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Abstract: Projection microstereolithography additive manufacturing (PµSLA-AM) systems utilize
free radical photopolymerization to selectively transform liquid resins into accurate and complex,
shaped, solid parts upon UV light exposure. The material properties are coupled with geometrical
accuracy, implying that optimizing one response will affect the other. Material properties can be
enhanced by the post-curing process, while geometry is controlled during manufacturing. This paper
uses designed experiments and analytical curing models concurrently to investigate the effects of
process parameters on the green material properties (after manufacturing and before applying post
curing), and the geometrical accuracy of the manufactured parts. It also presents a novel accumulated
energy model that considers the light absorbance of the liquid resin and solid polymer. An essential
definition, named the irradiance affected zone (IAZ), is introduced to estimate the accumulated
energy for each layer and to assess the feasibility of the geometries. Innovative methodologies are
used to minimize the effect of irradiance irregularities on the responses and to characterize the light
absorbance of liquid and cured resin. Analogous to the working curve, an empirical model is proposed
to define the critical energies required to start developing the different material properties. The results
of this study can be used to develop an appropriate curing scheme, to approximate an initial solution
and to define constraints for projection microstereolithography geometry optimization algorithms.

Keywords: additive manufacturing; stereolithography; working curve; accuracy; degree of curing;
photopolymerization; mechanical properties; microfluidics; 3D printing; digital light projector (DLP)

1. Introduction

Projection microstereolithography (PµSLA) systems belong to the vat photopolymerization process,
which is the “process in which liquid photopolymer in a vat is selectively cured by light-activated
polymerization” according to ISO/ASTM 52900:2015(E) [1]. µSLA systems were introduced in the late
1980s as rapid prototyping equipment [2]. Currently, these systems are used for different applications
like the manufacture of fully functional mechanical parts [3], microfluidics and lab on chip devices [4],
as well as patient-specific medical applications [5–8]. A wide range of materials are compatible
with SLA systems, such as pure polymers, mixed polymers, and ceramically loaded polymers [9,10].
The main advantage of the projection-based systems over the laser scanning system is the lower
manufacturing time, as the projection systems expose the whole build area to the desired UV pattern
simultaneously instead of a laser tracing each point of the pattern [11,12].
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1.1. Principle of Operation

Like other additive manufacturing processes, the first step in PµSLA is to slice the solid model
of the desired part to be manufactured. The output of this slicing process is a stack of black and
white pixelated Portable Network Graphics (PNG) images and a settings file. Each image represents
a cross-sectional projection for the corresponding layer. The white and black pixels represent the
areas where the prepolymer resin should be polymerized or not, respectively. The number of images
depends on the selected layer thickness and the part height. The minimum achievable layer thickness
is determined by the minimum vertical resolution achieved by the driving system of the machine,
which ranges from 1 to 100 µm in the case of PµSLA systems [8]. The input settings file contains the
numerical values for the optical power (typically a UV LED), layer thickness, exposure times, and the
approach and separation velocities, as well as many other parameters.

As outlined in the schematic of a typical PµSLA system shown in Figure 1, the PNG stack and
settings file are read by the machine controller, which then sends signals to the pulse width modulation
(PWM) driver of the UV LED (1) to control the average LED power. The light then passes through
light conditioning and expanding optics (2) for the light to be distributed equally and uniformly on
the entire digital micromirrors array device (DMD) (3) [13,14]. A black pixel on the PNG image will
position the corresponding micromirror to reflect the light towards a heat sink (4). A white pixel will
position the corresponding micromirror to reflect the light towards the photosensitive prepolymer
resin (5) in the vat (6) passing through the clear transparent PDMS window (7). The PNG image is
projected via the micromirrors on the DMD to cure a complete layer of prepolymer squeezed between
the previously cured layers of the part (8) and the PDMS window. The manufactured part is attached to
the vertically translating build platform (9). After curing one layer, the vat moves laterally to separate
the cured part from the PDMS window, then the build platform moves upwards by a distance equals
to the layer thickness. PDMS inhibits free-radical polymerization by an insignificantly thin layer above
its surface [11], which facilitates the separation of the part at a low separation force and minimizes part
distortion [11,15]. The accuracy of the manufactured parts depends on the minimum voxel size that
can be achieved. Instead of using white and black pixels, grayscale pixels can be used to control the
average irradiance transmitted by each micromirror to achieve sub voxel resolution [16].
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1.2. Photopolymerization

A successful PµSLA system, in general, requires an optimized resin formulation. The current
available photosensitive resins consist of a single or a mixture of monomers and oligomers,
photoinitiator, photoblocker, and enhancing additives [10,17–19]. The concentration of each component
influences the process parameter values selected to achieve the desired material properties and
geometrical accuracy [20].

When the prepolymer starts to receive the transmitted light from the DMD, the photoinitiator
absorbs the light at a specific wavelength till it reaches its molar excitation threshold, then an
intermolecular photocleavage occurs, and the photoinitiator decomposes to its active radicals. These
radicals attack the double bonds of the surrounding monomers and oligomers, starting a chain reaction
and bonding of the active monomers and oligomers with the other unsaturated ones and form polymer
chains [21]. Due to this, a state of coexistence of gel and liquid appears. As more UV energy is absorbed,
the gel further solidifies while retaining unconverted prepolymer trapped within the solid. The full
conversion cannot be achieved during the µSLA process itself and may require post-curing [10]. An
effective curing scheme achieves an acceptable amount of monomer conversion and solid phase per
layer before starting a new subsequent layer to prevent shape distortion or even complete part failure.

