Single and double-stranded 1D-coordination polymers with 4'-(4-alkyloxyphenyl)-3,2':6',3"-terpyridines and $\left\{\mathrm{Cu}_{2}(\mu\right.$ $\left.\mathrm{OAc})_{4}\right\}$ or $\left\{\mathrm{Cu}_{4}\left(\mu_{3}-\mathrm{OH}\right)_{2}(\mu-\mathrm{OAc})_{2}\left(\mu_{3}-\mathrm{OAc}\right)_{2}(\mathrm{AcO}-\kappa \mathrm{K})_{2}\right\}$ motifs

Dalila Rocco ${ }^{1}$, Giacomo Manfroni ${ }^{1}$, Alessandro Prescimone ${ }^{1}$, Y. Maximilian Klein ${ }^{2}$, Dariusz J. Gawryluk ${ }^{2}$, Edwin C. Constable ${ }^{1}$ and Catherine E. Housecroft ${ }^{1 *}$
${ }^{1}$ Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, CH-4058 Basel, Switzerland
${ }^{2}$ Laboratory for Multiscale Materials Experiments, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland

Figure S1. Electrospray mass spectrum of compound 3.

Figure S2. Electrospray mass spectrum of compound 4.

Figure S3. FT-IR spectrum of compound $\mathbf{3}$ (solid state).

Figure S4. FT-IR spectrum of compound 4 (solid state).

Figure S5. HMQC spectrum of $\mathbf{3}$ in $\mathrm{CDCl}_{3}\left(500 \mathrm{MHz}{ }^{1} \mathrm{H}, 126 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, 298 \mathrm{~K}\right) .{ }^{*}=$ $\mathrm{CHCl}_{3} / \mathrm{CDCl}_{3}$.

Figure S6. HMBC spectrum of $\mathbf{3}$ in $\mathrm{CDCl}_{3}\left(500 \mathrm{MHz}{ }^{1} \mathrm{H}, 126 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, 298 \mathrm{~K}\right) .{ }^{*}=$ $\mathrm{CHCl}_{3} / \mathrm{CDCl}_{3}$.

Figure S7. HMQC spectrum of 4 in $\left.\mathrm{CDCl}_{3}\left(500 \mathrm{MHz}{ }^{1} \mathrm{H}, 126 \mathrm{MHz}^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\}, 298 \mathrm{~K}\right) .{ }^{*}=$ $\mathrm{CHCl}_{3} / \mathrm{CDCl}_{3}$.

Figure S8. HMBC spectrum of 4 in $\mathrm{CDCl}_{3}\left(500 \mathrm{MHz}{ }^{1} \mathrm{H}, 126 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}, 298 \mathrm{~K}\right) .{ }^{*}=$ $\mathrm{CHCl}_{3} / \mathrm{CDCl}_{3}$.

Figure S9. Normalized FT-IR spectra (solid-state) of the bulk materials from (a) experiment 1 (black line) and experiment 2 (blue line), and (b) experiment 1 (black line, $\left[\left\{\mathrm{Cu}_{4}\left(\mu_{3}-\mathrm{OH}\right)_{2}(\mu-\right.\right.$ $\left.\left.\left.\mathrm{OAc})_{2}\left(\mu_{3}-\mathrm{OAc}\right)_{2}(\mathrm{AcO}-\mathrm{KO})_{2}(\mathbf{1})_{2}\right\} \cdot 2 \mathrm{MeOH}\right]_{n}\right)$ and the preparative scale reaction (red line, $\left[\mathrm{Cu}_{2}(\mu-\right.$ $\left.\left.\mathrm{OAc})_{4}(\mathbf{1})\right]_{n}\right)$.

Figure S10. ORTEP-stype representation of the asymmetric unit in $\left[\mathrm{Cu}_{2}(\mu-\mathrm{OAc})_{4}(\mathbf{1})\right]_{n}$ with ellipsoids plotted at 40\% probability level and H atoms omitted.

Figure S11. ORTEP-stype representation of the asymmetric unit in $\left\{\left[\mathrm{Cu}_{4}\left(\mu_{3}-\mathrm{OH}\right)_{2}(\mu-\mathrm{OAc})_{2}\left(\mu_{3}-\right.\right.\right.$ $\left.\left.\mathrm{OAc})_{2}(\mathrm{AcO}-\mathrm{KO})_{2}(\mathbf{1})_{2}\right] \cdot 2 \mathrm{MeOH}\right\}_{n}$ with ellipsoids plotted at 40% probability level and H atoms and solvent molecules omitted.

Figure S 12 Packing of chains in $\left\{\left[\mathrm{Cu}_{4}\left(\mu_{3}-\mathrm{OH}\right)_{2}(\mu-\mathrm{OAc})_{2}\left(\mu_{3}-\mathrm{OAc}\right)_{2}(\mathrm{AcO}-\mathrm{KO})_{2}(\mathbf{1})_{2}\right] \cdot 2 \mathrm{MeOH}\right\}_{n}$.

Figure S13. ORTEP-stype representation of the asymmetric unit in [2\{Cu $\mathrm{Cu}_{2}(\mu-$ OAc) $\left.\left.)_{4}(\mathbf{2})\right\} \cdot 1.25 \mathrm{MeOH}\right]_{n}$ with ellipsoids plotted at 40% probability level and H atoms and solvent molecules omitted.

Figure S14. ORTEP-stype representation of the asymmetric unit in $\left[\mathrm{Cu}_{2}(\mu-\mathrm{OAc})_{4}(3)\right]_{n}$ with ellipsoids plotted at 40% probability level and H atoms omitted.

Figure S15. ORTEP-stype representation of the asymmetric unit in $\left[\mathrm{Cu}_{2}(\mu-\right.$
$\left.\left.\mathrm{OAc})_{4}(4)\right\} \cdot 0.2 \mathrm{CHCl}_{3}\right]_{n}$ with ellipsoids plotted at 40% probability level and H atoms and solvent molecules omitted.

Figure S16. Part of one chain in $\left.\left[\mathrm{Cu}_{2}(\mu-\mathrm{OAc})_{4}(5)\right\} \cdot 0.2 \mathrm{CHCl}_{3}\right]_{n}$, drawn using data retrieved from the CSD, refcode SADBIL [1].

Figure S17. Packing of three adjacent chains (each runs left to right) shown in ball-and-stick representation in $\left[2\left\{\mathrm{Cu}_{2}(\mu-\mathrm{OAc})_{4}(2)\right\} \cdot 1.25 \mathrm{MeOH}\right]_{n}$. The two independent alkyl...alkyl van der Waals packing interactions are highlighted.

References

1. Li, L.; Zhang, Y.Z.; Yang, C.; Liu, E.; Golen, J.A.; Zhang, G. One-dimensional copper(II) coordination polymers built on 4^{\prime}-substituted $4,2^{\prime}: 6^{\prime}, 4^{\prime \prime}$ - and $3,2^{\prime}: 6^{\prime}, 3^{\prime \prime}$-terpyridines:
Syntheses, structures and catalytic properties. Polyhedron 2016, 105, 115-122.
DOI: 10.1016/j.poly.2015.12.042
