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Abstract: Linear and nonlinear rheological properties of model comb polystyrenes (PS) with loosely
to densely grafted architectures were measured under small and medium amplitude oscillatory shear
(SAOS and MAOS) flow. This comb PS set had the same length of backbone and branches but varied
in the number of branches from 3 to 120 branches. Linear viscoelastic properties of the comb PS were
compared with the hierarchical model predictions. The model underpredicted zero-shear viscosity
and backbone plateau modulus of densely branched comb with 60 or 120 branches because the model
does not include the effect of side chain crowding. First- and third-harmonic nonlinearities reflected
the hierarchy in the relaxation motion of comb structures. Notably, the low-frequency plateau values
of first-harmonic MAOS moduli scaled with M−2

w (total molecular weight), reflecting dynamic tube
dilution (DTD) by relaxed branches. Relative intrinsic nonlinearity Q0 exhibited the difference
between comb and bottlebrush via no low-frequency Q0 peak of bottlebrush corresponding to
backbone relaxation, which is probably related to the stretched backbone conformation in bottlebrush.

Keywords: comb polymer; Bottlebrush polymer; medium amplitude oscillatory shear (MAOS);
FT rheology; nonlinear parameter

1. Introduction

Understanding the rheological properties of branched polymers is essential for all forms of
production and processing in the polymer industry because the processability of polymers is highly
affected by the degree of long-chain branches (LCB) [1]. A branched polymer with LCB exhibits
remarkable linear and nonlinear rheological properties, such as hierarchical relaxation, weak shear
thinning with faster onset and strain hardening at low rates in elongation [2–6]. However, full
characterization of the effect of LCB on rheological properties is still challenging because it requires
detailed molecular information of molecular weight and polydispersity of branches, the density of
branch points and the distribution of branches along the backbone or other branches [7]. Instead, many
researches have used well-defined model branched polymers of star [8], pom-pom [9], comb [10] and
dendritic structures [11]. Architectures of these polymers are a substructure of industrial polymers
with LCB.

Comb polymer is the simplest class of model branched polymer with multiple branch points.
Generally, it consists of a linear backbone and multiple side branches [12]. Comb architecture is an
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important chain structure because metallocene-catalyzed synthesis can lead to sparsely branched comb
polymers [13]. The fundamental concept of the comb polymer is the hierarchy in relaxation motions [6].
In other words, the backbone chain can relax after the branches relax completely. This hierarchical
relaxation process affects both linear and nonlinear rheology of comb polymers. Kapnistos, et al. [14]
reported that linear rheology of comb polystyrenes (PS) with many entangled branches exhibited two
rubbery plateaus, one relating to the branch relaxation and the other relating to the backbone relaxation.
Nonlinear start-up shear measurements of these comb PS exhibited double stress overshoot behavior
at shear rates exceeding the inverse of branch relaxation time [15]. In particular, the first overshoot was
associated with the orientation of branches, while the second overshoot was associated with the stretch
of backbone. Medium amplitude oscillatory shear (MAOS) measurements, one of the nonlinear shear
tests, also reflected the hierarchical relaxation of the comb PS when relative intrinsic nonlinearity Q0

was plotted as a function of excitation frequency [16]. Two distinct Q0 peaks corresponded to branch
relaxation at a higher frequency and backbone relaxation at a lower frequency.

The conformation of comb structure can be controlled by tuning the grafting density and the degree
of polymerization of the side branches. Sheiko and coworkers [17–19] identified four conformational
regimes in terms of these two parameters using scaling analysis: loosely grafted comb (LC), densely
grafted comb (DC), loosely grafted bottlebrush (LB) and densely grafted bottlebrush (DB). Bottlebrush
polymers have comb-like structures with a very high density of branches, usually incorporating up
to one grafted side chains on every backbone repeat unit [20,21]. A significant difference between
comb and bottlebrush polymers is the backbone conformation. The backbone of the bottlebrush is
stretched by side chain crowding, whereas comb polymers have unperturbed Gaussian backbone and
branches [17–19]. Recently, Abbasi, Faust, Riazi and Wilhelm [21] synthesized a series of well-defined
comb and bottlebrush PS where the same backbone length was used but the number of entangled
branches was systematically changed. They also investigated the effect of the number of branches on
the linear viscoelastic (zero-shear viscosity) and nonlinear viscoelastic properties (extensional viscosity
and strain hardening factor) of the model comb PS set. The results showed that a relative minimum in
the zero-shear viscosity and a maximum in strain hardening factor were observed near a transition
point from DC to LB, which was associated with the stretched backbone conformation grafted with
crowding side chains [21,22]. Up to now, most rheological studies on bottlebrush polymers have
focused on linear shear flow [20,23,24] and extensional flow [25,26]. There has been no report on
nonlinear shear rheology.

In the current study, we investigated the MAOS behavior of the comb and bottlebrush PS used
in Abbasi, Faust, Riazi and Wilhelm [21]. Recently, MAOS rheology has been used to characterize
different polymer architectures, such as linear [27,28], 3-arm star [29] and comb [16,30]. When the
relative intrinsic nonlinearity Q0, one of MAOS material parameters, was plotted as a function of
excitation frequency, it showed a different number of local peaks depending on the number of terminal
relaxation processes in polymer architectures. In particular, Hyun and Wilhelm [16] plotted Q0 master
curves of comb PS to investigate the effect of branch length on Q0 at a fixed number of branches (~30).
Reversely, we present the effect of the number of branches on Q0 at a fixed branch length. Furthermore,
we present MAOS results of a bottlebrush polymer for the first time.

