changed from 7.4 to 9.0, deprotonation of dimethyloamino groups takes place
and, on the one hand, the decrease of the electrostatic repulsion between PDMAEMA chains causes
a collapse of PDMAEMA, and, on the other hand, the decrease in the electrostatic attraction forces
between the two proteins and PDMAEMA chains results in partial desorption. Both pH and ionic
strength contribute to protein desorption. [22,42] The high ionic strength screens localized electrostatic
attractions and provides high concentrations of Cl- as counter ions to exchange the proteins in the
coating. The remaining proteins might be trapped in the PDMAEMA chain structures or different
forces are still strong enough to keep the proteins on the surface.
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It should be noted that Lys and Av adsorption on pure PDMAEMA and the mixed PEO/PDMAEMA
coatings was also performed at I = 10−3 M, pH 7.4. Under these conditions, adsorption of the proteins
on the pure and the mixed coatings, due to electrostatic repulsion, was not observed. Two examples of
such experiments showing adsorption of Lys and Av on the mixed PEO1/PDMAEMA 70/30 coatings
are presented in Figures S2 and S3.

HSA and Fb adsorption experiments were performed on the mixed PEO/PDMAEMA 50/50,
PEO/PDMAEMA 60/40 and PDMAEMA 70/30 coatings with PEO having different molar masses (PEO1,
PEO2, PEO5). In these experiments ∆f2 was also used to estimate protein mass after adsorption and
∆f3 was used to calculate the remaining mass after desorption (see Figure 2).

Figure 2a shows a QCM graph of HSA adsorption on the PEO1/PDMAEMA 70/30 coatings. It can
be observed that the polymer coating was successfully formed on the gold crystal and the calculated
HSA mass after the adsorption step using ∆f2 and after rinsing with a 10−3 M, pH 7.4 solution (R1) and
ultrapure water (R2), was 529 ng/cm2. The next two shifts correspond to rinsing with a 0.15 M pH
9.0 saline solution (R3) and ultrapure water (R4). After the desorption step (∆f3), 87 ng/cm2 of HSA
remained on the coating. Figure 2b presents HSA adsorption on the PEO5/PDMAEMA 70/30 coating.
After the polymer coating formation step (∆f1), HSA adsorption occurred (∆f2) with a corresponding
mass of 324 ng/cm2. In this case, after the desorption step, complete desorption was observed (∆f3 ~ 0).

Fibrinogen adsorption on PEO1/PDMAEMA 70/30 is presented in Figure 2c. After the adsorption
step the calculated mass of Fb was 752 ng/cm2, and the remaining protein mass after the adsorption step
was 226 ng/cm2. In Figure 2d fibrinogen adsorption on PEO5/PDMAEMA 50/50 shows that 264 ng/cm2

was deposited on the mixed coating. However, in this case, total desorption of fibrinogen was achieved
(∆f3~0). Adsorption and desorption of HSA and Fb on PEO5/PDMAEMA 70/30 and PEO5/PDMAEMA
50/50 was tested in cycles proving that adsorption and desorption of the proteins can be perform in a
reversible and repetitive way (see Figure S4). Total desorption of HSA from PEO5/PDMAEMA 70/30
coatings and Fb from PEO5/PDMAEMA 50/50 coatings proves that PEO plays an important role in the
desorption process. Moreover, PEO effectiveness on desorption behavior of both proteins is rather
related to the length of the PEO chain than a high content of the PEO having lower masses.

A summary of the results obtained for the adsorption of HSA and Fb on the pure PEO1,
PDMAEMA and the mixed PEO/PDMAEMA coatings as a function of PEO ratio in a grafting solution
and its molar mass is presented in Figure 5. The highest amount of HSA was observed on the pure
PDMAEMA coating (1622 ng/cm2) and it decreased while increasing the PEO ratio in a grafting
solution or its molar mass (circle PEO1, triangle PEO2, diamond PEO5). For PEO1/PDMAEMA
coatings it changed from 698 ng/cm2 for PEO1/PDMEMA 50/50 to 529 ng/cm2 for PEO1/PDMEMA
70/30. The same tendencies were observed for coatings created from PEO2/PDMAEMA and
PEO5/PDMAEMA and the HSA mass changed from 675 ng/cm2 for PEO2/PDMAEMA50/50 to
448 ng/cm2 for PEO2/PDMAEMA 70/30.

The lowest HSA mass was observed on PEO5/PDMAEMA coatings and it varied from 364
to 324 ng/cm2 for PEO5/PDMAEMA50/50 and PEO5/PDMAEMA 70/30, respectively (Figure 5a).
Similarly to HSA, the highest mass of Fb was observed after adsorption on the pure
PDMAEMA (2310 ng/cm2) and the mass decreased with increasing PEO ratio and its molar mass.
For PEO1/PDMAEMA coatings it changed from 1990 ng/cm2 for PEO1/PDMAEMA 50/50 to 752 ng/cm2

for PEO1/PDMEMA 70/30. Similar changes were also observed for PEO2/PDMAEMA coatings and they
varied from 1583 to 550 ng/cm2 for PEO2/PDMAEMA50/50 and PEO2/PDMAEMA 70/30, respectively.
A more significant decrease in the Fb mass was observed after adsorption on PEO5/PDMAEMA coatings.
The Fb mass changed from 264 to 180 ng/cm2 for PEO5/PDMAEMA50/50 and PEO5/PDMAEMA70/30
coatings. The results achieved after the desorption experiments of HSA and Fb from the pure
PDMAEMA and the mixed PEO/PDMAEMA coatings monitored by the QCM-D are presented in
Figure 5 (right panel, b,d).

