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Abstract: A furan functionalized epoxy-amine thermoset with an embedded microcapsule healing 

system that utilizes reversible Diels-Alder healing chemistry was used to investigate the influence 

of microcapsule loading on healing efficiency. A urea-formaldehyde encapsulation technique was 

used to create capsules with an average diameter of 150 µm that were filled with a reactive solution 

of bismaleimide in phenyl acetate. It was found that optimum healing of the thermoset occurred at 

10 wt% microcapsule content for the compositions investigated. The diffusion of solvent through 

the crack interface and within fractured samples was investigated using analytical diffusion models. 

The decrease in healing efficiency at higher microcapsule loading was attributed partially to solvent-

induced plasticization at the interface. The diffusion analysis also showed that the 10% optimum 

microcapsule concentration occurs for systems with the same interfacial solvent concentration. This 

suggests that additional physical and chemical phenomena are also responsible for the observed 

optimum. Such phenomena could include a reduction in surface area available for healing and the 

saturation of interfacial furan moieties by reaction with increasing amounts of maleimide. Both 

would result from increased microcapsule loading. 

Keywords: microencapsulation; self-healing polymers; Diels-Alder; diffusion; plasticization 

 

1. Introduction 

Autonomous self-healing materials are materials that can repair damage to themselves or 

recover a functionality without external intervention [1]. Self-healing thermosets are desirable for 

recovery of mechanical strength through repair of damage due to wear or internal fractures resulting 

from fatigue. The modes of self-healing have been classified into three categories: intrinsic, vascular, 

and capsule based [1–3]. 

The Diels-Alder reaction has been widely used for self-healing chemistry because certain forms 

of the reaction are thermoreversible, where with the addition of heat causes the formed adduct to 

revert to the original diene and dienophile. Chen et al. [4] developed one of the initial self-healing 

thermosets using reversible Diels-Alder chemistry in which cross-links were formed between furans 

and maleimides as described below in Figure 1. 

 

Figure 1. Diels-Alder reaction between furan and maleimide. 
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Peterson et al. developed a healable furan-functionalized epoxy-amine thermoset based on the 

Diels-Alder reaction [5–7]. A monomer containing a furan group was added to an epoxy-amine 

mixture, resulting in a furan-functionalized thermosetting network. Reactive solutions of 

bismaleimide and solvent were applied directly to the fractured surfaces and were allowed to heal at 

room temperature and under minimal pressure. It was found that in these systems, that the solvent 

induces swelling, thus bringing fracture surfaces together and delivering maleimide functional 

healing agents that form covalent bonds across the crack [5]. 

Pioneering work on capsule-based self-healing thermosetting networks was done by White et 

al. [8,9] Microcapsules filled with reactive solutions of dicyclopentadiene (DCPD) and Grubbs’ 

catalyst were dispersed throughout a thermoset. Upon fracture, the capsules break and release DCPD 

into the crack interface, where it can react with the catalyst and subsequently undergo ring opening 

metathesis polymerization (ROMP) to bind the crack faces closed. 

Pratama et al. developed a capsule-based healing system [10] for the aforementioned furan-

functionalized network that utilizes reversible Diels-Alder reversible chemistry shown in Figure 1. 

Capsules filled with reactive solutions of bismaleimide and solvent were dispersed throughout the 

polymer network [7,10,11]. In response to cracks within the system, these capsules break to release 

reactive solution to the crack interface, allowing covalent bonds to form between the maleimide and 

furans and bind the crack faces together. Initial studies showed that with the addition of 10 wt% 

maleimide solution-filled capsules, the resulting thermoset recovered approximately 71% of the 

initial load [10]. 

In this work we investigate the influence of microcapsule concentration on healing efficiency of 

the Diels-Alder room temperature capsule-based self-healing systems. Microcapsules filled with 

solutions of bismaleimide in phenyl acetate with an average diameter of 150 µm were prepared and 

a furan-functionalized polymer epoxy network based on diglycidyl ether of bisphenol A and furfuryl 

glycidyl ether was used to make thermoset bars containing varying amounts of the microcapsules. 

Room temperature healing studies were conducted using compact tension specimens with arrested 

cracks and the effects of Diels-Alder reaction kinetics and solvent diffusion on network properties 

and healing efficiency were studied. 