The ideal photosensitive prepolymer resin absorbs most of the projected irradiance for each layer
while allowing a small amount to penetrate to the previously manufactured layer to ensure interlayer
adherence. However, in practice, a significant amount of the projected irradiance penetrates the current
layer and polymerizes the uncured areas in the previous layers. The photoblocker is therefore added
to minimize the irradiance penetration effect. The overall absorbance coefficient, α, at position and
time (x, t) quantifies the absorbance of the light at a specific wavelength by the resin and is a function
of the concentrations of the different components of the material, such that,

α(x, t) = αI·CI(x, t) + αB·CB(x, t) + αP·DOC(x, t) + αo·(1−DOC(x, t)), (1)

where αI and αB are the light absorption coefficient of the photoinitiator and photo blocker respectively,
while CI and CB are their concentrations. The photodecomposition rate of the photoinitiator or blocker,
known as the photobleaching, is described as follows:

∂C j(x, t)

∂t
= β j·I(x, t)·C j, (2)

where β j is the photodecomposition coefficient of molecule j, which in this case can be either the
photoinitiator or the photoblocker, and I is the irradiance. As the absorbed energy increases, the
concentrations of both the photoinitiator and blocker decrease, which will increase the amount of the
penetrating and non-absorbed energy [21,22]. As the degree of monomer conversion (DOC) increases,
the number of prepolymer molecules decreases and the number of polymer molecules increases;
usually polymer absorption, αP, is much higher than the prepolymer molecules absorption (αo).

The Beer-Lambert equation expresses the light absorption/penetration through the material as:

I(x, z) = Io(x)·e−α·z. (3)

This equation is used to derive Jacob’s working curve Equation (4) [2,23]. The I(x, z) is the
irradiance at position x at depth z and Io is the projected irradiance at a depth equal to zero and
located above the PDMS window surface and just below the prepolymer resin. The cured depth (Cd),
described by

Cd(x) = DP· ln
(

I(x)·t
EC

)
, (4)

is more practical and specially tailored for SLA as it is described in terms of material constants that
can be evaluated experimentally, namely characteristic penetration depth DP and critical energy EC.
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The critical energy is the energy at which the prepolymer start to polymerize without developing any
cured depth (Cd = 0), while the characteristic penetration depth is the depth at which the exposure
energy reaches e−1 of its original value. The variables are exposure energy delivered represented by
I(x)·t, where t is the exposure time per layer.

1.3. Literature Review and Problem Statement

1.3.1. Material Properties

Projection microstereolithography possesses highly coupled process responses. For example, the
geometrical accuracy and the material properties of the manufactured parts, which are the focus of
this study, are intimately connected [23]. Manipulating the process parameters, for example the layer
thickness, the exposure time, and the irradiance, to optimize one response will significantly affect all
the other responses. Minimizing the effect of this coupling is one of the motivations of this study.
The literature review section summarizes some of the research efforts to optimize the PµSLA process
parameters to achieve different optimal response.

Aznarte et al. [24,25] studied the significance of twelve process parameters on the green mechanical
properties of parts. It was found that layer thickness, exposure time, part orientation, and wait time
between two successive exposures are the most significant parameters. Also, the manufactured parts
showed major property anisotropy, which is confirmed by Dizon et al. [26].

Chockalingam et al. [27] studied the effect of layer thickness, orientation, and post-curing time
on the strength of the part using the L18 orthogonal array and developed a second-order polynomial
regression model. It was found that the layer thickness is the most significant parameter. However, the
post-curing time levels chosen for this experiment were causing, rather than curing, of the polymer,
which decreased its strength as the time increased.

Monzón et al. [28] studied the effect of post-curing on the anisotropy of the manufactured parts.
The results showed that with proper post-curing time, the anisotropy diminishes completely along
all axes with a notable increase in the mechanical strength. Also, Monzón et al. [28] showed that
the position of the part on the build platform affects the mechanical properties significantly, which
can be explained by the irradiance irregularities of the DMD device depicted by Zheng et al. and
Warburg et al. [29,30].

Wu et al. [21] developed a curing kinetic model for acrylates-based photopolymers to predict
different material properties. The test specimen was made of a single-layer part using a mould and
curing light source. Yang et al. [31] developed a multi-layer curing model to estimate a theoretical
average degree of curing and developed a regression model relating material properties to the degree
of cure. The previous two models require extensive and expensive experimentation to evaluate all
the required constants and also require detailed information about the resin components and their
concentration, which is not available for most industrial resins.

1.3.2. Geometrical Accuracy

Zhou et al. [32,33] used a pixel-blending optimization algorithm to improve the geometrical
accuracy of the horizontal shapes. This algorithm enabled higher accuracy and sub-voxel resolution,
but it did not manipulate the exposure time. Mitteramskogler et al. [34] experimentally studied the
lateral growth of the dimensions with curing time.

To improve the accuracy of horizontal microchannel against the light penetration through the
previously cured layers, Gong et al. [17,35] developed a multi-layer curing model to calculate the
exposure time for each layer independently. O’Neill et al. [36] studied the effect of the number of
layers manufactured after a microchannel on the deviation of the microchannel dimensions. These
models treat the light penetration/absorption for both the liquid prepolymer and the solid polymer
as the same. However they are different. As indicated by Equation (1), as the degree of monomer
conversion increases, the prepolymer molecules converts to polymers, and the light absorption
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changes. Mostafa et al. [16] studied the effect of exposure time, grayscale, and layer thickness on the
accuracy and tolerance control of cylindrical features and showed that exposure time is the most
significant parameter.

Optimizing the concentrations of material components will improve the material properties
and the features’ geometrical accuracy. However, excessive addition of photo-blockers to minimize
light penetration through the material improves geometry but decreases strength. On the other
hand, increasing photoinitiator concentration improves the material properties but decreases the
critical energy for the prepolymer, which makes it highly sensitive and will result in distorted
geometries [17,37–39]. Increasing both concentrations by insignificant amounts also increases material
toxicity significantly, which makes the material unsuitable for medical applications.

1.4. Research Motivation and Objectives

The motivation of this study was to determine the appropriate curing scheme for producing
accurate geometries with sufficient green material properties before the post-curing process, to
withstand the manufacturing process and the subsequent post-processing. The geometry is mainly
controlled during the manufacturing process itself, while material properties can be enhanced to an
optimum with post-curing.