The rest of the paper is organized as follows: In Section 2, we outline the theoretical background
and provide the definitions of MAOS material functions. Molecular characteristics of the model comb
PS used are summarized in Section 3. Section 4 consists of four contents: (1) summary of linear
viscoelastic data obtained from small amplitude oscillatory shear (SAOS) tests, (2) prediction results of
the hierarchical model, (3) characterization of MAOS behavior of the comb PS set and (4) comparison
of SAOS and MAOS material parameters in terms of characteristic relaxation times.
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2. Definition of MAOS Material Functions

A sinusoidal strain excitation of amplitude γ0 and frequency ω [γ(t) = γ0 sin(ωt)] generates an
oscillatory shear stress response σ(t). The obtained stress response can be decomposed into higher
harmonic contributions via Fourier transformation as follows [31,32]:

σ(t) = γ0

∞∑
n=1,odd

{
G′n(ω,γ0) sin(nωt) + G′′ n(ω,γ0) cos(nωt)

}
, (1)

where G′n(ω, γ0) and G′′n (ω, γ0) are the Fourier moduli. The Fourier moduli can be represented by
power series expansions in higher powers of γ0 [33,34]. The first- and third-harmonic Fourier moduli
are expanded as follows:

G′1(ω,γ0) = G′(ω) + G′31(ω)γ2
0 + O

(
γ4

0

)
G′′ 1(ω,γ0) = G′′ (ω) + G′′ 31(ω)γ2

0 + O
(
γ4

0

)
G′3(ω,γ0) = G′33(ω)γ2

0 + O
(
γ4

0

)
G′′ 3(ω,γ0) = G′′ 33(ω)γ2

0 + O
(
γ4

0

) (2)

Therefore, Equation (1) can be re-written up to the third harmonic as

σ(t) = γ0
{
G′(ω) sin(ωt) + G′′ (ω) cos(ωt)

}
+γ3

0

{
G′31(ω) sin(ωt) + G′′ 31(ω) cos(ωt)
+G′33(ω) sin(3ωt) + G′′ 33(ω) cos(3ωt)

}
+ O

(
γ5

0

) (3)

In Equation (3), the linear amplitude scaling term represents linear viscoelastic or SAOS response,
characterized by two SAOS moduli [G′(ω) and G”(ω)]. The cubic amplitude scaling term represents
medium amplitude oscillatory shear (MAOS) response, characterized by four MAOS moduli [G′31(ω),
G′′31(ω), G′33(ω) and G′′33(ω)]. The first-harmonic MAOS moduli [G′31(ω) and G′′31(ω)] affect asymptotic
deviations in average (i.e., intercycle) elasticity or viscosity by causing rotations of elastic or viscous
Lissajous curves [35,36]. The third-harmonic moduli, which have been termed intracycle nonlinearities,
generate local deviations from linear viscoelastic stress within an oscillation cycle [35,37]. Under MAOS
flow, harmonic contributions higher than fifth are ignored and thus MAOS response can be reconstructed
by two SAOS moduli and four MAOS moduli.

Another MAOS material parameter can be obtained from the Fourier-transform (FT) rheology
framework. The relative intensity of the third harmonic I3/1(ω, γ0) is defined using the first- and
third-harmonic Fourier moduli [16].

I3/1(ω,γ0) ≡

∣∣∣G∗3∣∣∣∣∣∣G∗1∣∣∣ =
√

G′23+G′′ 2
3√

G′21+G′′ 2
1

=

√{
G′33γ

2
0+O(γ4

0)
}2
+

{
G′′ 33γ

2
0+O(γ4

0)
}2√{

G′+G′31γ
2
0+O(γ4

0)
}2
+

{
G′′+G′′ 31γ

2
0+O(γ4

0)
}2

=

√
G′233+G′′ 2

33+O(γ2
0)√

G′2+G′′ 2+O(γ2
0)
· γ2

0

(4)

Equation (4) shows the quadratic amplitude scaling of I3/1 under the MAOS flow. Using this
scaling relationship, an intrinsic nonlinearity Q0(ω) is defined as [16]

Q0(ω) ≡ lim
γ0→0

I3/1(ω,γ0)

γ2
0

=

√
G′233 + G′′ 233√
G′2 + G′′ 2

=

∣∣∣G∗33

∣∣∣
|G∗|

. (5)
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By definition, Q0 is related to the third-harmonic MAOS moduli. Because Q0 is a combined
measure of two third-harmonic MAOS moduli, Q0 can be decomposed into elastic and viscous parts as
follows [37]:

Q′0(ω) ≡
G′33√

G′2 + G′′ 2
=

G′33

|G∗|
(6)

Q′′ 0(ω) ≡
G′′ 33√

G′2 + G′′ 2
=

G′′ 33

|G∗|
. (7)

A detailed discussion of MAOS material functions can be found in a recent publication of Song
and Hyun [38].

3. Materials and Methods

3.1. Materials

Model PS combs used were synthesized by anionic polymerization [21]. Detailed molecular
characteristics are summarized in Table 1. Molecular weights and polydispersity of backbone, branch
and combs were determined using size exclusion chromatography equipped with multi angle laser
light scattering (SEC-MALLS). Abbasi, Faust, Riazi and Wilhelm [21] quantified the number of branches
per backbone chain (Nbr) by three different methods—SEC-MALLS, SEC and 1H nuclear magnetic
resonance (NMR). Here, we used the values for Nbr determined by SEC-MALLS because this method
is more accurate for a comb with a high molecular weight [21]. The details for synthesis strategy and
characterization techniques were described in Abbasi, Faust, Riazi and Wilhelm [21].

Table 1. Molecular characteristics of model comb polystyrene (PS) set.

