



## Synthesis and properties of thermosets from tung oil and furfuryl methacrylate

Sunanda Sain <sup>1,\*</sup>, Dan Åkesson <sup>1,\*</sup> and Mikael Skrifvars <sup>1</sup>

<sup>1</sup> Swedish Centre for Resource Recovery, University of Borås, SE-501 90 Borås, Sweden

\* Correspondence: sunanda.sain@hb.se (S.S.); dan.akesson@hb.se (D.Å.)

## FTIR plot



**Figure S1.** FTIR (Fourier-transform infrared) plots of free radically polymerised samples Polyfurfurylmethacrylate (PFMA), and FMA-TO (furfurylmethacrylate-tung oil) polymers (F50-T50, F40-T60 and F30-T70).

The differences in spectra between PFMA and FMA-TO polymers were observed in 1150–1700 cm<sup>-1</sup> region and 2700–3500 cm<sup>-1</sup> region (highlighted with black dotted square).

## DSC plot



**Figure S2.** DSC (differential scanning calorimetry) plot of free radically polymerised Polyfurfurylmethacrylate (PFMA) [first heating, cooling and second heating scans are shown].

Glass transition temperature of free radically polymerized PFMA was found at 50–75 °C region. No exothermic transition has been happened at 140–170 °C in PFMA, whereas, sharp exothermic transitions have been observed at FMA-TO polymers at ~150 °C (graphs are in the main article).

## TGA plot



**Figure S3.** TGA (thermogravimetric analysis) plots of free radically polymerised Polyfurfurylmethacrylate (PFMA) and FMA-TO (furfurylmethacrylate-tung oil) polymers.

Thermal stability of PFMA was much lower than FMA-TO polymers.