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Abstract: Studies on the surface modification of commercial styrene-butadiene-styrene (SBS) rubber
with different carbon black (CB) nanofiller content (10–80 parts per hundred parts of rubber (phr))
performed by low-pressure oxygen plasma are presented in this paper. The adhesion properties of
the rubber were determined by the peel test for adhesive-bonded joints prepared with a water-based
polyurethane (PU) adhesive. The chemical structure and morphology of the SBS rubber surface
before and after plasma treatment were investigated by X-ray photoelectron spectroscopy (XPS) and
scanning electron microscopy (SEM), respectively. The peel tests showed that the plasma treatment
significantly improved the strength of adhesive-bonded joints in the entire range of CB tested,
revealing a clear maximum for approximately 50 phr of CB. It was also found that as a result of
plasma treatment, functional groups that are responsible for the reactions with the PU adhesive,
such as C−OH and C=O, were formed, and their concentration, similar to the peel strength, showed
maximum values for approximately 50 phr CB. The occurrence of these maxima was explained using
the bound rubber model.

Keywords: SBS rubber; nano-carbon black; cold plasma; polymer surface modification; adhesion;
bound rubber

1. Introduction

Adhesive bonding of rubbers to other materials, such as artificial leather, textiles, plastics, etc.,
is a particularly important issue in various production processes, for example in the footwear and
automotive industries. It is obvious that the strength and quality of such adhesive-bonded joints
depend, to a large extent, on the chemical structure and morphology of the rubber surface and,
therefore, can be controlled by various surface treatments. One of the typical methods to improve the
adhesion of rubbers (based on SBS copolymers) to polyurethane (PU) adhesives is the wet chemical
chlorination of the rubber surface [1,2]. This method, however, has serious disadvantages arising from
the fact that very toxic and hazardous substances are released to the environment. Thus, it is no wonder
that we are looking for cleaner, more energy-efficient and environmentally friendly alternatives to the
wet chemical method. Cold (non-equilibrium) plasma treatment has proven to be a particularly useful
method to meet these expectations [3–10].

Considering the potential and benefits of the surface treatment by cold plasma, many studies have
been carried out using this method to improve the joints between SBS elastomers and PU adhesive.
In general, a drastic increase in the adhesion of the elastomer surface to the adhesive was observed
after such a treatment. In some cases, only a few seconds of plasma exposure was enough to obtain
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several times higher peel strength than that for the non-treated samples. The plasma treatment, which
can be performed both in inert plasmas (e. g. Ar, He) and chemically reactive plasmas (e. g. O2, CO2,
H2O), consists in changing the chemical structure of the elastomer surface by bombarding it with ions,
which leads to the preferential etching of the surface by removing certain atoms or their groups, as
well as creating a large number of radical centers. On these centers, some functional groups, such
as hydroxyl (−OH), carbonyl (>C=O), etc., can be formed directly in the plasma processes (reactive
plasmas) or further after the contact of the surface with air atmosphere (inert plasmas). The resulting
functional groups can react with diisocyanates, which are typical prepolymer components of PU
adhesives. The isocyanate group on one side of the diisocyanate molecule can form a chemical bond to
the SBS elastomer surface, while the other group on the opposite side (through reactions with other
components (e.g. polyols) or PU oligomers, form a final polymeric structure of the adhesive [11,12].
The concentration of functional groups, which depends on the plasma process conditions, is one of the
main factors responsible for the strength of SBS−PU joints [9,13].

So far, most of the research carried out in the area of plasma surface treatment of SBS rubbers has
been limited only to SBS elastomer models, dealing with commercial rubbers only occasionally [5,14,15].
Regardless of the fact that the elastomer consists of different polymer blocks (polystyrene and
polybutadiene) that interact differently with plasma [4,16], the produced rubbers are blended with
ingredients such as carbon black, silica, zinc oxide, etc. We are still far from a thorough knowledge of
changes in the molecular structure of the rubber surface caused by interaction with the plasma, and
consequently, the relationship between the plasma treatment and the adhesive strength of the rubber
surface. Research in this area is therefore fully justified, especially considering the application point
of view.