Name a Mw,bb
b

(kg/mol)
PDIbb

b (-)
Mw,br

b

(kg/mol)
PDIbr

b

(-)
Mw

b

(kg/mol)
PDI b

(-)
Zs

c (-) Nbr
c (-) Topology d

PS290 290 1.07 290 1.07 20 0 Linear
PS44 43 1.03 43 1.03 3.03 0 Linear

PS290-3-44 290 1.10 45 1.07 420 1.11 5.06 3 LC
PS290-14-44 290 1.10 45 1.07 900 1.08 1.36 14 DC
PS290-30-44 290 1.10 43 1.03 1600 1.03 0.65 30 DC
PS290-60-44 290 1.10 44 1.05 2900 1.03 0.33 60 DC
PS290-120-44 290 1.10 44 1.05 5570 1.11 0.17 120 LB
a Sample nomenclature is as follows: PSMw,bb-Nbr-Mw,br.

b Weigh-average molecular weight and polydispersity
index of backbone, branch and combs measured by SEC-MALLS. c Calculated by Nbr = (Mw – Mw,bb)/Mw,br and
Zs = Zbb/(Nbr + 1) where Zbb = (Mw,bb/Me) � 20 and Me = 14.4 kg/mol. d Topologies of comb and bottlebrush
polymers were determined using scaling analysis. LC: loosely grafted comb; DC: densely grafted comb; LB: loosely
grafted bottlebrush.

Topologies of comb and bottlebrush polymers were determined using scaling analysis [17–19].
The scaling analysis subdivided comb and bottlebrush structures into four conformational regimes:
loosely grafted comb (LC), densely grafted comb (DC), loosely grafted bottlebrush (LB) and densely
grafted bottlebrush (DB). Abbasi, Faust, Riazi and Wilhelm [21] determined topologies of the synthesized
comb PS set using the scaling analysis, which are listed in Table 1.

3.2. Rheological Measurements

We used a strain-controlled rotational rheometer (ARES-G2, TA Instruments) for measurements of
SAOS and MAOS material functions. SAOS and MAOS measurements were performed using a parallel
plate (PP) geometry with a diameter of 13 mm under a nitrogen environment to prevent oxidative
degradation of samples. Master curves of SAOS and MAOS material functions were obtained using
the time-temperature superposition (TTS) principle at a reference temperature (Tref) of 180 ◦C. MAOS
material functions measured using PP geometry need to be corrected by multiplying a vertical shift
factor of 1.5 to compensate for the inhomogeneous flow field [39]. However, in the current study,
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uncorrected values were used without a vertical shift because we did not compare MAOS experimental
data with a theoretical model.

4. Results and Discussion

4.1. SAOS Results

The linear viscoelastic behavior of model comb PS used has already been analyzed by Abbasi,
Faust, Riazi and Wilhelm [21]. Here, we introduce key results briefly and then discuss the prediction
results of the hierarchical model developed by Larson and coworkers [7,40,41].

Figure 1 shows the linear master curves of G′(ω) and G”(ω) at Tref = 180 ◦C. LC and DC PS with
3 ≤ Nbr ≤ 30 displayed a crossover of G′ and G” at low frequency, indicating the reptation dynamics
of the backbone chain. In contrast, DC and LB with Nbr ≥ 60 showed a power-law behavior of G′

and G” (~ ω0.6), indicating the Rouse dynamics of the backbone chain. Basically, comb polymers relax
hierarchically [6,14]. After the relaxation of branches by retraction toward the branch points, the relaxed
branches act as effective solvents for the backbone and thus the backbone tube swells. This is called
the dynamic tube dilution (DTD) effect. As a result, the backbone is free to relax in a widened tube.
Relating to this, there are two rubbery plateaus. One at higher frequency corresponded to the branch
relaxation but the other at lower frequency corresponded to the relaxation of the diluted backbone [14].
As the grafting density of branches increased, the diameter of the backbone tube became wider and as
a result, the terminal relaxation of the backbone changed from reptation to Rouse-like behavior.Polymers 2020, 12, 365 6 of 21 
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Figure 1. Linear master curves of model comb PS set at Tref = 180 ◦C. Moduli were shifted vertically
for clarity of presentation.

Abbasi, Faust, Riazi and Wilhelm [21] plotted the zero-shear viscosity η0 and the backbone plateau
modulus GN,bb of all comb PS as functions of the total molecular weight Mw (Figure 4 in this study).
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The DTD effect of the relaxed branches reduced the GN,bb. The diluted GN,bb was proportional to
M−2

w , which was in agreement with GN,bb ~ φ1+α
bb , where the dynamic dilution exponent α = 1 and

the backbone volume fraction φbb = Mw,bb/Mw. Interestingly, η0 exhibited different behavior in each
conformational regime. LC PS behaved like star molecules where η0 increased exponentially as a
function of Mw (η0 ~ exp (Mw)), which is related to the strong frictional effect of the branches on the
backbone [22]. A further increase of Nbr resulted in a continuous decrease of η0, reflecting the dilution
effect of the branches. The η0 of DC PS followed the scaling behavior of entangled or unentangled linear
chains. The DC PS with 6 ≤ Nbr ≤ 20 showed a power-law dependence of η0 on Mw with a scaling
exponent of –3.4 (η0 ~ M−3.4

w ) corresponding to the entangled chain dynamics (reptation combined
with contour length fluctuation (CLF) and constraint release (CR)). For DC PS with 20 ≤ Nbr ≤ 142, η0

decreased with a power of −1 as a function of Mw. This indicated that the backbone chain relaxed
finally with a Rouse mechanism of unentangled chains. The change of η0 behavior was also related
to the average entanglement number of backbone segments between the neighboring branch points
(Zs), listed in Table 1 (η0 ~ M−3.4

w for DC PS with Zs > 1 but η0 ~ M−1
w for DC PS with Zs < 1). As chain

conformation changed from DC to LB, η0 increased dramatically again, with the scaling exponent
of about 5 (η0 ~ M5

w). This strong dependence of η0 was related to the intramolecular interactions
between neighboring entangled side branches due to the tight spacing between branch points.