2. Experimental Methods and Materials 

2.1. Materials 

Diglycidyl ether of bisphenol A (DGEBA with EEW = 185–192, EPON 828, Miller-Stephenson, 

Danbury, CT, USA), furfurylglycidyl ether (FGE, Sigma-Aldrich, 96%, St. Louis, MO, USA), and 4,4′-

methylene biscyclohexanamine (PACM with AEW = 52.5, Evonik, Allentown, PA, USA) were used 

to prepare furan-functionalized epoxy amine thermosets. Fumed silica (Cab-o-sil, Cabot, Boston, MA, 

USA) was used as a rheology modifier. The healing solution was obtained by dissolving MMI-2,1,6′-

bismaleimide-(2,2,4-trimethyl)hexane (BMI-TMH Daiwakasei Industries, Parisppany, NJ, USA), in 

phenyl acetate (99% Sigma-Aldrich). The chemical structures of the monomers, solvents and 

maleimide healing agents are shown in Table 1. Urea, ammonium chloride, resorcinol, 36% 

formaldehyde solution, and 2 M aqueous sodium hydroxide used for microcapsule synthesis were 

obtained from Sigma-Aldrich. The surfactant used for microcapsule synthesys was ethyl maleic 

anhydride (EMA) polymer (Zemac E-400, Vertellus Holdings LLC, Indianapolis, IN, USA). All 

materials were used without additional purification. 
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Table 1. List of chemicals and structures used in this work. 

Chemical Name Chemical Structure Abbreviation 

Diglycidyl ether of bisphenol A EPON 828 

Furfuryl glycidyl ether 

 

FGE 

Biscyclohexanamine PACM 

1,6′-bismaleimide-(2,2,4-trimethyl)hexane

 

MMI-2 

Phenyl acetate 

 

PA 

2.2. Microcapsule Preparation 

Microcapsules containing a bismaleimide compound in phenyl acetate (PA) solution were 

prepared by in situ polymerization of urea and formaldehyde, using the process outlined by Pratama 

et al. [10] PA was chosen as the core solvent because of a preferential solubility of maleimide and its 

ability to sufficiently swell the polymer matrix. Based on the results of previous work [7,10,11], MMI-

2 bismaleimide was used for encapsulation. Concentration of surfactant (EMA, Zemac E-400) was 

optimized to prevent agglomeration and to ensure capsule stability [10]. The reaction was allowed to 

progress for 4 h under constant heating and mechanical agitation. At completion of the reaction, 

mechanical agitation was continued for an additional 6 h at room temperature. Multiple washes using 

water and acetone were performed, and centrifugation was used to separate the capsules from the 

aqueous phase. After a drying period of 24 h, the capsules were characterized and processed before 

incorporation into the furan functional epoxy. 

2.3. Microcapsule Characterization 

Scanning electron microscopy (SEM, Zeiss Supra 50VP, Carl Zeiss Microscopy LLC , White Plains, 

NY, USA) coupled with ImageJ (National Institute of Health) was used to characterize the capsule shell 

thickness, agglomeration, and average microcapsule size. The SEM samples were sputter coated with 

platinum, and measurements were made at 5.0 kV accelerating voltage. 

Thermogravimetric analysis (TGA, TA Instruments TAQ50, TA Instruments, New Castle, DE, USA) 

was used to determine MMI-2/PA content within microcapsules [10]. The amount of encapsulated 

solution is taken as the mass loss during the TGA run. Capsule specimens were heated at a rate of 5 °C 

min−1 to 100 °C and held for 30 min to stimulate water loss. This was followed by heating to 180 °C for 30 

min and 200 °C for 60 min, which bracketed the boiling point of PA (b.p. 196 °C). 

2.4. Preparation of Capsule-Based Self-Healing Thermoset 

For the study of healing efficiency vs. microcapsule loading, a furan-functionalized epoxy-amine 

thermoset was prepared by mixing a 6:4 by weight ratio of DGEBA and FGE with a stoichiometric amount 

of PACM curing agent. To avoid settling and to keep microcapsules well dispersed after mixing, 1 wt% 

fumed silica was added. The addition of the fumed silica is known to have a minimal effect on the 

mechanical properties of the polymer. Using a THINKY planetary mixer (THINKY U.S.A., Laguna Hills, 

CA, USA), resins were mixed at 2000 rpm for 4 min and degassed at 800 rpm for 1 min. Microcapsules 

200 µm in diameter and less were obtained using a sieve before being hand-mixed into the pre-mixed 
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resin at the appropriate weight percentage. Hand mixing was employed to prevent fracture of the 

microcapsules. The microcapsule-filled resin was then poured into the appropriate molds and cured for 

2 h at 60 °C and for 2 h at 90 °C. 

2.5. Compact Tension Testing 

Values for healing efficiency were calculated using modified compact tension specimens in 

accordance with ASTM D 5045–99. This commonly used testing procedure for healing efficiency has been 

previously described for this system by Peterson et al. [5,10] The addition of a crack-arresting hole to the 

specimens prevents crack propagation through the entire length of the sample and also aids in 

realignment of crack surfaces during healing. A pre-crack was introduced by running a razor blade across 

the base of the notch [10]. An Instron 8872 (Instron Corporation, Norwood, MA, USA) was used to apply 

uniaxial tensile loading, at a loading rate of 0.1 mm min−1 to the samples until fracture. Specimens were 

healed at ambient conditions (~25 °C) under minimal pressure (~50 kPa) for various amounts of time. 