One of the important ingredients added to the rubber, having a significant impact on its properties,
is carbon black (CB) in the form of nanoscale particles. Indeed, the rubber industry has used this
modification extensively to improve abrasion resistance, elastic modulus, tensile strength, viscoelasticity
as well as rheological and conductive properties of elastomeric composites [17–22]. However, despite
decades of such technology, the actual mechanisms by which CB nanoparticles modify the macroscale
properties of rubbers are still not fully understood [23]. Nevertheless, there is no doubt that an important
role in these phenomena is played by the molecular interaction between the filler nanoparticles and
polymer chains. The concept of bound rubber at the particle−polymer interface has been put forth to
describe such an interaction [23–25]. The bound rubber is a volume of the polymer fraction directly
adjacent to the interface, having a molecular structure that differs from that in the pure polymer—an
interphase layer with a thickness lying in the range of 2−80 nm is formed. The total volume of this
fraction depends on the concentration, shape, and size of the filler nanoparticles, and also their primary
aggregation and clustering [26–29].

The formation of the bound rubber with a different structure than that of the pure polymer creates
the suspicion that these two types of material behave differently under the effect of plasma treatment.
It could be manifested in the influence of the amount of CB added to the rubber on its surface properties
after such a treatment. This work aims to investigate the effect of CB contained in the SBS rubber on
the adhesive strength of its surface treated with cold low-pressure oxygen plasma.

2. Materials and Methods

2.1. Materials

The study was carried out on a commonly used vulcanized commercial rubber based on
styrene-butadiene block copolymer (SBS). The rubber was prepared by “Kwarciak PPHU” Company
(Kłomnice, Poland). The detailed composition of the rubber is presented in Table 1. Only the loading
of CB (N330) was changed from 10 to 80 phr, leaving the contents of all other components at the same
level. The carbon black N330 (Carbex 330, produced by the Car-bochen, Gliwice, Poland) is a technical
furnace black with a mean size of particles of 30 nm, a specific surface of 80−100 m2/g, and a bulk
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density of 350 g/dm3. KER 1502 (SBS) with 76.5 wt. % of butadiene content (chemically bounded) was
used as the main copolymer of the rubber compound. Some amount of KER N-29 (nitrile−butadiene
copolymer) with 71 wt. % of butadiene (chemically bounded) was added to the rubber compound.
(Both copolymers were supplied by Synthos Dwory Ltd., Oświęcim, Poland.) The rubber preparation
process consisted of two stages. First, all components were mixed using a rubber blender (mixing time
was 8 minutes, the speed was 32 rpm and the temperature was 120 ◦C). Then the rubber compound
was machined in a “ZGODA 550 L” rolling mill (ZGODA, Świętochłowice, Poland) with a diameter of
550 mm and length of 1500 mm, at a regulated temperature of 60 ◦C at 20 rpm and roller friction 1:1.25.
The obtained product was stored at room temperature without light.

Table 1. The compound composition of the SBS rubber.

Ingredient Content [phr] a

Styrene-butadiene (SBS) copolymer (KER 1502) 100
Nitrile-butadiene copolymer (KER N-29) 42.9

Carbon black (N330) 10 to 80
Silica (Arsil) 11.5
Zinc oxide 5.7
Phthalates 5.7

Tetramethyl thiuram disulfide 2.3
Oiled sulfur 1.7

N-cyclohexyl-2-benzothiazole sulfenamide 1.7
Antioxidant 1.4

Protector G35 1.1
Stearin 1.0

a phr = parts per one hundred parts of SBS copolymer.

2.2. Plasma Treatment

The plasma treatment was carried out in a parallel plate reactor with a radio frequency (RF,
13.56 MHz) glow discharge. A detailed description of the reactor is given in [30]. Plasma was generated
in a reactor chamber containing oxygen (pure O2, Air Liquide, Cracow, Poland) with a flow rate of
7.5 sccm and an initial pressure of 13 Pa. The power of the glow discharge was 50 and 80 W and the
plasma treatment of the rubber samples lasted 2 min. These parameters were selected from the group
of the most suitable plasma treatment parameters for the SBS rubber to improve its adhesive capacity
to PU adhesives, which was determined based on a series of tests carried out under the R&D project
that is mentioned in the Acknowledgments.

2.3. Peel Tests

To determine the adhesive strength of the rubber surfaces, 180◦-peel tests, according to the
European Standard EN 1392:2007, were carried out. Adhesive-bonded joints were prepared using
the rubber samples before and after the plasma treatment (originally with a mechanically roughened
surface) and strips of standard leather (boxcow, chrome-tanned, non-pigmented). Two-component,
water-based PU adhesive (Bonidur Us-100 + 5.0 wt. % of curing agent Bopherem I-10; supplied by
Bochem Ltd., Pionki, Poland) was spread on each adherend and dried at room temperature for 30 min.
The dry adhesive films were activated by heating at 353 K for 3 min and the surfaces were immediately
contacted under a pressure of 0.4 MPa for 15 s. The adhesive joints were then conditioned for 48 h
at room temperature. The peel strength measurements were performed using a tensile tester model
5566 (Instron, High Wycombe, UK) at a peel rate = 1.67 × 10−3 m/s. The average value of the peel
strength for a given type of surface was determined from at least three samples and a minimum of 10
measurement points for each of them.
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2.4. X-ray Photoelectron Spectroscopy (XPS)

