

Probing the Dynamics of Li⁺ Ions on the Crystal Surface: A Solid-State NMR Study

Figure S1. The static quantitative ⁷Li NMR spectra of the mixture of IM-PEO/Li⁺ and Li₂CO₃ powder with different immersion time (black lines). The sample contains 13 mg IM240-PEO/Li⁺ and 8 mg Li₂CO₃. The experimental temperature is at 305 K. The blue dotted lines and green dotted lines denote the fitting peaks of IM-PEO/Li⁺ and Li₂CO₃, respectively. The red lines denote the fitting peak of the mixture of IM-PEO/Li⁺ and Li₂CO₃.

The ratio between Li⁺ and oxygen atoms in the coordination structure was determined as the following (using IM240-PEO/Li⁺ as the example): Firstly, we measured the quantitative ⁷Li NMR spectrum on a mixture of Li₂CO₃ and IM240-PEO/Li⁺ in which the weight of Li₂CO₃ and IM240-PEO/Li⁺ were known. By comparing the signal of Li₂CO₃ and with that of IM240-PEO/Li⁺, we could obtain the Li⁺ concentration of IM240-PEO/Li⁺ (mol/g). From DSC, we obtained the amorphous content of IM240-PEO/Li⁺ from which the mole concentration of EO was obtained (mol/g). Combination of the ⁷Li NMR the DSC measurement then yields the ratio of Li⁺/EO in the samples.

Figure S2. The WAXD patterns and DSC curves of the samples prepared using the different immersing time. The WAXD patterns were acquired at room temperature.

Figure S3. The ⁷Li NMR spectra of the samples prepared using the different immersing time. The experimental temperature was 300 K.

a)

b)

c)

d)

1 0 -1 -2 -3 ⁷Li Chemical Shift (ppm)

Figure S4. The ⁷Li NMR spectra of the (PEO)₃LiCF₃SO₃. **a**): ⁷Li CP/MAS spectrum with a ¹H-⁷Li contact time of 500 μs. **b**) - **d**): The ⁷Li single-pulse NMR spectra, acquired at different temperatures.

Figure S4a and S4b show the ¹H-⁷Li CP/MAS and ⁷Li single pulse spectra of (PEO)₃LiCF₃SO₃. In the ¹H-⁷Li CP/MAS spectrum, only a broad peak centered at –1.2 ppm appears. This indicates that the Li⁺ ions associated to this signal have a relatively strong ¹H-⁷Li dipole coupling, which is typical in the crystalline PEO/Li⁺ complexes. The disappearance of the ⁷Li signal centered at –0.91 ppm can be attributed to the weak ¹H-⁷Li dipole coupling, which is often observed in the amorphous regions of the PEO/Li⁺ complexes. In the ⁷Li single pulse spectrum of (PEO)₃LiCF₃SO₃ in Figure S4b, both the signals at –0.90 ppm and –1.20 ppm are observed. This is because the single pulse sequence cannot differentiate the amorphous and crystalline signals in the given experimental condition. Figure S4c and S4d show the ⁷Li single pulse spectra of (PEO)₃LiCF₃SO₃, acquired at 310 K and 300 K. It is observed that with increasing temperature the signals at –0.90 ppm become clearer and stronger, whereas the signal at –1.20 ppm remains almost unchanged. This is well in line with our signal assignment that the signal at –0.90 ppm is the amorphous signal and the signal at –1.20 ppm is the crystalline signal.

Figure S5. The ¹⁹F single pulse MAS NMR spectrum of IM240-PEO/Li⁺. The experimental temperature is 300 K.

The state of anions in the IM240-PEO/Li⁺ sample is an interesting question, but not clear at this point. To have an electrostatic equilibrium, the anions must also get into the crystal surface regions together with the Li⁺ ions. Meanwhile, although much larger than Li⁺ ion, the anion CF₃SO₃⁻ is relatively small compared with the interstices between the PEO chains in the amorphous regions. Therefore, the anion CF₃SO₃⁻ will not only cover the surface of the lamellar segments. According to the literatures (*Macromolecules 1999, 32, 808-813.; Science 1993, 5135, 883-885.*), Li⁺ ions can form a stale coordination structure consisting of three ether oxygen atoms and one oxygen from each of two different CF₃SO₃⁻ anions. We believe that similar coordination structures will also exist on the crystal surface regions. Figure S5 shows the ¹⁹F NMR spectrum of IM240-PEO/Li⁺. Only one signal observed in the spectrum, indicating that the anions only have one state in the sample.