The coupling of the process responses entails the analysis of the effect of process parameters,
namely layer thickness, exposure time, and irradiance, of both the material properties and the
geometrical accuracy of the manufactured parts using a series of designed experiments. The irradiance
irregularities across the building platform are identified, and their effect on the measured properties is
accounted for in the experiments. A novel multi-layer curing model that differentiates between the
absorbance of light through the liquid prepolymer resin and the solid polymer while calculating the
accumulated energy per layer is developed and presented. A new terminology called the irradiance
affected zone (IAZ) is introduced to define the number of previously cured layers affected by the
exposure light of the current layer. An innovative experimental methodology for evaluating the
constants of the working curve for the developed model is presented. Analogous to the working curve,
this paper uses an empirical model to define the critical energy required to develop different material
properties. This critical energy is a result of a logarithmic fit between the measured material properties
and the numerically computed, accumulated exposure energy per layer. An experimental geometric
artifact was designed to evaluate the manufacturability of different features at different sizes. Both the
horizontal curing model and the vertical accumulated model are also used to assess the feasibility of
manufacturing different parts.

The results obtained from this study allow a new methodology to estimate the proper curing
scheme for functional parts. By knowing the different material critical energies, as defined by the
empirical model, process parameters can be tuned to achieve such energies as a minimum energy
constraint while also achieving required geometrical accuracy by using the different pixel-blending
optimization algorithms.

2. Curing Analytical Models

In this section, we present the two analytical curing models we will use in the analysis of the
results. The first model, which is a novel model, is called the vertical multilayer model, along the
z-axis. This model estimates the accumulated energy received per layer. The novelty in this model is
that it differentiates between the irradiance absorbance in liquid prepolymer and in solid polymer. The
accumulated energy per layer is further used to model the material properties. The second model is a
horizontal curing model, along the x-axis, which is used to study the effect of process parameters on
the dimensions of different features. Both models are used to assess the manufacturing feasibility of
different geometric features.
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2.1. Vertical Multilayer Model for Accumulated Energy

Various vertical energy accumulation models have been presented in different studies [35,40,41].
However, these studies assume that the irradiance absorbance is the same across liquid prepolymer
and cured polymer. In reality, the absorbance coefficient differs as suggested by (1) and is shown
experimentally in the next sections. The proposed new model uses two working curves to simulate
the irradiance penetration through both liquid resin and cured polymer. As shown in Figure 2, the
first layer of prepolymer receives its initial exposure energy, E1, which equals the multiplication of
the irradiance I projected just above the PDMS window, for layer i, which in this case equals one, and
exposure time t. During the curing of the second layer, the squeezed resin between the PDMS window
and the cured layer receives the initial exposure E2 and the first cured layer receives a portion of this
exposure energy E12 which passes through the liquid resin of layer two. Then the third layer receives
E3 and a portion of it, E23, penetrates through the liquid resin of the third layer and exposes the second
layer, then a sub-portion of it, E13, penetrates through the cured second layer and exposes the first
layer and so on.
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Figure 2. Illustration of the vertical energy accumulation model.

As described by Equation (5), each layer receives a total exposure energy of ETi which is the
summation of the initial exposure Ei of the layer i, and accumulation of the penetrating exposure
energy Ei j received by layer i from the initial exposure of the subsequent layer j. The subsequent layers
considered in the energy accumulation estimation are only within the irradiance affected zone (IAZ),
described by Equation (7). The IAZ is the number of layers having a thickness dz and penetrated by
irradiance I for time t before the exposure energy decreases below the critical energy Ec. For a certain
layer thickness value, the IAZ is a material-dependent property and defined by the characteristic
penetration depth DP1 and the critical energy Ec of the resin. The penetrating exposure energy Ei j from
layer j to layer i, described by Equation (8), is defined as the exposure energy penetrating through one
layer of liquid resin, defined by DP1 , and the previously cured layers between i and j, defined by DP2 .
The IAZ also defines the minimum horizontal channel size, in which any horizontal gaps smaller or
equal to the depth of the IAZ will cease to exist, and the vertical dimensions of the horizontal channel
will deviate depending on the layer thickness used and exposure time.

ETi = Ei +
i+IAZ∑
j=i+1

Ei j (5)

Ei = I·t (6)
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IAZ =
DP1

dz
· ln

( I·t
Ec

)
(7)

Ei j = E j·e
−( dz

DP1
+( j−i−1)· dz

DP2
)

(8)

2.2. Horizontal Curing Model

Horizontal curing models have been presented before in several studies to optimize or evaluate
horizontal geometries of a single layer [32,42–44]. Due to light dispersion, the projected irradiance from
one micromirror on to the PDMS surface I(x) at any distance x is represented by a Gaussian profile
with a Gaussian radius of ωo and maximum irradiance per micromirror of Im as presented by Equation
(9). The projector consists of a 2D array of micromirrors. However, the presented model simulates a 1D
array only. The Gaussian irradiance distribution is assumed to be axisymmetric around the center of
each micromirror, thus reduced into a 2D distribution. The maximum irradiance of each micromirror
is assumed to be the same for the micromirrors in the model. The irradiance profile projected from a
linear series of micromirrors is simulated by the superpositioning of the Gaussian profiles of all the
micromirrors using (10), where IT(x) is the superpositioned irradiance, at any distance x, projected by
N micromirrors and, P is the pitch distance between two consecutive micromirrors. This model is used
to simulate the constrained surface process, where the maximum value for the cured depth cannot
exceed the layer thickness dz. The cured depth at any distance x can be estimated by using Equations
(11) and (12):

I(x) = Im·e
−

x2

ω2
o (9)

IT(x) =
N∑

k=1

Im·e
−

(x−k·P)2

ω2
o (10)

ET(x) = IT(x)·t (11)

Cd(x) =

DP1 · ln
(

ET(x)
EC

)
, DP1 · ln

(
ET(x)

EC

)
< dz

dz, DP1 · ln
(

ET(x)
EC

)
≥ dz.