After healing, samples were again loaded until fracture. The healing efficiency is defined as the ratio of 

the max load for the initial and healed samples. Healing efficiency for each sample was calculated using 

Equation (1), where η is healing efficiency, P0 is the maximum load for the initial fracture of the specimen, 

and Ph is the maximum load for the healed specimen. 

� =
��

��

× 100% (1) 

All healing efficiency results are presented as averages of at least five tested specimens with 

error bars representing standard error of the mean of the population. 

2.6. Characterization of the Diels-Alder Reaction 

Fourier-transform near-infrared spectroscopy (FTNIR) (Nicolet iS50 FT-IR spectrometer, Thermo 

Fisher Scientific, Waltham, MA, USA) was used to study the reaction kinetics between the maleimide 

compound in the MMI-2 healing agent and the furan groups within the polymer network. The decrease 

in characteristic maleimide absorbance at 4875 cm−1 and at 25 °C was followed, representing the decrease 

in maleimide concentration as the forward reaction occurs. Stoichiometric solutions of 2.30 M FGE and 

0.26 M of maleimide groups from MMI-2 with PA as the solvent were prepared in sealed glass capillary 

tubes. These values were chosen to represent the values of furan and maleimide groups in the polymer 

and capsules, respectively. 

2.7. Dynamic Mechanical Analysis 

Dynamic mechanical analysis (DMA, TA Instruments Q800, TA Instruments, New Castle, DE, USA) 

was used to study the change in mechanical properties of samples. Rectangular sample bars with 

dimensions of approximately 35 mm × 12.7 mm × 3.1 mm were prepared. Samples were scanned from −80 

°C to 100 °C at a ramp rate of 2 °C min−1, at a frequency of 1 Hz, and with a deflection of 15 µm using 

single cantilever geometry. 

3. Results and Discussion 

3.1. Microcapsule Characterization 

Microcapsules filled with MMI-2 reactive solutions were successfully synthesized. Scanning electron 

microscopy images of microcapsules filled with 0.13 M MMI-2 in PA and the crack interface of compact 

tension test samples are shown in Figure 2. The capsules produced were spherical in shape and separable 

from UF debris seen in solution through solvent washing. The resulting microcapsules are not 

monodisperse; however, it was found that larger capsules could be removed using mesh filters of an 

appropriate size. Capsules with diameters nominally less that 200 µm were separated and incorporated 

into the epoxy system. A histogram describing the particle size distribution of these capsules is shown in 

Figure 3. The average diameter for microcapsules filled with MMI-2 and PA after filtration was 149.9 ± 

38.4 µm. 
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(a) (b) 

Figure 2. SEM Images of (a) dried microcapsules and (b) crack interface of resin with 20 wt% 

microcapsule content. Samples were sputter coated with platinum. 

 

Figure 3. Size distribution of microcapsules filled with PA and MMI-2 healing agent. 

A TGA scan of microcapsules filled with MMI2 and PA is shown in Figure 4. Analysis shows an 

initial slight decrease of the sample weight at 100 °C, which corresponds to residual water and 

acetone (b.p. 56 °C) on the capsule surface. The decrease in weight percentage between 160–200 °C 

corresponds to the loss of PA (b.p. 196 °C). The TGA experiments show that the PA content was ~90% 

by weight. 
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Figure 4. Thermogravimetric analysis (TGA) of microcapsules filled with MMI2/PA. Microcapsules 

used in TGA have diameters of 200 µm and less. Capsule specimens were heated at a rate of 5 °C min 

[1] to 100 °C and held for 30 min to stimulate water loss. This was followed by heating to 180 °C for 

30 min and 200 °C for 60 min, which bracketed the boiling point of PA (b.p. 196 C). 

3.2. Characteristic Time for Adduct Formation 

A kinetics analysis of the forward Diels-Alder reaction in which the maleimide and furan groups 

formed an adduct was conducted using 2.3 M FGE and 0.26 M MMI2 in PA solutions at 25 °C. The 

rate of adduct formation was measured using the absorbance at 4875 cm−1, which correlates well to 

maleimide double bond concentration [5–7]. Figure 5 shows maleimide concentration as a function 

of time for the forward Diels-Alder reaction. In this system, full reaction (reaction approaching 

equilibrium) was achieved in approximately 1000 min or 16.7 h. Because the reaction reaches 

equilibrium before this study’s first healing measurement at 48 h, it will be assumed that for all 

healing time points used in this study, the majority of maleimide-furan bonds at the crack surface 

have been formed. 