Surface chemical characterization of the SBS rubber samples to a depth of several nm was carried
out using AXIS Ultra photoelectron spectrometer (XPS, Kratos Analytical Ltd., Manchester, UK)
equipped with a monochromatic Al−Kα X-ray source (1486.6 eV). The power of the anode was set
at 150 W, and the hemispherical electron energy analyzer was operated at pass energy 20 eV for
all high-resolution measurements. All measurements were carried out with a charge neutralizer.
The component of C1s line, assigned to C−C / C−H / C=C, and positioned at 284.8 eV, was used to
calibrate the spectra.

2.5. Scanning Electron Microscopy (SEM)

A scanning electron microscope Quanta 200 F (FEI, Hillsboro, OR, USA) equipped with a Large
Field Detector (LFD) was used to study the surface topography of SBS rubbers. All measurements
were carried out under a nitrogen atmosphere of 100 Pa. The topography was analyzed using electron
energy of 3.5 keV, which resulted in penetration depth of approximately 100 nm, as it was estimated
based on Ref. [31].

3. Results and Discussion

The most important feature of the rubber surfaces, from their application point of view, is the
strength of adhesive-bonded joints formed between such surfaces and other materials. Therefore,
the fundamental attention in the work was focused on the peel strength test which, on the one hand,
was to show the effect of CB contained in the rubber on the joint strength, and, on the other hand, to
determine the role of plasma treatment in the formation of this joint. Results of the peel strength test
performed for untreated as well as plasma-treated SBS-rubber samples with various amounts of the CB
are shown in Figure 1. As can be seen, the plasma treatments, irrespective of the discharge power used,
produce a considerable improvement in the adhesion properties of the rubber surface in the entire
range of CB tested. Peel strength values for the untreated samples are significantly lower. This result is
not surprising, as many previous studies have shown a significant increase in the strength of joints
formed by rubbers and elastomers after the plasma treatment of their surfaces [4,7,9,15,30].
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Figure 1. Peel strength test for the SBS rubber with various carbon black content, before and after
plasma treatments.

Also understandable is the higher peel strength of the adhesive joint after plasma treatment with
the discharge power of 50 than 80 W. This is related to the competition between the crosslinking process
and the formation of functional groups responsible for the adhesive bonding process (mainly −OH
groups). At higher discharge powers, the crosslinking process begins to dominate and the concentration
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of these functional groups decreases. This problem has already been described in detail elsewhere [4,9].
Another problem that should be considered is the nano-roughening of the rubber surface under plasma
treatment and its participation in the adhesive-bonded joints in the form of mechanical adhesion [9].
In our case, however, under the used plasma parameters and plasma treatment times as short as 2 min,
the effect of the nano-roughness generated by plasma treatment on the joint strength can be negligible
compared to the process of chemical bond formation. This is supported by investigations performed by
AFM microscopy for plasma-treated SBS surfaces [32]. The general fact that nano-roughness formation
is more intensive for higher discharge power [33] also does not confirm in our case the contribution of
this effect to the adhesive bonding process—as shown in Figure 1, the peel strength for 50 W is greater
than for 80 W.

What is most interesting, however, is that the dependencies of the peel strength on the CB content
for the plasma-treatment samples show maximum values. With the increase in the CB content, the
peel strength of the adhesive joint initially increases, and then, from approximately 50 phr, begins
to decrease. This is in contrast to the dependence for untreated samples, where the peel strength is
practically independent of the CB content.

To explain the maxima in Figure 1, the concept of bound rubber seems to be particularly useful.
The CB particles are coated by a very thin interphase layer created from polymer chains with a subtle
molecular structure that differs from that in the pure polymer. Looking at the surface of the rubber, we
see particles of CB (primary aggregations) in the form of uncovered carbon nano-islands surrounded by
narrow zones (with a width of nanometers) of the bound rubber (Figure 2). Increasing the content of the
CB, we increase the number of its particles, so the number of islands and the total area occupied by the
bound rubber also increases. However, by increasing the content of CB, we also increase the likelihood
of clustering of its particles. The islands begin to become larger by clustering, and consequently, the
surface area of the bound rubber surrounding the islands begins to decrease (see: the bar chart in
Figure 2). Thus, the dependence of the surface area occupied by the bound rubber on the volume
fraction of CB passes through the maximum [28].