4.2. Hierarchical Modeling

Based on these findings, we predicted the linear viscoelastic behavior of the model comb PS set
using the hierarchical model [41]. Currently, the linear viscoelastic behavior of branched polymers can
be reconstructed quantitatively using the three state-of-the-art tube-based models, that is, hierarchical
model [7,40], branch-on-branch (BoB) model [42] and time-marching algorithm (TMA) [43]. Abbasi,
Faust, Riazi and Wilhelm [21] commented that these models do not include an additional interaction
originating from the tightly spaced branches (Zs < 1). We used the hierarchical model to present how the
model fails to predict the responses of comb PS with Zs < 1. The parameters needed in the hierarchical
model are the plateau modulus GN, the entanglement molecular weight Me, the equilibration time
τe and the dynamic dilution exponent α. For PS, we used GN = 2 × 105 Pa, Me = 14.4 kg/mol,
τe = 3 × 10−4 s and α = 1 at Tref = 180 ◦C.

In Figure 2, we compare the predictions of the hierarchical model with experimental data of the
model comb PS. The hierarchical model predicted the G′ and G” of two linear chains (PS290 and
PS44) quantitatively. The model also predicted the linear viscoelastic behavior of the comb PS well,
with 3 ≤ Nbr ≤ 30. However, for PS290-3-44 and PS290-14-44, deviations between the predictions and
experimental data were observed in two respects. The overall curve shapes of experimental data are
smooth and broad, compared with sharp shapes in the predictions. In addition, the experimental G′

exhibited the terminal slope (=2) at a lower frequency than the model G′whereas G” of the experimental
data and the model coincided with each other. We note that the model G′ of PS290-3-44 (LC) showed
two rubbery plateaus clearly, which was in contrast with one broad plateau in the experimental G′.
This broad plateau was associated with the statistical distribution of branch points [21]. The high
amount of reaction sites for side chains and its statistical distribution generated during synthesis
might have led to asymmetric comb structure, rather than symmetric comb structure. Furthermore,
the relation between the standard deviation of molecular weight and the polydispersity index indicated
that Nbr of PS290-3-44 is 3 ± 3 [21]. Taken together, PS290-3-44 might be a mixture of asymmetric or
symmetric combs with an average of 3 branches.
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Figure 2. Comparison between experimental data and the hierarchical model predictions. (a) PS290,
PS44 (b) PS290-3-44, (c) PS290-14-44, (d) PS290-30-44, (e) PS290-60-44 and (f) PS290-120-44. The symbols
indicate experimental data of the model comb PS. The lines indicate the predictions of the
hierarchical model.

Figure 3 shows several example structures of PS290-3-44 based on the above analysis. Kapnistos,
Vlassopoulos, Roovers and Leal [14] demonstrated that the end parts of the linear backbone (Mbb,end)
behave like branches, dynamically diluting the backbone. If the branches are longer than the backbone
end (Mw,br > Mbb,end), the backbone end relaxes faster than the branches and the remaining backbone
is immobile until the branches are fully retracted. On the other hand, if the branches are shorter than
the backbone end (Mw,br < Mbb,end), the branches relax first and the remaining unrelaxed part of the
backbone end is added to the backbone. Therefore, the effective backbone length, the backbone length
after the relaxation of the branches and the backbone ends, becomes longer in the latter case. If two
outermost branches are located closer to the center of the backbone, Mw,br can be smaller than Mbb,end.
Thus, the uneven distribution of branch points results in different lengths of the effective backbone
chain. Furthermore, the location of branch points can modify the terminal relaxation process of the
effective backbone chain. Chen and Larson [44] demonstrated the effect of branch point position on
the linear viscoelasticity of two asymmetric 3-arm star polymers (T-shaped and Y-shaped). After the
arm relaxed, the length of the effective backbone was identical. However, Y-shaped polymer relaxed
slower than T-shaped polymer because the branching point was located at the end of the effective
backbone, where the frictional drag contributed from the branch retarded the terminal relaxation
process of Y-shaped star. Consequently, distribution in the number and location of the branches results
in different lengths of the effective backbone as well as different total frictional drag contributed from
the branches, which made the relaxation spectrum of PS290-3-44 broad. On increasing Nbr, the effect
of branch distribution becomes weaker and weaker because the branches are evenly attached to the
backbone due to the steric effect. Under the assumption that branch points are evenly distributed along
the backbone, the branch always becomes longer than the end part of the backbone when Nbr ≥ 7.
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Figure 3. Possible structures of PS290-3-44. Mw,br is the branch molecular weight and Mbb,end is the
molecular weight of the backbone end part.

The hierarchical model gave the best prediction for PS290-30-44. The terminal-regime predictions
for PS290-30-44 coincided with the experimental G′ and G”. On the other hand, the model failed to
predict the terminal behavior of PS290-60-44 and PS290-120-44. The predictions of PS290-60-44 and
PS290-120-44 showed lower plateau modulus of backbone and earlier terminal behavior than the
experimental values.

