Supplementary Material

Fluorination Effect for Highly Conjugated Alternating Copolymers Involving thienylenevinylene-thiophene Flanked Benzodithiophene and Benzothiadiazole Subunits in Photovoltaic Application

Lili An¹, Yubo Huang², Xu Wang², Zezhou Liang^{2,3}, Jianfeng Li², Junfeng Tong²

¹ School of Chemical Engineering, Northwest Minzu University, Key Laboratory for Utility of Environment- Friendly Composite Materials and Biomass in University of Gansu Province, Lanzhou 730030, P. R. China

² School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, P. R. China.

³ CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China;

* Correspondence: anlili2011@163.com (L. A.).

Synthesis of fluorinated FBTBr₂ [S1,S2]

Scheme S1 The synthetic route of fluorinated dibromide FBTBr₂.

4,7-Dibromobenzo[c][1,2,5]thiadiazole (BTBr₂)

¹H NMR (400 MHz, CDCl₃): 7.73 (s, 2H). Alal. Calcd. for C₆H₂Br₂N₂S: C, 24.51, H, 0.69, N, 9.53%; Found: C, 24.40%; H, 0.58%; N, 9.61%.

4,7-Dibromo-5,6-difluorobenzo[*c*][1,2,5]thiadiazole (FBTBr₂)

¹³C NMR (125 MHz, CDCl₃): 152.60, 150.90, 148.81, 99.32. Alal. Calcd. for C₆Br₂F₂N₂S: C, 21.84, N, 8.49%; Found: C, 21.70%; N, 8.59%.

2,6-Bis(trimethyltin)-4,8-bis[5-((*E*)-2-(4,5-didecylthien-2-yl)vinyl)-5-thien-2-yl]benzo[1,2 -*b*:4,5-*b'*]dithiophene (BDT-TVTSn)

¹H NMR (CDCl₃, 600 MHz), δ (ppm): 7.71 (t, J = 14.4 Hz, 2H), 7.39 (d, J = 3.6 Hz, 2H), 7.13 (d, J = 3.6 Hz, 2H), 7.05 (d, J = 16.2 Hz, 2H), 6.98 (d, J = 15.6 Hz, 2H), 6.81 (s, 2H), 2.71 (t, J = 7.8 Hz, 4H), 2.46 (t, J = 7.8 Hz, 4H), 1.65 (m, 4H), 1.54 (m, 4H), 1.39~1.28 (m, 56H), 0.89 (t, J = 7.2 Hz, 12H), 0.42 (t, J = 28.8 Hz, 18H). ¹³C NMR (CDCl₃, 125 MHz), δ (ppm): 143.74, 143.42, 142.96, 139.16, 138.71, 137.94, 137.45, 131.05, 128.83, 128.67, 125.92, 122.56, 122.26, 119.84, 110.57, 32.04, 31.86, 30.82, 29.76, 29.75, 29.74, 29.70, 29.66, 29.59, 29.57, 29.47, 29.44, 28.29, 28.24, 22.82, 14.25. Anal. Calcd. for C₇₆H₁₁₄S₆Sn: C, 62.63%; H, 7.88%. Found: C, 62.44%; H, 7.71%.

Fig. S2 ¹³C NMR spectrum of FBTBr₂ in CDCl₃.

Fig. S3 ¹H NMR spectrum of BDT-TVTSn in CDCl₃.

Fig. S4¹³C NMR spectrum of BDT-TVTSn in CDCl₃.

Polymer	Yield (%)	$M_{\rm n}$ (kDa)	$M_{\rm w}$ (kDa)	PDI	$T_{\rm d}$ (°C)
PBDT-TVT-BT	67.8	17.4	33.1	1.90	362
PBDT-TVT-FBT	69.6	18.3	38.4	2.10	362

Table S1. Yields, GPC data and thermal properties for the studied copolymers.

Table S2. The photovoltaic performance of the PSCs devices under varied fabrication processes.