Looking for an analogy between the maximum that occurs in the surface area occupied by the
bound rubber and the maximum in the peel strength for the increasing content of CB, it should be
assumed that the structure of the bound rubber is much more susceptible to the formation of functional
groups (−OH, >C=O) by plasma treatment compared to the rest of the polymer. Indeed, investigations
performed by Choi [26] suggest that the butadiene units of SBS elastomer are more compatible with
the CB than the styrene units. Thus, since the butadiene units are attached to the CB particles more
readily than the styrene units, the ratio of the butadiene/styrene components is higher in the bound
rubber region than in the compounded rubber. Choi and Kim [27] have also shown that the bound
rubber in the case of SBS rubber has more butadiene units with 1,2-configuration than the raw polymer
because the 1,2-units interact more strongly with the CB particles than the butadiene units with
1,4-cis and 1,4-trans configurations. On the other hand, our previous studies [4] have shown that
much more susceptible to the formation of −OH and >C=O functional groups by means of plasma
treatment are butadiene units than the styrene units, and in turn, among the butadiene units, those
with 1,2-configuration are more active than 1,4-cis and 1,4-trans.

In summary, it can be concluded that the increase of CB content to a certain value increases the
surface area occupied by the bound rubber, which in the case of SBS rubber is much richer in butadiene
units with 1,2-configuration compared to the rest of the polymer. Accordingly, the concentration
of plasma-generated functional groups that are responsible for the reactions with the PU adhesive
increases in this range of CB content, and as a consequence, the peel strength of the adhesive joint is
increased. For CB content greater than 50 phr, the surface occupied by the bound rubber decreases
(due to the clustering of its particles), so the joint strength decreases.
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Figure 2. A simple model of the rubber surface with carbon black nanoparticles surrounded by bound
rubber (yellow frames). As the carbon black content increases, the clustering effect occurs. The graph
(bottom right) shows the changes in the surface area occupied by the bound rubber as a function of the
carbon black content in this model. (The graph was obtained using the GIMP 2.10.18 software [34], by
which the number of pixels for the surface area of nanoparticles and bound rubber was counted in the
presented model.)

The clustering process that underlies the observed dependence of the peel strength of the adhesive
joint on the CB content (Figure 1) is illustrated by electron microscopy studies. SEM images of the SBS
rubber with different CB content are shown in Figure 3. The evident differences in surface morphology
(that was sampled to a depth of approximately 100 nm) seen in the subsequent images should be
attributed to the increase in CB content and the formation of increasingly large clusters. We assigned
brighter spots in the SEM images to the CB aggregates and clusters. This conclusion is based on the
SEM procedure used for imaging, in which the images were recorded with the LFD detector.

The LFD detector captures the secondary electrons, but also the backscattered electrons that
carry information on the atomic number contrast. It has been shown that the backscattered electron
contrast of a mixture of atoms that is homogeneous on the atomic scale can be accurately predicted
from the mass concentrations of the elemental constituents. The measured signal follows a predictable
response to a specimen property of interest, such as composition. Thus, the regions with higher mass
concentrations (CB) should be seen as brighter spots compared to those of lower mass concentrations
(polymer). However, it should be noted that the dimension of these spots is generally larger than the
real size of the objects due to the scattering process [31].

To confirm the predicted relationship between the CB content and the concentration of functional
groups generated by plasma treatment, XPS studies were performed on the chemical structure of the
surface of SBS rubber samples. Typical XPS wide scan spectra for an SBS rubber sample before and
after plasma treatment are presented in Figure 4. In addition to the main carbon (C1s) and oxygen
(O1s) bands, we also see weak bands for zinc and silicon and trace bands for nitrogen and sulfur, which
is compatible with the rubber composition. The plasma treatment, as shown in Figure 4, primarily
causes a significant increase in the number of oxygen atoms in relation to the number of carbon atoms.
Changes in the oxygen concentration determined in this way on the rubber surface, both before and
after plasma treatment, depending on the CB content, are illustrated in Figure 5. While the untreated
samples show low values of oxygen concentration, after the plasma treatment we can see much higher
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values with clearly visible maxima for about 50 phr of CB. The increase in the surface concentration of
oxygen should be attributed to the formation of oxygen functional groups.
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Considering the chemical structure of functional groups involved in the formation of bonds with
the PU adhesive, which are composed of carbon and oxygen atoms, two regions in the XPS spectra,
namely for C1s and O1s, were analyzed in detail. Examples of C1s and O1s spectra are shown in
Figure 6.