The lowest HSA mass after desorption was observed for PEO5/PDMAEMA coatings and total
desorption was achieved from the PEO5/PDMAEMA 70/30 coating (see Figure 5b).
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A similar dependence was observed for Fb (see Figure 5d). A partial desorption was observed for
the pure PDMAEMA and the mixed PEO1/PDMAEMA and PEO2/PDMAEMA coatings. The highest
mass of Fb after desorption was measured for the pure PDMAEMA coating (1779 ng/cm2) and it
decreased while increasing the PEO ratio and its molar mass. For example, for PEO1/PDMAEMA50/50
coatings it was 597 ng/cm2 while for PEO1/PDMAEMA70/30 it was 226 ng/cm2. Lower Fb mass
was observed for PEO2/PDMAEMA coatings and it varied from 364 ng/cm2 to 77 ng/cm2 for
PEO2/PDMAEMA 50/50 and PEO2/PDMAEMA 70/30, respectively. Complete desorption of Fb
was achieved from all PEO5/PDMAEMA coatings.

Figure 6 shows the dependence of protein mass (part a for HSA and b for Fb) calculated from the
Sauerbrey modeling of ∆f recorded by QCM-D after the adsorption step (R2, I = 10−3 M, pH 7.4) and
a percentage of desorbed protein mass after the desorption step (R4: I = 0.15 M, pH 9.0, water) as a
function of PEO fraction (%) (PEO1-circles, PEO5-diamonds, closed symbols-mass after adsorption,
open symbols desorption) in the grafting solution. The adsorbed and remaining mass of proteins
after desorption decreased with increasing the PEO ratio and its molar mass in the coating. Therefore,
it should be noted that protein-repellent PEO plays an important role in both processes. For adsorption,
its increasing presence leads to decreased PDMAEMA density in the coating, while exposure of
PEO chains upon PDMAEMA shrinking in the desorption process increases protein removal from
the coating.
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Figure 6. Dependence of protein mass obtained from the Sauerbrey modeling of ∆f recorded by QCM-D
after the adsorption step (left axis, R2, I = 10−3 M, pH 7.4) and a percentage of remaining protein
mass after the desorption step (right axis, R4 I = 0.15 M, pH 9.0) as a function of PEO fraction (%) in
the grafting solution (PEO1-circles, PEO5-diamonds, closed symbols - protein mass after adsorption,
open symbols–protein mass after desorption): (a) HSA, (b) Fb.

In order to effectively and reversibly adsorb and desorb HSA from the mixed PEO/PDMAEMA
coating, the highest molar mass of PEO should be used (PEO5) in the ratio of 70/30 in the grafting
solution. For the effective adsorption/desorption of Fb from the mixed PEO/PDMAEMA coatings,
the highest PEO molar mass should also be used with the minimum ratio of 50/50. The increasing
presence of PEO in the polymer coatings, on the one hand, decreases PDMAEMA density that results
in lower amounts of proteins, and on the other hand, its repellent properties followed by shrinking the
PDMAEMA chains triggers the desorption processes.

In this section, it was shown that Lys and Av do not adsorb on the pure PDMAEMA and the
mixed PEO/PDMAEMA coatings. HSA and Fb, however, adsorbed on the pure PDMAEMA and the
mixed PEO/PDMAEMA coatings (50/50, 60/40, 70/30) and the amount of adsorbed proteins decreases
with increasing the PEO ratio in the grafting solution or its molar mass. A partial desorption of
HSA was observed for the pure PDMAEMA and the mixed PEO1/PDMAEMA, PEO2/PDMAEMA,
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PEO5/PRDMAEMA 50/50 and PEO5/PDMAEMA 70/30 coatings while its total desorption was achieved
from the PEO5/PDMAEMA 70/30 coating.

Similarly, to HSA, a partial desorption of Fb was observed for the pure PDMAEMA coating and
the mixed PEO1/PDMAEMA and PEO2/PDMAEMA coatings while total desorption was observed for
all the PEO5/PDMAEMA coatings.

4. Conclusions

The presented work shows the effectiveness of the mixed PEO/PDMAEMA coatings to reversibly
adsorb and desorb human serum albumin and human fibrinogen. The effect of PEO content in the
coating regulated by its ratio in the grafting solution as well as by its molar mass is also discussed.
Lack of Lys and Av adsorption on the pure and the mixed coatings is also demonstrated. The amount
of HSA and Fb decreases while increasing the PEO content in the grafting solution or its molar mass.
Under the presented adsorption and desorption conditions, both processes are mainly governed by
the electrostatic interactions between PDMAEMA and the proteins. Desorption is also triggered by
the exposure of PEO chains upon PDMAEMA shrinking. An effective adsorption/desorption of HSA
can be achieved at the PEO5/PDMAEMA 70/30 coating while the reversible adsorption of Fb can be
performed on the PEO5/PDMAEMA 50/50 coating.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/3/660/s1.
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