Active layer (w:w)	DIO	$V_{ m OC}$ $({ m V})^{ m a}$	$J_{\rm SC}$ (mA cm ⁻²) ^{a,b}	<i>FF</i> (%) ^a	PCE (%) ^a	$R_{ m SH}$ $(\Omega m cm^2)^c$	$R_{\rm S}$ $(\Omega \ {\rm cm}^2)^{\rm c}$
PBDT-TVT-BT / PC ₇₁ BM (1:1)	0%	0.74±0.01	8.95±0.40 (8.65)	49.99±0.32	3.31±0.21	427.38	17.53
PBDT-TVT-BT / PC ₇₁ BM (1:1.5)	0%	0.74±0.01	9.29±0.45 (9.00)	56.67±0.39	3.89±0.30	819.22	13.36
PBDT-TVT-BT / PC ₇₁ BM (1:2)	0%	0.74±0.01	9.09±0.38 (8.83)	53.71±0.34	3.61±0.20	790.33	16.37
PBDT-TVT-BT / PC ₇₁ BM (1:1.5)	3%	0.74±0.01	10.04±0.31 (9.94)	60.57±0.41	4.50±0.29	1044.10	11.33
PBDT-TVT-FBT/ PC ₇₁ BM (1:1)	0%	0.79±0.01	8.89±0.38 (8.69)	55.71±0.37	3.91±0.29	978.67	13.02
PBDT-TVT-FBT / PC $_{1}$ BM (1:1.5)	0%	0.79±0.01	9.44±0.41 (8.23)	58.67±0.43	4.38±0.35	1096.98	11.37
PBDT-TVT-FBT / PC $_{1}$ BM (1·2)	0%	0.78±0.01	9.46 ± 0.45 (9.31)	56.19±0.42	4.15±0.31	981.93	12.73
PBDT-TVT-FBT / PC ₇₁ BM (1:1.5)	3%	0.78±0.01	10.55±0.45 (10.35)	63.44±0.45	5.22±0.30	1560.89	9.17

^a The statistical results were obtained from 10 independent cells, and the \pm refer to the standard deviation. ^bThe values in the parentheses are the integrated currents obtained from the EQE curves.

 $^{c}R_{SH}$ and R_{S} are deduced from the inverse slope at V = 0 and $V = V_{OC}$ in the J-V curves under illumination.

Active layer	Ratios/Additive	Thickness (nm)	Slope	$\mu_{\rm h} ({\rm cm}^2 {\rm V}^{-1} {\rm s}^{-1})$			
PBDT-TVT-BT:PC71BM	1:1.5/3%DIO	110	20.64	1.90×10^{-4}			
PBDT-TVT-FBT:PC71BM	1:1.5/3%DIO	112	25.52	3.06×10 ⁻⁴			
Table S4 Electron mobilities of the optimized device measured by SCLC model.							
Active layer	Ratios/Additive	Thickness (nm)	Slope	$\mu_{\rm e} ({\rm cm}^2{\rm V}^{-1}{\rm s}^{-1})$			
PBDT-TVT-BT:PC71BM	1:1.5/3%DIO	107	10.49	4.51×10 ⁻⁵			
PBDT-TVT-FBT:PC71BM	1:1.5/3%DIO	117	15.03	1.21×10^{-4}			

Table S3 Hole mobilities of the optimized devices measured by SCLC model.

Fig. S5 UV-vis absorption spectra of copolymers PBDT-TVT-BT and PBDT-TVT-FBT dissolved in CB at various concentrations and calculation of molar absorption coefficient.

Fig. S6 *J-V* curves of PBDT-TVT-BT and PBDT-TVT-FBT with different weight ratio to PC₇₁BM, and using 3%DIO additive and EQE spectra of corresponding PSCs.

Fig. S7 *J-V* curves of hole-only (a) and electron-only (b) devices for the PBDT-TVT-BT:PC₇₁BM and PBDT-TVT-FBT:PC₇₁BM.

Reference

- [S1] Zhang, Y.; Chien, S.-C.; Chen, K.-S.; Yip, H.-L.; Sun, Y.; Davies, J. A.; Chen F.-C.; Jen, A.K.-Y. Increased open circuit voltage in fluorinated benzothiadiazole-based alternating conjugated polymers. *Chem. Commun.* 2011, 47, 11026–11028.
- [S2] Guo, P.; Luo, G.; Su, Q.; Li, J.; Zhang, P.; Tong, J.; Yang, C.; Xia, Y.; Wu, H. Boosting up performance of inverted photovoltaic cells from bis(alkylthien-2-yl)dithieno[2,3-d:2',3'-d']benzo[1,2b:4',5'-b']dithiophene-based copolymers by advantageous vertical phase separation. ACS Appl. Mater. Interfaces 2017, 9, 10937–10945.