For quantitative comparison, η0 and GN,bb of the experimental data and the model predictions
were plotted as functions of Mw (Figure 4). The model values well matched the experimental values
until Nbr = 30 (PS290-30-44). However, a further increase of Nbr enhanced the DTD effect in the
model, which resulted in lower η0 and GN,bb predictions for PS290-60-44 and PS290-120-44. The model
does not include the effect of side chain crowding when Zs < 1. Thus, this deviation between the
experimental data and the model originates from the densely branched topologies, where the backbone
segments between the branch points are smaller than one entanglement segment [21].
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4.3. MAOS Results

Only four nonlinear moduli are required to reconstruct nonlinear response in the MAOS
regime [35,38]. In this section, we present nonlinear master curves of the first- and third-harmonic
MAOS moduli of model comb PS set. Figure 5 shows master curves of first-harmonic MAOS moduli
(G′31 and G′′31) at Tref = 180 ◦C. The first-harmonic MAOS moduli of all samples were negative, indicating
intercycle strain softening and shear thinning of LAOS type I [36,45]. The first-harmonic elastic MAOS



Polymers 2020, 12, 365 10 of 21

moduli (G′31) of PS290 and PS44 exhibited the behavior of monodisperse linear chains reported by
Song and Hyun [36]. In the rubbery plateau regime of SAOS data, G′31 also had a plateau value
of about 5 × 104 Pa. Compared with two linear PS, PS290-3-44 showed a broad curve shape due to
a wide relaxation time distribution originating from polydispersity in the number and location of
branch points. All DC and LB PS exhibited similar curve shapes of G′31 and G′′31, which contrasted
with gradual shape developments in SAOS master curves on increasing Nbr. In addition, DC and LB
showed two plateaus in G′31 and G′′31, like two rubbery plateaus in G′. The onset of further increase
after the low-frequency plateau was observed near 1 rad/s, where branch retraction is finished [21].
This indicates that the first-harmonic MAOS moduli were affected by hierarchical relaxation processes.
The low-frequency plateau corresponded to the backbone response and the high-frequency plateau
corresponded to the branch response.Polymers 2020, 12, 365 11 of 21 
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A further manifestation of the dilution effect on first-harmonic MAOS moduli is evidenced in
Figure 6, which depicts plateau values of G′31 and G′′31 as a function of Mw. The high-frequency
plateau of G′31 (≡G′31,p) was constant as 5 × 104 Pa while the low-frequency G′31,p scaled with M−2

w .

The high-frequency plateau of G′′31 (≡G′′31,p) was averagely 6.7 × 103 Pa. The low-frequency G′′31,p of

three DC PS also exhibited the same scaling behavior (~M−2
w ). These changes of G′31 and G′′31 are in

accordance with the trend in SAOS plateau modulus (see Figure 4).
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To check that the hierarchical relaxation affects a linear-to-nonlinear transition, we plotted the
Pipkin diagram using the first-harmonic MAOS moduli. The critical strain amplitudes for the transition
were calculated using the following equations [35,38]:

γ∗0,e(ω) =

∣∣∣∣∣∣0.1
G′11(ω)

G′31(ω)

∣∣∣∣∣∣0.5

(8)

γ∗0,v(ω) =

∣∣∣∣∣∣0.1
G′′ 11(ω)

G′′ 31(ω)

∣∣∣∣∣∣0.5

. (9)

We set a criterion for the MAOS limit as a 10% deviation from the linear viscoelasticity [35].
Figure 7 shows the Pipkin diagrams of the model comb PS set. The boundary for first-harmonic elastic
nonlinearity (γ∗0,e) was always located below that for first-harmonic viscous nonlinearity (γ∗0,v), as
reported by Song and Hyun [38]. The critical strain amplitudes for first-harmonic nonlinearities of
PS290 scaled as γ∗0 ∝ ω

−1 at low frequency, indicating that the nonlinearities were controlled by strain
rate. On increasing frequency, they became constant (γ∗0,e ≈ 0.50 and γ∗0,v ≈ 0.52) and then displayed a
further increase. Interestingly, the Pipkin diagrams of DC and LB PS exhibited a two-step change of the
boundary shape. As an example (Figure 7d), the critical strain amplitudes of PS290-30-44 were constant
at a low frequency (γ∗0,e ≈ 0.81 and γ∗0,v ≈ 1.23). On increasing the frequency beyond branch relaxation
timescale (~1 rad/s), they decreased and reached new constant values (γ∗0,e ≈ 0.57 and γ∗0,v ≈ 0.84). Thus,
the Pipkin diagrams of DC and LB PS also reflected the hierarchical characteristics in the relaxation
processes of these branched polymers. Furthermore, importantly, these results revealed that the
linear-to-nonlinear transitions in material response could be controlled by the degree of branching.
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Next, we investigated the third-harmonic MAOS nonlinearities of model comb PS set using the Q0

parameter (Figure 8). The earlier Q0 studies on model comb PS showed that comb PS with entangled
linear branches had two Q0 peaks—one corresponding to branch relaxation at a higher frequency and
the other corresponding to backbone relaxation at a lower frequency [16,30]. Here, the model comb
PS used also exhibited two local maxima in Q0 master curves. Remarkably, the high-frequency Q0

peak positions of DC PS (~32 rad/s) were not changed by Nbr, whereas that of LC PS was located at a
lower frequency. The different Q0 peak of PS290-3-44 originated from the distribution in the number
and location of branches, as demonstrated in Section 4.2. In addition, PS290-3-44 corresponded to LC
polymer, which exhibited star-like behavior in zero-shear viscosity scaling (Figure 4) [21]. Therefore,
the relaxation processes of the backbone and the branches might not be well separated, which can
make the high-frequency peak broad (approximately 0.3–20 rad/s). We speculate that this broad
high-frequency peak of PS290-3-44 is the combined effect of the backbone and the branches and that
the low-frequency peak is due to the relaxation of the remaining effective backbone chain.

