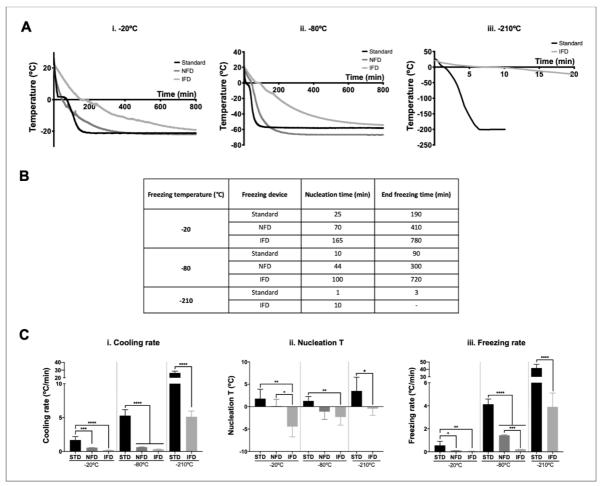


Article Tailoring gellan gum spongy-like hydrogels'

3 microstructure by controlling freezing parameters


4 Helena R. Moreira^{1,2,3}, Lucília P. da Silva^{1,2}, Rui L. Reis^{1,2,3} and Alexandra P. Marques^{1,2,3, *}

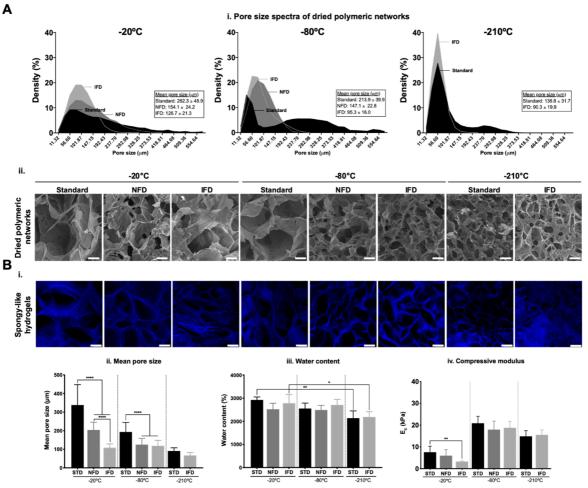
- ¹ 3B's Research Group, I3Bs Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; <u>helena.moreira@i3bs.uminho.pt</u> (H.R.M); <u>lucilia.silva@i3bs.uminho.pt</u> (L.P.d.S.);
 <u>rgreis@i3bs.uminho.pt</u> (R.L.R.); <u>apmarques@i3bs.uminho.pt</u> (A.P.M.)
 <u>ICVS/3B's – PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal:</u>
- 9 ² ICVS/3B's PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal;
 ³ The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at Universit
 - ³ The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark 4805-017 Barco, Guimarães, Portugal
- 12 * Correspondence: apmarques@i3bs.uminho.pt; Tel.: (+351252510900)
- 13

11

14 Supplementary figures

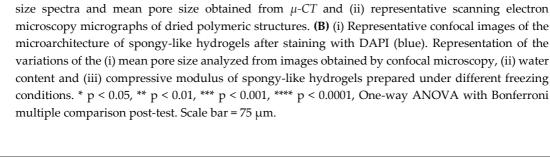
15

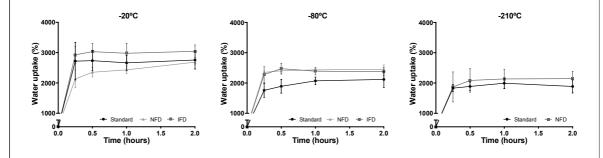
16 17 18


19

20

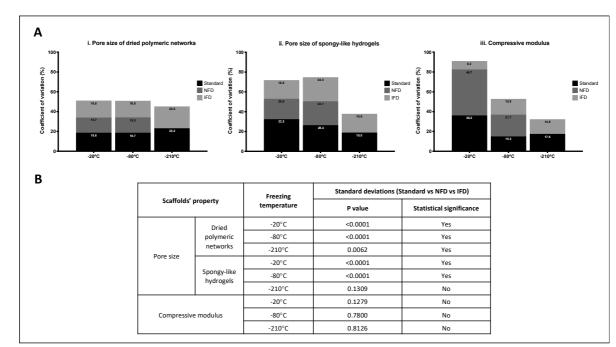
Figure S1. Freezing profiles of 0.75% GG hydrogels. **(A)** Mean temperature profiles of GG hydrogels during freezing at (i) -20°C, (ii) -80°C and (iii) -210°C with the 3 different freezing molds. **(B)** Characteristic values of the freezing of GG hydrogels. **(C)** Effect of both temperature and freezing mold on the (i) Cooling rate, (ii) Nucleation T and (iii) Freezing rate of GG hydrogels. Data was




obtained from 7 different measurements, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, One-way ANOVA with Bonferroni multiple comparison post-test.

25

Figure S2. Effect of freezing conditions (standard method, NFD and IFD at -20°C, -80°C and -210°C) over the properties of 0.75% GG dried polymeric structures and spongy-like hydrogels. (A) (i) pore



37

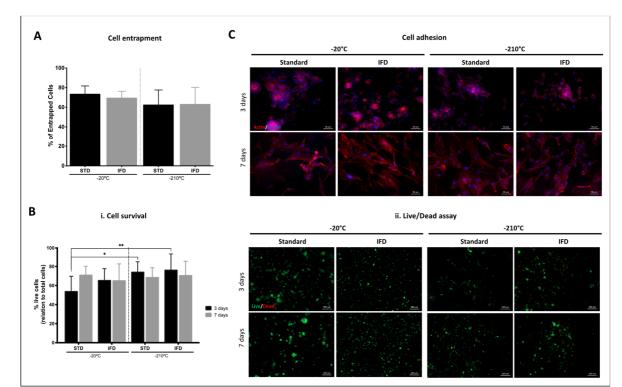

Figure S3. Water uptake of 1.25% GG dried polymeric structures prepared at -20°C, -80°C and -210°C and using different freezing systems.

Figure S4. Scaffolds reproducibility. **(A)** Representation of the coefficient of variation of the pore size of 0.75% GG (i) dried polymeric networks and (ii) spongy-like hydrogels, and of the (iii) compressive modulus of spongy-like hydrogels according to the tested freezing conditions, standard method, NFD and IFD at -20°C, -80°C and -210°C. **(B)** *p* values obtained from the Brown-Forsythe test showing the statistical significance of the standard deviations for the pore size and compressive modulus among the different freezing devices (standard method, NFD and IFD).

Figure S5. Effect of freezing conditions (standard method, NFD and IFD at -20°C and -210°C) over hDFbs behaviour in 0.75% GG spongy-like hydrogels. **(A)** Representation of the entrapment efficiency 24 hours after cell seeding. **(B)** (i) Representation of the percentage of the live cells 3 and 7 days of culture. (ii) Representative fluorescence microscopy images showing the dead (red) and the live

Polymers **2020**, *12*, x FOR PEER REVIEW

55	(green) cells, respectively stained with PI and Ca-AM after 3 and 7 days of culture. Scale bar = 200
56	µm. (C) Representative fluorescence microscopy images of hDFBs after 3 and 7 days of culture
57	showing the F-actin cytoskeleton (phalloidin-TRITC, red) and nuclei (DAPI, blue). Scale bar = 50 μm.
58	Data was obtained from three independent experiments with three replicates for each condition, * p
59	< 0.05, two-way ANOVA and Bonferroni's post-hoc test.