(12)

To simulate the effect of exposure time on the buildup exposure energy, and the lateral dimensions
of simple linear features, Equations (9)–(12) are used. The outcome of this simulation is depicted in
Figure 3. Figure 3a shows the results of projecting light from a linear series of nine micromirrors,
with all of them turned on when the middle mirror is turned off. The dashed blue lines represent the
individual Gaussian profiles reflected by each micromirror, while the solid blue line with triangles
represents the superpositioned irradiance profile. The red line represents the corresponding exposure
energy evaluated at different exposure times ranging from 1.2 to 2 s. The horizontal black solid
lines represent the critical energy, and the other dashed black lines represent the minimum energy
required to achieve a cured depth of 10, 25, and 50 µm. The cured depth for the different exposure
energies is evaluated and presented in Figure 3b. The black dashed line is the ideal shape, while
the black horizontal lines are representing the maximum height for the layer thickness of 10 and 25
µm. Figure 3c,d show the effect of exposure time on exposure energy and lateral dimensions for
line projected by a nine micromirrors with all of them turned on when the middle three mirrors are
turned off.
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For the outer dimensions, as the exposure time increases, so too does the exposure energy, leading
to an increase in the lateral dimensions and deviations from the ideal shape. For internal dimensions,
as the exposure time increases, exposure energy also increases, leading to a decrease in the size of
the internal gap until it ceases to exist, especially at lower layer thickness values. It is theoretically
not possible to create an internal gap by turning off one mirror in the middle of a series of turned on
mirrors. However, it is theoretically possible that an internal gap can be developed by turning off

three micromirrors. This occurs when the resultant energy is above the critical energy for each layer
thickness; therefore, the gap will be cured. For the three micromirrors case, the resultant energy is
below the critical energy for all the layer thickness values, which means it is possible to create this
gap at the studied exposure time. The superposition of irradiance in the case of linear features has
lower values compared to 2D horizontal superposition, which means that a 2D gap created within a 2D
feature is more challenging than within linear features. The conclusion is that there is some restriction
in achieving the commercially promised horizontal resolution. An experiment is designed to evaluate
the performance of these models and to study the effect of the layer thickness, exposure time, and
irradiance on the dimensions of vertical and horizontal microchannels, vertical bars, and overhangs.

3. Materials and Methods

In order to study the concurrent influence of significant process parameters, suggested by the
literature review, on the degree of monomer conversion, ultimate tensile strength, storage modulus,
and geometrical accuracy, a series of characterizations are carried out based on a design of experiments.
Since this work aims to relate the manufactured part characteristic to the independent process
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parameters, a set of experiments is carried out to determine the working curve constants of the used
material and assess the irradiance of the machine at different grayscale levels and LED power.

3.1. Material

The prepolymer liquid resin used in this study is called PR48 clear resin, (Colorado Photopolymer
Solutions, LLC, Boulder, CO, USA). This resin was chosen because it is optimized for macro
and micro-scale features, and commercially available with defined chemical composition allowing
development and optimization in labs. PR48 clear resin consists of Allnex Ebecryl 8210 with a 39.776
wt %, Sartomer SR 494 with a 39.776 wt % as oligomers, Esstech TPO + with 0.4 wt % as a photoinitiator,
Rahn Genomer 1122 with 19.888 wt % as a reactive diluent, and Mayzo OB + with 0.16 wt % as a UV
blocker [45].

3.2. Manufacturing Platform

The machine used in this study is the Ember® DLP 3D printer (Autodesk, San Rafael, CA, USA).
The LED has a maximum of 5 W and emits light at 405 nm wavelength. The DLP system has 912 ×
1140 micromirrors. The build area has a maximum volume of 64 × 40 × 130 mm3. The machine vertical
minimum resolution/layer thickness is 5 µm, and the horizontal commercial resolution is 50 µm. The
machine is an open-source platform that allows complete user control over all the process parameters.

3.3. Irradiance Characterization

Two sets of experiments are performed to characterize the irradiance of the machine. The first
experiment aims to measure the irradiance, projected on the PDMS top surface, corresponding to three
different LED power values at different input image grayscale values. The result of this set is used
to correlate the values of the LED power and grays scale value to the irradiance value. The results
will also be used in the working curve evaluation. These measurements were done by projecting a
sequence of images containing nine mono-colour grayscale squares of 10 × 10 mm2, where the colour
of the images ranges from 0 (Black) to 255 (White), as shown in Figure 4a. Then the irradiance of
the Ember printer (1) was measured by a PM100 power meter (Thorlabs, Newton, NJ, USA) (2) with
a photodiode power sensor Thorlabs S121C (3), as shown in Figure 4b. These measurements were
repeated at three different LED power values corresponding to the pulse width modulation integer
values of 255 for the maximum available power, 225, and 215; zero means the LED is off.
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Figure 4. (a) A projected image with nine 10 × 10 mm2 squares having 155 grayscale pixel value, (b)
measuring the irradiance of the Ember machine using a power meter.

The second experiment is to evaluate the irradiance map irregularities across the building area in
order to choose a suitable manufacturing region on the build platform with consistent irradiance for
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the manufacturing of the different parts. By using the same image shown in Figure 4a while projecting
it at the maximum LED power and white (255) squares and measure the irradiance of each area.

3.4. Working Curve

In order to study the effect of exposure energy on the curing depth and light penetration through
the polymer, two experiments were carried out. For each of the experiments, characteristic penetration
depth and critical energy are determined. The first experiment is used to measure the cured depth of
the polymer formed after continuous light exposure for six seconds at different irradiance levels. This
experiment is achieved by projecting an image consisting of 24 different gray-scaled tiles continuously
for six seconds, as shown in Figure 5a. The lowest irradiance corresponds to a dark grey with an
integer value of 11, while the highest irradiance corresponds to the white tile with an integer value of
255. This method will evaluate the light penetration and cured depth evolution through the liquid at
the initial exposure of the layer.
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the special designed vat, (d) CMM probe measuring the cured depth of tiles height.

