Single and double-stranded 1D-coordination polymers with 4'-(4-alkyloxyphenyl)-3,2':6',3"-terpyridines and $\{Cu_2(\mu - OAc)_4\}$ or $\{Cu_4(\mu_3-OH)_2(\mu - OAc)_2(\mu_3-OAc)_2(AcO-\kappa O)_2\}$ motifs

Dalila Rocco¹, Giacomo Manfroni¹, Alessandro Prescimone¹, Y. Maximilian Klein², Dariusz J. Gawryluk², Edwin C. Constable¹ and Catherine E. Housecroft^{1*}

¹Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, CH-4058 Basel, Switzerland

²Laboratory for Multiscale Materials Experiments, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland

Figure S1. Electrospray mass spectrum of compound 3.

Figure S2. Electrospray mass spectrum of compound 4.

Figure S3. FT-IR spectrum of compound **3** (solid state).

Figure S4. FT-IR spectrum of compound 4 (solid state).

Figure S5. HMQC spectrum of **3** in CDCl₃ (500 MHz 1 H, 126 MHz 13 C{ 1 H}, 298 K). * = CHCl₃/CDCl₃.

Figure S6. HMBC spectrum of **3** in CDCl₃ (500 MHz 1 H, 126 MHz 13 C{ 1 H}, 298 K). * = CHCl₃/CDCl₃.

Figure S7. HMQC spectrum of **4** in CDCl₃ (500 MHz 1 H, 126 MHz 13 C{ 1 H}, 298 K). * = CHCl₃/CDCl₃.

Figure S8. HMBC spectrum of **4** in CDCl₃ (500 MHz ¹H, 126 MHz ¹³C{¹H}, 298 K). * = CHCl₃/CDCl₃.

Figure S9. Normalized FT-IR spectra (solid-state) of the bulk materials from (a) experiment 1 (black line) and experiment 2 (blue line), and (b) experiment 1 (black line, $[{Cu_4(\mu_3-OH)_2(\mu-OAc)_2(\mu_3-OAc)_2(AcO-\kappa O)_2(1)_2}\cdot 2MeOH]_n$) and the preparative scale reaction (red line, $[Cu_2(\mu-OAc)_4(1)]_n$).

Figure S10. ORTEP-stype representation of the asymmetric unit in $[Cu_2(\mu-OAc)_4(1)]_n$ with ellipsoids plotted at 40% probability level and H atoms omitted.

Figure S11. ORTEP-stype representation of the asymmetric unit in $\{[Cu_4(\mu_3-OH)_2(\mu-OAc)_2(\mu_3-OAc)_2(AcO-\kappa O)_2(1)_2]^2MeOH\}_n$ with ellipsoids plotted at 40% probability level and H atoms and solvent molecules omitted.

Figure S12 Packing of chains in $\{[Cu_4(\mu_3-OH)_2(\mu-OAc)_2(\mu_3-OAc)_2(AcO-\kappa O)_2(1)_2]$ ·2MeOH $\}_n$.

Figure S13. ORTEP-stype representation of the asymmetric unit in $[2{Cu_2(\mu - OAc)_4(2)} \cdot 1.25MeOH]_n$ with ellipsoids plotted at 40% probability level and H atoms and solvent molecules omitted.

Figure S14. ORTEP-stype representation of the asymmetric unit in $[Cu_2(\mu-OAc)_4(3)]_n$ with ellipsoids plotted at 40% probability level and H atoms omitted.

Figure S15. ORTEP-stype representation of the asymmetric unit in $[Cu_2(\mu - OAc)_4(4)] \cdot 0.2CHCl_3]_n$ with ellipsoids plotted at 40% probability level and H atoms and solvent molecules omitted.

Figure S16. Part of one chain in $[Cu_2(\mu-OAc)_4(5)]$ ·0.2CHCl₃]_n, drawn using data retrieved from the CSD, refcode SADBIL [1].

Figure S17. Packing of three adjacent chains (each runs left to right) shown in ball-and-stick representation in $[2{Cu_2(\mu-OAc)_4(2)}\cdot 1.25MeOH]_n$. The two independent alkyl...alkyl van der Waals packing interactions are highlighted.

References

1. Li, L.; Zhang, Y.Z.; Yang, C.; Liu, E.; Golen, J.A.; Zhang, G. One-dimensional copper(II) coordination polymers built on 4'-substituted 4,2':6',4"- and 3,2':6',3"-terpyridines: Syntheses, structures and catalytic properties. *Polyhedron* **2016**, *105*, 115–122. DOI: 10.1016/j.poly.2015.12.042