Polymers 2020, 12, 365 12 of 21 

 

To check that the hierarchical relaxation affects a linear-to-nonlinear transition, we plotted the 
Pipkin diagram using the first-harmonic MAOS moduli. The critical strain amplitudes for the 
transition were calculated using the following equations [35,38]: 

( ) ( )
( )

0.5

11*
0,e

31

0.1
G
G

ω
γ ω

ω
′

=
′

 (8) 

( ) ( )
( )

0.5

11*
0,v

31

0.1
G
G

ω
γ ω

ω
′′

=
′′

. (9) 

We set a criterion for the MAOS limit as a 10% deviation from the linear viscoelasticity [35]. 
Figure 7 shows the Pipkin diagrams of the model comb PS set. The boundary for first-harmonic elastic 
nonlinearity (𝛾 ,∗ ) was always located below that for first-harmonic viscous nonlinearity (𝛾 ,∗ ), as 
reported by Song and Hyun [38]. The critical strain amplitudes for first-harmonic nonlinearities of 
PS290 scaled as 𝛾∗ ∝ ω−1 at low frequency, indicating that the nonlinearities were controlled by 
strain rate. On increasing frequency, they became constant (𝛾 ,∗  ≈ 0.50 and 𝛾 ,∗  ≈ 0.52) and then 
displayed a further increase. Interestingly, the Pipkin diagrams of DC and LB PS exhibited a two-step 
change of the boundary shape. As an example (Figure 7d), the critical strain amplitudes of PS290-30-
44 were constant at a low frequency (𝛾 ,∗  ≈ 0.81 and 𝛾 ,∗  ≈ 1.23). On increasing the frequency beyond 
branch relaxation timescale (~1 rad/s), they decreased and reached new constant values (𝛾 ,∗  ≈ 0.57 
and 𝛾 ,∗  ≈ 0.84). Thus, the Pipkin diagrams of DC and LB PS also reflected the hierarchical 
characteristics in the relaxation processes of these branched polymers. Furthermore, importantly, 
these results revealed that the linear-to-nonlinear transitions in material response could be controlled 
by the degree of branching. 

 

Figure 7. Cont.



Polymers 2020, 12, 365 13 of 21
Polymers 2020, 12, 365 13 of 21 

 

 

 

Figure 7. Critical strain amplitudes of model comb PS set as functions of frequency (Pipkin diagram)
based on first-harmonic MAOS moduli. (a) PS290, (b) PS290-3-44, (c) PS290-14-44, (d) PS290-30-44,
(e) PS290-60-44 and (f) PS290-120-44. The values represent the local minima in the plots.
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Along with the same Q0 peak position of DC PS near 32 rad/s, the value of this Q0 peak was
almost the same in all DC PS (0.01 ± 0.001). Hyun and Wilhelm [16] showed that, for a comb with the
fixed number of branches (~30), longer branches resulted in a higher value of branch Q0 peak and
shifted it toward lower frequency. This indicates that the magnitude and location of high-frequency Q0

peak of DC polymers are functions of the branch length and are not affected by Nbr. The Q0 maximum
of PS44 was also identical to the value corresponding to the branch part but its location was at a higher
frequency due to different relaxation processes. PS44 relaxes by reptation combined with CLF, whereas
the branches of DC PS relax by only retraction process. Three DC PSs (PS290-14-44, PS290-30-44 and
PS290-60-44) exhibited two peaks clearly, which indicates that relaxation processes of the backbone
and the branches are well separated in these polymers. The local minimum value was observed near
1 rad/s, where first-harmonic MAOS moduli were divided into backbone and branch contributions.

PS290-120-44 exhibited an unusual Q0 behavior. This LB PS did not have a Q0 peak corresponding
to the backbone contribution, which contrasted with the fact that first-harmonic MAOS moduli reflected
both contributions from the backbone and the branches. We are not aware of the detailed mechanism
for this unusual behavior. However, we speculate that the stretched backbone conformation in LB is
related to no low-frequency Q0 peak, which is the critical difference between DC and LB. The stretched
backbone conformation might not respond to weakly nonlinear MAOS flow because the backbone is
already stretched.

Because Q0 is a combined parameter of two third-harmonic MAOS moduli, we calculated the
elastic and viscous parts of Q0 (Q′0 and Q′′0 ). All viscoelastic fluids with a finite relaxation time
have a negative sign of third-harmonic nonlinearity in the terminal regime, which is predicted by a
fourth-order fluid expansion [46]. Two linear PS exhibited the typical terminal behavior (Q′0 ∝ ω

3 and
Q′′0 ∝ω

2) with a negative sign (see Figure 9 in the next section) [37]. We were not able to experimentally
reach the terminal regime of comb and bottlebrush PS because the measurements need to be conducted
at a high temperature above 260 ◦C. However, considering that the absolute values of Q′0 and Q′′0
decrease with a lower frequency, we expect that the comb and bottlebrush PS display the terminal
behavior at lower frequency. In Table 2, we summarized the number of sign changes in Q′0 and Q′′0 on
increasing frequency from the terminal regime to the plateau regime relating to the branches. Based on
these sign changes, the MAOS plots can be divided into many regimes. Thus, we counted the number
of such regimes. The master curves of Q′0 and Q′′0 of each sample are presented in Figure 9.