The second experiment, which was inspired by the technique used in [46], will evaluate the cured
depth and light penetration through the cured polymer. It is achieved by projecting a sequenced stack
of the 24 images containing white tiles (255) only, as shown in Figure 5b. The number on each tile
represents the number of images out of the 24 images that would project the specific white tile. For
example, the first image will contain all the 24 tiles whereas, the second image will contain all the tiles
except tile number 1, the third image will contain all the tiles except 1 and 2, and similarly, the last
image will only contain tile number 24. The exposure time for each image is 200 m, and the wait time
between every two successive exposures equals the typical wait time during the normal process, which
is set to its optimal value of 1 s [25].

Both sets are carried out at two different LED powers: 255 (HI) and at 215 (LO). Each tile is 5 × 5
mm2, and the distance between any two tiles is 1 mm. The total area occupied by the 24 tiles is 23
× 35 mm2. The positioning of tiles in both sets is randomly assigned. The area where the tiles are
distributed is limited to around 1/3 of the total build area so that the tiles are placed within an area
of a tolerable irradiance map difference. A specially designed vat was used in this experiment, as
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shown in Figure 5c, to carry the liquid resin (1). The vat consists of the upper body (2) and lower body
(3) enclosing a quartz plate (4), and the two bodies are tightened together with bolt and nut through
aligned through hole (5). The upper and lower bodies were 3D printed. The unique design allows us
to remove the quartz plate after each experiment, to clean the uncured resin using isopropyl alcohol
spray and also to facilitate the measurements of the cured depth. The average cured depth based on
three measurements on different locations per cured polymer tile was evaluated. The machine used for
measurement is a Crysta-Plus M443 CMM machine (Mitutoyo, Aurora, IL, USA), which has a 0.5 µm
resolution and repeatability of 4 µm. The measurement setup is shown in Figure 5d.

3.5. Design of Experiments for Materiall and Geometric Characterization

Three experiments were designed using a 22 full factorial array, as shown in Table 1. Three
different layer thicknesses are studied with a value of 10, 25, and 50 µm. For each experiment, the
exposure time and LED power are the only variables while the layer thickness value is kept constant.

Table 1. Values of the process parameters for three designed experiments.

Layer Thickness

50 µm 25 µm 10 µm

# Time (s) Power # Time (s) Power # Time (s) Power

1 2 HI 1 1.8 HI 1 1.6 HI
2 2 LO 2 1.8 LO 2 1.6 LO
3 1.6 HI 3 1.4 HI 3 1.3 HI
4 1.6 LO 4 1.4 LO 4 1.3 LO

The reason for doing three separate experiments is that as the exposure time increases at lower
layer thickness, the printed part adheres to the PDMS window, which halts the process in the middle
and produces distorted shapes. The exposure time values were adjusted in each experiment to ensure
that the maximum limit will not cause PDMS separation problems, and its lower limit will not cause
part failure due to layer separation caused by incomplete curing. The LED power values used are the
maximum available at 255, and 215; prolonged exposure times are required below these numbers. For
each of the three experiments, the responses measured are the degree of monomer conversion, tensile
strength, storage modulus, and the dimensions of several geometric features.

3.6. Degree of Monomer Conversion

The degree of monomer conversion (DOC) is calculated using Fourier transform infrared
spectroscopy (FTIR) with attenuated total reflection (ATR) to scan both the cured polymer samples for
all the experiments and the uncured prepolymer resin. Six cubes of 5 mm each were manufactured
for each configuration and then appropriately cleaned with isopropyl alcohol. The cubes were then
finely ground before scanning. We used a Nicolet iS50 (ThermoFisher Scientific, Waltham, MA, USA)
with a build-in ATR module. Each sample was scanned 32 times with a wavenumber resolution of 2
cm−1. During polymerization, the double bond C=C is opened and converted to a single bond in the
polymer chain. The degree of conversion can be estimated by comparing the absorbance spectra of the
C=C stretching vibration peaks at 1620 cm−1 and 1635 cm−1 in the cured polymer to the same peaks in
the liquid resin, as shown in Figure 6.

The measured values are normalized against a non-variable standard bond during the reaction
to account for the differences in the amount of the scanned samples. The C=O bond is chosen as the
non-variable reference based on the material we have. The C=O has a stretching vibration at 1725 cm−1.
The DOC is calculated using Equation (13):
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DOC = 1 −

(A@1635 + A@1620)
A@1725

(Ao@1635 + Ao@1620)
Ao@1725

, (13)

where A is the peak absorbance area of the cured sample at a specific wavenumber and Ao is the peak
absorbance area for the uncured prepolymer resin at the same specific wavenumber.Polymers 2020, 12, 506 12 of 23 
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3.7. Mechanical Tensile Test

The ultimate tensile strength (UTS) was determined experimentally by manufacturing a standard
dog bone specimen 1 BB, according to ISO 527-1:2012(E) [47,48]. This specimen was explicitly chosen
due to its short overall length, which is around 30 mm and also its tight width of 4 mm with a narrow
cross-section of 2 × 2 mm2, which makes it the smallest specimen compared to the other specimens in
the ISO or ASTM. Three replicates were manufactured for each experimental configuration. The dog
bones were positioned in a defined location on the build area to minimize the irradiance irregularities
effects, which will allow more consistency in the results. The printing location is defined based on the
irradiance measurements, which are discussed in Section 4.1. The specimens were orientated flat on
the build platform, and the specimen edges were parallel to the micromirror edges. The specimens
were conditioned for seven days at room temperature of 22 ◦C and room humidity of 23% [49]. The
machine used is the 3360 series universal testing system (Instron, Norwood, MA, USA) The specimens
were tensioned at an elongation rate of 0.125 mm/min.