The spectra were numerically deconvoluted and the obtained bands were assigned to appropriate
species, according to our previous paper and references therein [30]. As is shown in Figure 6a, the C1s
spectrum can be fitted by three bands. The band I fixed at 284.8 eV corresponds to C−C, C=C and
C−H units. The band II (at 286.0−286.4 eV) is usually attributed to C−OH. In turn, the band III (at
288.0−288.8 eV) can be assigned to >C=O and O−C=O groups. The analysis of the O1s spectrum is,
unfortunately, more complicated. Roughly, the spectrum O1s can also be fitted with three component
bands (Figure 6b). The main band at 532.0−532.5 eV is associated with C−OH and >C=O groups.
However, attempts to split this band into two bands corresponding to these two groups do not give
satisfactory results. There is also a problem with the band at 533.8−534.1 eV, which can be attributed to
the O−C=O group. Besides, an O1s band for SiO2 should also be expected in the same position. H2O
molecules strongly attached to SBS rubber via hydrogen bonds can also give a band in this region. The
third band (at 529.9−530.4) is most likely related to O1s for ZnO.

As one can see, the complicated structure of the O1s spectrum makes it impossible to carry out a
detailed analysis of the concentration of C−OH and >C=O functional groups on the SBS rubber surface.
This analysis was therefore carried out based on the C1s spectrum. Figure 7 shows the C−OH and
>C=O concentrations calculated roughly on the bases on bands II and III, respectively, as a function
of the CB content for two different plasma powers. The pronounced maxima that appear in these
relationships in the range around 50 phr of CB are in good coincidence with the maximum of the peel
strength occurring in the same range (Figure 1). This result, firstly, confirms a correlation between
changes in the concentration of C−OH and >C=O function groups and changes in the strength of the
joint bonded using PU adhesive and, secondly, it shows that the formation of these groups as a result
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of plasma treatment is most likely, to a large extent, associated with the bound rubber, the area of
which on the rubber surface also passes through the maximum during the increase of the CB content,
as discussed above (Figure 2). It should be emphasized that the area of the bound rubber is the only
part of the surface area, the value of which passes through the maximum with the increase in the CB
content; at the same time, the CB area is constantly growing, while the SBS elastomer area is decreasing.
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The results shown in Figure 7 should, however, be treated more qualitatively than quantitatively,
because the total number of C−OH and >C=O groups consists of groups formed at different places
on the rubber surface (i.e. SBS blocks, CB particles, the other ingredients appearing on the surface,
and especially important from our point of view—the bonded rubber zones), which entails different
interactions with the adhesive. In turn, the concentrations of these different oxygen group fractions
are closely related to the plasma treatment parameters (e.g. discharge power). Therefore, in such a
complex system as the tested rubber, it is difficult to expect a simple linear correlation between the
concentration of groups and the joint strength, as it was observed in the model SBS elastomer [13].
Nevertheless, there is no doubt that the dependencies in Figure 7 reveal the maxima, which justifies
the proposed explanation of the influence of CB content on the adhesive properties of the SBS rubber
tested with the PU adhesive.
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4. Conclusions

Apart from the statement that the treatment of SBS rubbers by O2 plasma drastically improves the
strength of adhesive-bonded joints between the rubber surface and the water-based PU adhesive, the
investigations performed within the scope of this work bring us closer to understanding the plasma
processes taking place on the surface of commercial SBS rubbers, and primarily, to determine the effect
of the CB content added to the rubber as a nanofiller on these processes. It has been found, which is
particularly interesting, that with the increase of the CB content, the peel strength of the adhesive joint
initially increases, and then, from approximately 50 phr of CB, it begins to decrease. A very similar
dependence has also been established for changes in the concentration of functional groups (C−OH,
>C=O) formed by the plasma treatment, which are responsible for reactions with the PU adhesive. The
pronounced maxima are visible in the range around 50 phr of CB, which is in good coincidence with
the maximum of the peel strength occurring in the same range. This confirms the assumption that the
chemical nature of the adhesion is a key factor governing the adhesive bonding process after the SBS
rubber treatment by O2 plasma. Besides, it also suggests that the formation of the functional groups
is closely related to the bound rubber that forms very narrow zones around the CB particles on the
rubber surface. Indeed, the chemical structure of this material in the case of SBS polymer seems to be
particularly susceptible to plasma treatment. With the increase of the CB content, the area occupied by
the bound rubber also increases initially, and then due to clustering of the CB particles, passes through
the maximum, which may explain the dependence of the concentration of the functional groups and
the adhesive joint strength on the CB content.

Although the above interpretation based on the concept of bound rubber seems to be reasonable,
it requires further research, relevant not only on the basic level but also for industrial applications.
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