Two linear PS exhibited the same behavior as polymer solutions used in Song and Hyun [37].
Q′0 and Q′′0 of linear PS showed a sign change once, respectively. Therefore, Q′0 and Q′′0 plots can be
divided into three regimes based on sign changes. Q′0 and Q′′0 of PS290-3-44 also showed a sign change
once, respectively, resulting in 3 regimes in the MAOS plots. The main difference between PS290-3-44
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and linear PS was observed in Q′′0 . PS290-3-44 had two local peaks of Q′′0 , which contributed to the
onset of two Q0 peaks of PS290-3-44. DC and LB PS showed multiple sign changes of Q′0 and Q′′0 .
At the frequency corresponding to the rubbery plateau of branches, all DC and LB PS had positive
Q′0 and Q′′0 . As the frequency decreased toward the terminal regime, signs of Q′0 and Q′′0 changed
differently depending on Nbr. In the frequency range between two rubbery plateau regimes, Q′0 and
Q′′0 of PS290-14-44 did not change signs and are always positive. PS290-14-44 would show sign changes
of Q′0 and Q′′0 to negative value in the terminal regime. Thus, the MAOS master curves of PS290-14-44
are divided into three regimes. PS290-30-44 did not exhibit a sign change of Q′′0 before entering the
terminal regime. However, Q′0 of PS290-30-44 changed its sign three times [(+)→ (-)→ (+)→ (-) with
decreasing frequency], which resulted in five regimes in the MAOS plots. In contrast, PS290-60-44 and
PS290-120-44 exhibited three sign changes in Q′′0 [(+)→ (-)→ (+)→ (-) with decreasing frequency]
while Q′0 changed sign once. The multiple sign changes in Q′0 and Q′′0 were not observed when
Nbr is small. Currently, we do not have an idea about the origin of these multiple sign changes in
third-harmonic MAOS nonlinearities because no molecular mechanism of MAOS nonlinearity has been
reported. However, these results reveal that polymer topologies affect signs as well as magnitudes of
third-harmonic MAOS nonlinearities, which has never been reported before.
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Table 2. The number of sign changes in Q′0 and Q′′

0 on increasing frequency from the terminal regime
to the plateau regime relating to the branches and the total number of resultant regimes.

Samples Q
′

0 Q
′

0 # of Regimes

PS290 1 1 3
PS44 1 1 3

PS290-3-44 1 1 3
PS290-14-44 1 1 3
PS290-30-44 3 1 5
PS290-60-44 1 3 5
PS290-120-44 1 3 5

4.4. Comparison of Rheological Parameters with Characteristic Relaxation Times

We compared the linear and nonlinear rheological properties with characteristic relaxation times.
Three relaxation times were calculated and are listed in Table 3. Terminal relaxation time τL was
calculated from linear viscoelastic data as follows: τL = [G′/(ωG”)]ω→0. Backbone Rouse time τR,bb was
calculated based on the hypothesis suggested by Lentzakis, Vlassopoulos, Read, Lee, Chang, Driva
and Hadjichristidis [10] that the ratio of the terminal relaxation time to the backbone Rouse time for
the comb is the same as the ratio of terminal relaxation time to the Rouse time for an equivalent linear
polymer with the same effective entanglement number (Zdil

bb ). The effective entanglement number
Zdil

bb of the backbone chain can be calculated by considering the motion of the backbone ends, as
discussed in Section 4.2 [14,28,47]. Under the assumption of evenly distributed branch points along
the backbone chain, the molecular weight of the end part of backbone is Mbb,end = Mw,bb/(Nbr + 1),
which is the same as the molecular weight of backbone segments between branch points. Then,
the effective backbone molecular weight is Mdil

w,bb = Mw,bb – 2xcMbb,end, where xc is the fractional
length of the backbone-end portion varied by branch size. If branches are longer than backbone ends
(Mbr > Mbb,end), xc is 1 because backbone ends have fully relaxed on the branch relaxation timescale.
Otherwise (Mbr < Mbb,end), xc is the ratio of molecular weight of the branch to the molecular weight
of the backbone end part (Mbr/Mbb,end). Finally, Zdil

bb of the backbone chain is calculated as follows:
Zdil

bb = (Mdil
w,bb/Me)(Mdil

w,bb/Mw). Using the calculated Zdil
bb , backbone Rouse time τR,bb was calculated

from the formula based on the tube theory [1]: τR,bb = τL/(3Zdil
bb ). Branch relaxation time τbr was

obtained from the peak/point of change in slope in the linear viscoelastic phase angle [5,21].

Table 3. Characteristic relaxation times of model comb PS set at Tref = 180 ◦C.

Samples τL
a (s) Zdil

bb (-) τR,bb
d (s) τbr

e (s)

PS290 2.37 × 100 20.14 b 3.91 × 10−2 -
PS44 2.34 × 10−3 3.06 b 2.55 × 10−4 -

PS290-3-44 6.63 × 101 6.54 c 3.38 × 100 6.58 × 10−1

PS290-14-44 8.81 × 101 4.80 c 6.12 × 100 4.42 × 10−1

PS290-30-44 5.46 × 101 3.25 c 5.60 × 100 2.40 × 10−1

PS290-60-44 5.96 × 101 1.88 c 1.06 × 101 3.47 × 10−1

PS290-120-44 3.96 × 102 1.01 c 1.30 × 102 5.44 × 10−1

a Terminal relaxation time τL = [G′/(ωG”)]ω→0. b For linear PS, Zdil
bb = (Mw/Me), where Me = 14.4 kg/mol. c For

comb and bottlebrush PS, Zdil
bb = (Mdil

w,bb/Me)(Mdil
w,bb/Mw), where Mdil

w,bb = Mw,bb – 2xcMbb,end. Mbb,end = Mw,bb/(Nbr +

1) and xc is 1 (Mbr > Mbb,end) or Mbr/Mbb,end (Mbr < Mbb,end). d Backbone Rouse time τR,bb = τL/(3Zdil
bb ). e Branch

relaxation time τbr was obtained from the peak/point of change in slope in the linear viscoelastic phase angle.