3.8. Dynamic Mechanical Analysis (DMA)

A dynamic mechanical analysis (DMA) with a three-point bending test is used to measure the
storage modulus corresponding to each experimental configuration. The machine used in this test is
DMA Q50 (TA Instruments, New Castle, DE, USA)). The test was performed at a temperature range
from 0 to 100 ◦C at 1 Hz cycle. The specimens are 35 × 12.5 × 4 mm3. In order to minimize the effect of
irradiance irregularities, the specimens were manufactured within the same location that was used for
the tensile test specimens and the tests were conducted in duplicate.

3.9. Geometrical Feature Measurement

A geometrical artifact was designed to study the effect of process parameters on the size of
different geometrical features. The artifact is designed to include four different features at different sizes
to determine the minimum feasible sizes for each feature and assess the accuracy of the manufacturing
process [50]. The four features included are the horizontal circular channels (the channel axis is parallel
to the x-z plan), vertical square channels (the channel axis is parallel to the z-axis), overhangs, and
vertical square bar, as shown in Figure 7. Six sizes of horizontal and vertical channels, ranging between
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150 to 750 µm, are included in the artifact. While seven sizes for the square vertical bars and overhangs
ranging from 100 to 1000 µm. For each size per feature, there are two replicates. The input images
to the machine consist of black and white pixels only with no grayscale pixels in order to study the
effect of the process parameters selected without interference from any grayscale pixels. The artifact
was positioned on the platform within a defined location with tolerable irradiance irregularities. The
base of the artifact was oriented flat above the build area, and the edges of the features were aligned
with the micromirror edges to avoid geometrical distortion caused by the diamond orientation of the
micromirrors array. The features were measured using a Stemi-508 optical microscope (Carl Zeiss,
Oberkochen, Baden-Württemberg, Germany) equipped with ZEISS Axiocam 105 colour camera with
2560 × 1920 pixels, which provides a resolution of 2.5 µm at the selected optical zooming level.
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4. Results and Discussion

4.1. Irradiance Characterization

The irradiance across the build area was significantly variable, as shown in Table 2. The maximum
difference between the highest and the lowest regions is 6.5 mW/cm2. The region with the most
consistent irradiance is the center column with an average of 18.2 mW/cm2 and was selected to
manufacture the specimens of the different experiments. The value of the average irradiance of this
region is used to measure the irradiance value corresponding to the different pixel grayscale colours
and the LED power value. The relationship between the grayscale level of the input image’s pixels and
the irradiance value is shown in Figure 8. The relation between the grayscale and the irradiance is
linear. As the grayscale integer value increases, the irradiance increases. As the LED power increases,
the irradiance value increases but not in a proportional trend.

Table 2. Measured irradiance values across the build area (mW/cm2).

Position Left Center Right

Top 12.5 17 12.5
Middle 14.3 18.7 14.7
Bottom 15.6 19 16.2
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4.2. Working Curves

The results for the continuous light exposure pattern are depicted in Figure 9a. The critical energy
(Ec) required to initiate the photopolymerization (Cd = 0) equals 9.5 mJ/cm2 for both the HI and LO
LED powers. On the other hand, the characteristic penetration depth (DP), which is the slope of this
curve, if plotted on a semi-log plot, is different for the different LED power. The DP of the continuous
pattern at high LED power is 71 µm, and at the lower power is 62 µm. Figure 9b depicts the results
for the sequential discrete pattern. The critical energy (Ec) for this pattern equals 6.5 mJ/cm2 for both
the HI and LO LED powers. The DP of the discrete pattern at high LED power is 43 µm and for the
lower power is 41 µm. The continuous exposure generally shows a higher Cd for the same amount
of received energy compared to the discrete pattern. The average critical energy of the two curves
equal 8 mJ/cm2, and this energy is used in the curing models to simulate the different scenarios. The
logarithmic fitted curves have an average R2 of 0.93. The deviation between the fitted lines at the two
LED power within the same the exposure pattern starts to significantly increase after 20 mJ/cm2 to
reach approximately 15 µm at 100 mJ/cm2 for the continuous pattern and 5 µm at 100 mJ/cm2 for the
sequential discrete pattern. These results show that the cured depth is sensitive to the irradiance level.
The cured depth of the polymer resulting from the initial exposure is different from the cured depth
formed by subsequent exposures through cured layers, for the same amount of received energy. For
example, at 60 mJ/cm2, the difference between the cured depth for continuous exposure and the one for
the sequential discrete exposure is around 50 µm. These results show that there is a difference between
the absorbance of the prepolymer and the cured polymer.

4.3. Material Properties Characterization

Figure 10a–c depicts the effect of exposure time and the ultimate tensile strength (UTS), storage
modulus, and degree of monomer conversion (DOC), respectively. Each plotted line within each figure
represents a particular layer thickness and LED power. There is a general trend that can be easily
determined in the three figures: as the layer thickness decreases, the material properties increase,
and within the same layer thickness, as the exposure time or the LED power increase, the material
properties increase. For all of the properties measured, the layer thickness was found to be the most
significant parameter followed by exposure time and LED power. For ultimate tensile strength, the
maximum green strength achieved is 24 MPa at 10 µm layer thickness and 1.6 s exposure time at HI
power, while the lowest achieved UTS was 4 MPa at 50 µm layer thickness and 1.6 s at a LO LED
power. The average error is around 1.7 MPa, with a standard deviation of 0.68 MPa. The maximum
achieved storage modulus is 1250 MPa at 10 µm layer thickness and 1.6 s exposure time at HI power,
while the lowest achieved storage modulus was 860 MPa at 50 µm layer thickness and 1.6 s at a low
LED power. The average error is around 37 MPa with a standard deviation of 19.5 MPa. For the
degree of monomer conversion, the maximum achieved degree is 0.84 at 10 µm layer thickness and 1.6
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s exposure time at HI power, while the lowest achieved UTS was 0.43 a 50 µm layer thickness and 1.6 s
at a low LED power.
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Figure 10. The effect of exposure time, layer thickness, and LED power on (a) Ultimate tensile strength,
(b) Storage modulus, and (c) Degree of monomer conversion.

During the tensile testing, the material showed a consistent brittle failure for all the tested
specimens and their replicates, as shown in Figure 11a,b. The breakage is perfectly straight, with
no signs of necking. The breakage happens to align with the edges of the micromirrors square
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array footprint on the specimen. The layer lines are visible in the cross-section of the specimen
manufactured at the 50 µm-layer thickness, as shown in Figure 11c. However, the cross-section of a
specimen manufactured at a 10 µm- layer thickness, as shown in Figure 11d, is almost seamless with
no layers lines.
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Figure 11. Brittle failure of the UTS specimen from the top view for (a) 50 µm and (b) 10 µm layer
thickness, from the section view for (c) 50 µm and (d) 10 µm layer thickness.

The accumulated energy per layer ET, calculated using the vertical energy accumulation model
(5), is plotted against exposure time, layer thickness, and LED power, as shown in Figure 12a. This
plot shows the same trend as the material properties trend with the same process parameters, as
shown in Figure 10, which indicates a significant relationship between them. The maximum calculated
accumulated energy per layer is 140 mJ/cm2 and is achieved at a layer thickness of 10 µm and a 1.6 s
exposure time at HI power while the lowest is 42 mJ/cm2 is obtained at a layer thickness of 50 µm and
a 1.6 s exposure at a low LED power.

By plotting the experimental results for any material property against the corresponding calculated
accumulated energy per layer, two distinctive visible point sets are found where one of the point sets
belong to the HI irradiance while the other set belongs to LO irradiance. These results suggest that
for each irradiance level, there is a different trend line. Therefore, two different regression models are
estimated for each LED power level per material property. For the UTS and DOC, this separation is
easily determined. However, for the storage modulus, it seems that one regression model for both
power level is enough, as shown in Figure 12.

We suggest an empirical regression model based on a logarithmic fitting resembling the working
curve model:

γ = C1· ln
(ET

C2

)
, (14)

where γ is a general output variable for any material property and ET is the calculated accumulated
energy per layer (5), while C1 and C2 are the regression model constants. By analogy with the working
curve Equation (4), C1 will be the characteristic material property constant while C2 is the critical
energy for this property to start evolving. Using MATLAB least-squares fit function for nonlinear
curves, the different constants for each material property were obtained and presented in Table 3. The
average R2 for all the fitted models is around 0.9. The newly defined critical energies can be used
towards defining optimization constraints better than the cured depth critical energy, which does not
guarantee that the part will withstand the separation forces or even its weight during printing. By
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knowing the projected irradiance value, the exposure time corresponding to the critical energy can be
calculated and should be treated as the minimum bound for exposure time value.
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Figure 12. (a) Effect of exposure time and layer thickness on accumulated energy, Relation between
accumulated energy per layer ET and (b) Ultimate tensile strength, (c) Storage modulus, (d) DOC.

Table 3. Constants values for material property regression model.

Material Property (γ) Constant HI Power LO Power

UTS (MPa) C1 (MPa) 12.86 12.7
C2 (mJ/cm2) 23.27 31

Storage Modulus (MPa) C1 (MPa) 240 294
C2 (mJ/cm2) 0.806 2

DOC (AU) C1 (AU) 0.281 0.176
C2 (mJ/cm2) 8.7 3.2

4.4. Geometrical Features Characterization

The process parameters affect the size and the form of the different features in the artifact. Figure 13
shows some optical microscope images for different sizes of horizontal circular channels, vertical
square channels, vertical square bars, and rectangular overhangs, manufactured at different curing
schemes. Tables 4 and 5 present all the measured dimensions for all the manufactured features per
all experimental configurations. The features that failed to be manufactured are denoted by the
symbol (×).
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Figure 13. Selected optical microscope measurement images for different sizes of horizontal circular
channels, vertical square channels, vertical square bars, and rectangular overhangs.

For horizontal channels, the horizontal and vertical diameters were measured, with a noticeable
oblong aspect ratio distortion in the manufactured geometry along the horizontal plane, as shown
in Table 4. As the exposure time independently increases, the horizontal diameter of the channels
decreases, as previously predicted by the horizontal curing model. Moreover, as the exposure time
increases and the layer thickness decreases, the vertical diameter decreases. The minimum horizontal
manufacturable channel was 350 µm diameter, achievable only by using the 50 µm layer thickness
configuration. The channels with 200 and 150 µm diameters were not manufactured for any of the
configurations. It was found that the channel with the 500 µm diameter was not achieved within the
10 µm layer thickness configuration. Theoretically, the 150 and the 200 µm channels are predicted to be
manufacturable from the view of the horizontal curing model. However, from the accumulated energy
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vertical model, these channels are entirely within the IAZ, which makes them impracticable. In the
configurations with a layer thickness of 50 µm, the staircase effect is visible, as shown in Figure 13.
For the vertical bars, the minimum bar achieved was 100 µm, but it was not stiff enough to stand
vertically. The bar was flexible enough to be bent without breaking. As the exposure time decreases,
the dimension of the vertical bar also decreases, which was predicted by the horizontal curing model.