In Figure 9, we plotted linear and nonlinear master curves of model comb PS set, together with
the characteristic relaxation times (τL, τR,bb and τbr). PS290 exhibited the maximum of Q0, Q′′0 and
normalized G′′31 (≡ G′′31/|G*|) near the terminal relaxation time, as reported in earlier studies [28,36,37].
The critical difference between first- and third-harmonic MAOS material functions was observed
in the results of PS290-3-44. The normalized G′′31 of PS290-3-44 displayed one plateau-like peak
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whereas Q′′0 and Q0 displayed two local peaks reflecting characteristics of hierarchical relaxation.
This implies that third-harmonic MAOS reflects the architectural features of polymers more sensitively
than first-harmonic MAOS material function. For PS290-3-44, the peaks of Q0, Q′′0 and G′′31/|G*| were
observed near τR,bb. The additional peaks of Q0 and Q′′0 appeared at the frequency corresponding to
τL, which confirms that the low-frequency peaks are due to the remaining effective backbone chains.

The first-harmonic MAOS moduli of DC and LB exhibited two local peaks when they were
normalized by SAOS complex modulus (|G*|). However, two peaks were more evident in the master
curves of third-harmonic properties. For DC PS, the high-frequency peaks of Q0 and Q′′0 relating to
branch relaxation appeared at the frequency larger than the inverse of τbr. In contrast, the low-frequency
peaks of Q0 and Q′′0 relating to backbone relaxation were observed at the frequency corresponding to
τL. All MAOS parameters of DC PS exhibited the local minimum between τR,bb and τbr when their
absolute values were used. In addition, featured sign changes of Q′0 and Q′′0 were observed between
these two timescales. In contrast, PS290-120-44 showed the local minimum only in the absolute values
of first-harmonic MAOS parameters, while those of third-harmonic MAOS parameters decreased
continuously with decreasing frequency. Even at the terminal relaxation timescale, third-harmonic
parameters of PS290-120-44 did not display an upturn. Again, we speculate that the stretched backbone
conformation in LB is responsible for no low-frequency peak of Q0. However, it remains an important
question why the stretched backbone conformation makes an additional contribution only to the
first-harmonic MAOS moduli and not the third-harmonic MAOS moduli. More systematic approaches
would be necessary to answer this question.

5. Conclusions

We investigated linear and nonlinear oscillatory shear (SAOS and MAOS) rheology of model
comb PS melts, where the number of branches along the backbone was controlled while the branch
length was kept. The model PS used was classified into three conformational regimes: loosely grafted
comb (LC), densely grafted comb (DC) and loosely grafted bottlebrush (LB). In each regime, scaling
of zero-shear viscosity η0 versus total weight-average molecular weight Mw was different: η0 ~ exp
(Mw) in LC regime (Zs > 3), η0 ~ M−3.4

w in DC regime with an entangled, diluted backbone (1 < Zs < 3),
η0 ~ M−1

w in DC regime with an unentangled, diluted backbone (0.2 < Zs < 1) and η0 ~ M5
w in LB regime

(Zs < 0.2). The plateau modulus of the diluted backbone scaled as GN,bb ~ M−2
w , irrespective of the

comb and bottlebrush conformations [21].
Linear viscoelastic properties of model comb PS set were compared with predictions of the

hierarchical model. For PS290-3-44, deviations between the experimental data and the model originated
from the statistical distribution of the number and location of branches. Thus, we discussed the effect
and importance of this distribution on relaxation processes. For quantitative comparison, η0 and GN,bb

of the experimental data and the model predictions were plotted as functions of Mw. The model failed
to predict η0 and GN,bb of PS290-60-44 and PS290-120-44 because the model excludes the effect of side
chain crowding in the densely branched topologies.

We presented the first-harmonic MAOS moduli of comb and bottlebrush polymers for the first
time. The first-harmonic MAOS data reflected the hierarchy of relaxation processes in comb topologies
well. DC and LB PS exhibited two plateaus in G′31 and G′′31; one contributed from branches at a higher
frequency and the other contributed from backbone at a lower frequency. When the plateau values
were plotted as functions of Mw, the high-frequency plateaus were constant whereas the low-frequency
plateaus scaled with M−2

w , indicating that first-harmonic MAOS moduli were also affected by dynamic
tube dilution (DTD) effect. Accordingly, the boundary for linear-to-nonlinear transitions (Pipkin
diagram) of DC and LB PS exhibited a two-step change. Relative intrinsic nonlinearity Q0 and its
viscous part Q′′0 (third-harmonic MAOS material functions) also showed two peaks for LC and DC PS
reflecting the hierarchical relaxation processes. In contrast, the low-frequency Q0 peak corresponding
to the backbone part of LB disappeared. The stretched backbone conformation in LB might be related
to this no low-frequency Q0 peak. Comparison of MAOS data with characteristic relaxation times
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(terminal relaxation time, backbone Rouse time and branch relaxation time) supported the discussion
on changes in the number of peaks of relative nonlinearities.

The findings from the first- and third-harmonic MAOS rheology of LC PS indicate that
third-harmonic MAOS reflects structural features of different topologies better than first-harmonic
MAOS. PS290-3-44 (LC) has a hierarchical relaxation process due to the averagely three branches.
However, first-harmonic MAOS moduli displayed one broad peak while third-harmonic MAOS
properties exhibited two peaks clearly. Nevertheless, it is necessary to characterize both first- and
third-harmonic MAOS properties of polymers with complex architectures because PS290-120-44 (LB)
reflected the feature of hierarchical relaxation in first-harmonic MAOS but the stretched conformation
of backbone in third-harmonic MAOS.
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