Table 4. Average measured horizontal (H) and vertical (V) diameters of the horizontal channels and
width of the vertical bars.

dz #
Horizontal Circular Channels (µm) Vertical Square Bars (µm)

750 H 750 V 650 H 650 V 500 H 500 V 350 H 350 V 1000 750 500 250 200 150

50 µm

1 705 614 636 564 471 468 343 323 1022 769 509 261 200 ×

2 752 669 640 623 501 468 339 333 1034 776 503 240 175 ×

3 733 683 634 637 505 488 349 356 1017 773 505 257 199 138
4 762 666 683 656 544 500 390 × 1002 748 474 229 × ×

25 µm

1 732 624 575 573 × × × × 1055 796 519 263 220 ×

2 766 660 643 660 541 495 × × 996 751 428 209 × ×

3 665 665 602 588 × × × × 1027 767 506 240 202 ×

4 667 671 613 584 472 443 × × 1057 791 517 258 207 ×

10 µm

1 747 626 681 586 × × × × 979 726 409 × × ×

2 782 666 758 587 × × × × 929 710 374 × × ×

3 738 646 663 584 × × × × 993 749 450 × × ×

4 805 675 707 575 × × × × 980 730 445 × × ×

Table 5. Average measured width of the vertical square channels and the thickness of the overhangs.

dz #
Vertical Square Channels (µm) Over Hangs (µm)

750 650 500 350 200 150 1000 750 500 250 200 150 100

50 µm

1 775 666 511 362 201 127 1050 790 570 270 234 176 105
2 756 673 501 353 179 × 1038 787 554 263 226 129 83
3 784 676 511 345 200 142 1011 778 543 256 220 133 ×

4 776 677 519 370 199 168 1002 775 533 249 208 132 60

25 µm

1 778 657 501 296 × × 1024 811 562 301 235 177 111
2 813 701 534 387 223 167 1091 787 544 268 246 177 90
3 777 689 527 361 196 125 1053 809 526 261 210 181 122
4 775 662 492 339 178 × 1074 821 557 260 200 120 ×

10 µm

1 866 738 577 406 × × 1074 817 600 293 229 145 ×

2 864 768 624 441 × × 1060 805 583 286 216 × ×

3 833 706 555 357 × × 1055 796 584 279 230 × ×

4 853 701 570 390 229 × 1081 822 525 264 177 × ×

The vertical square channels are more accurate and manufacturable compared to the horizontal
channels. The minimum created channel was 150 µm diameter and it was achieved within the 25 and
50 µm layer thickness configurations but not within 10 µm layer thickness ones, as shown in Table 5. It
was found that, as the exposure time decreases, the dimensions of the vertical channels increase. The
vertical channel dimensions depend mainly on the horizontal curing model as there is no projected
irradiance from any layer within the channel gap, which means that the layer thickness does not have
a significant effect compared to the exposure time. Also, as the size of the channel decreases, its shape
tends to be circular rather than square, as designed. For the overhang structures, the minimum size
achieved was 100 µm for both the 25 and 50 µm layer thickness configurations but not for the 10
µm layer thickness, as shown in Table 4. It was found that as the exposure time increases and the
layer thickness decreases, the overhang thickness increases. An interesting phenomenon is shown
in Figure 13 under the overhang section for configuration number 4 at 50 µm layer thickness. While
manufacturing the 250 µm over-hang, the first layer was weak and tore during the separation. The
reason for this phenomenon is that configuration 4 has the lowest exposure time and LED power for
all experiments. Layer thickness and exposure time are the most significant parameters for both the
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horizontal channels and overhangs, while exposure time is most significant for vertical channels and
bars. The LED power was the least significant parameter for all the features.

5. Conclusions

This paper provides a comprehensive analytical and experimental investigation of the projection
microstereolithography additive manufacturing process. It studies the effect of the process parameters,
namely, layer thickness, exposure time, and LED power on the ultimate tensile strength, storage
modulus, degree of monomer conversion, and different micro geometrical features. A novel multilayer
vertical energy accumulation model is presented, which considers the difference between the light
absorbance through the liquid prepolymer resin and the solid cured polymer. This model is used to
explain why a part manufactured with 10 µm layer thickness has double or more the strength, the
storage modulus, or the degree of monomer conversion of a part of 50 µm layer thickness for the same
exposure time and LED power.

Original terminology, the Irradiance affected zone (IAZ), is introduced, which defines the number
of layers affected by the projected irradiance for particular exposure time and is a function of the
process parameters and the material working curve constants. The IAZ sets a limit on the number of
layers considered in calculating the accumulated energy for each of the previously cured layers and
also defines the minimum feasible size of horizontal channels to be manufactured for a specific material
at process parameters. A horizontal curing model is discussed and used to assess the minimum
feasible size for different geometrical results and also to show that, as the exposure time increases, the
diameters of the channels decrease, and the diameters of solid bars increase.

We present an innovative experimental methodology to evaluate the constants of the working
curve for the multi-layer curing model. The results show that LED power affects the cured depth for
the same exposure time. Also, the light penetration through a liquid prepolymer was found to be
higher than through a cured polymer, which explains the necessity to consider these differences in
the accumulated energy model. The machine irradiance was characterized, and it was found that the
PµSLA have significant irradiance irregularities. To minimize the effect of the irradiance irregularities
on the measured responses, a distinct region on the build area with tolerable irradiance difference was
used strictly to manufacture all the test specimens. For the material properties, the layer thickness
was found to be the most significant parameter controlling the process outcomes. The next most
significant parameter was exposure time. LED power was the least significant process parameter. It is
crucial to select the proper process parameter to achieve the geometrical dimensions required while
having enough green strength for the part to hold itself against its own weight, separation force, and
post-processing. A generic empirical logarithmic regression is proposed to predict the different material
properties based on the process parameters and the material working curve constants, represented by
the accumulated energy. The proposed model facilitates the development of prediction models based
on simple experimental procedures. Because this model is analogous to the working curve equation, it
can define the critical amount of energy required to start developing the different material properties.

A geometry artifact was designed to study the effect of the process parameters on various features
of different sizes. It was found that horizontal channels smaller than the irradiance affected zone will
not be feasible physically to be manufactured. The layer thickness and exposure time are the most
significant parameters for both the horizontal channels and overhangs, while the exposure time is the
most significant for vertical channels and bars. The LED power was the least significant parameter for
all the features. The results of this paper can be used for the general optimization of the process in
terms of geometry, speeding up the process by decreasing the exposure time without harming strength.
It also can be used for estimating an initial solution for dedicated geometry optimization algorithms.
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