 

Figure 5. Maleimide concentration during reaction of furan and maleimide in 2.3 M FGE 0.26 M 

maleimide groups from MMI2 in PA at 25 °C. 
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3.3. Self-Healing via Incorporation of Microcapsules 

Microcapsules were added to the thermoset in varying weight percentages by hand to prevent 

fracture of the microcapsules. Figure 6 shows the maximum load values (N) of the virgin fracture 

toughness samples (Day 0). These values were normalized to the maximum load value of the virgin 

fracture toughness sample with no added microcapsules for ease of comparison. As microcapsules 

are added, the fracture strength is reduced. Beyond 10 wt% microcapsules, the fracture load drops 

more rapidly, indicating that microcapsule loadings of 10 wt% or less will be likely favored. 

 

Figure 6. Initial maximum load of fracture (N) of virgin fracture toughness samples (Day 0) 

normalized to the initial maximum load value (N) of sample of neat resin for specimen with varying 

microcapsule content (wt%). 

Figure 7 shows the healing efficiency values calculated for samples with varied microcapsule 

content as a function of healing time. The four sample groups correspond to increasing microcapsule 

content: 5, 10, 15, 20 wt%. The values for healing efficiency were calculated using Equation (1). The 

samples were allowed to heal for 2, 4, 7, and 14 days under minimal pressure (~50 kPa). The data 

show that with the exception of 5 wt% loading, the healing efficiency increases with increased healing 

time. At 2 days of healing, it was observed that as microcapsule content increases, the healing 

efficiency decreases. Such behavior is counterintuitive since higher capsule concentration 

corresponds to more healing agent available for healing. At 4 days healing time and longer, this trend 

is no longer observed. Figure 7 also shows that for a long healing time (14 days) there is an optimum 

healing efficiency at 10 wt% microcapsule content, and that increasing microcapsule content to 20 

wt% results in a much-reduced healing efficiency. 

We hypothesize that although covalent bonds have fully formed at the crack interface (as 

suggested by the kinetic study), the increased volume of solvent associated with higher capsule 

concentration leads to more pronounced plasticization of the matrix. This could cause a decrease in 

Tg to a value close to the testing temperature so the polymer is unable to recover its original 

mechanical properties for the given healing time. The degree to which PA diffusion and plasticization 

of the polymer are responsible for the observed self-healing behavior were investigated further as 

described in the following sections. 
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Figure 7. Healing efficiency, η (%) vs. healing time (days) for modified fracture toughness samples 

with varying microcapsule content. Specimens were healed for 2, 4, 7, and 14 days. 

3.4. Solvent Diffusion and Plasticization 

A plasticization study was conducted to investigate the influence of PA content on the properties 

of the epoxy network. DMA sample bars of the DGEBA:FGE(6:4)/PACM system were made and 

individually placed into sealed glass vials of PA, ensuring full immersion in solvent. The initial mass 

of the specimen was noted before immersion. Bars were left in the vials to allow uptake of varying 

concentrations of solvent and then subsequently removed and weighed to note the final mass. The 

specimen was then placed in an empty, sealed glass vial for an extended period to ensure that an 

equilibrium distribution of solvent throughout the polymer had been reached. Upon reaching 

equilibrium, DMA was used to measure the extrapolated onset of the storage modulus change, Tonset, 

for the varying concentrations of PA in polymer. This value represents the point at which the neat 

resin system moves from the glassy plateau to the glass transition region—the point at which the 

material starts to become compliant. The experimental Tonset values for varying concentrations of PA 

in the DMA bars are shown in Figure 8. The experimental data show that with increasing mass uptake 

of solvent, Tonset of the polymer decreases significantly. Changes in Tg are related proportionally to 

changes in Tonset, thus a relationship between Tg and amount of plasticizer can also be used to study 

the relationship between Tonset and the amount of plasticizer. 

 

Figure 8. Temperature of the extrapolated onset of the storage modulus change (°C), Tonset, of DMA 

specimen with varying concentrations of PA in polymer (M). Data shows that with increasing mass 

uptake of solvent, Tonset decreases. 
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The Gordon-Taylor equation [12], given by Equation (2), describes the Tg of plasticized polymers 

as a function of weight percent of solvent (w) and Tg values, respectively, of the pure solvent, 1, and 

the polymer, 2. The adjustable parameter kGT can be calculated from the experimental data of Figure 

8. 

T� =
w�T�,� + k��w�T�,�

w� + k��w�
 (2) 

The Gordon-Taylor equation was used to fit the aforementioned experimental data and to 

estimate Tonset values for polymer samples with varying weight percentages of PA. The fit is also given 

in Figure 8 and shows good agreement with the data. Based on this fit it is estimated that a 

concentration of 4.16 × 10−4 mol/cm3 (~4.8 wt%) PA to the epoxy network will cause Tonset to decrease 

to 25 °C. 

The governing equation for the diffusion of PA through the compact tension sample during 

healing can be described by the one-dimensional diffusion equation, given by Equation (3). CA 

represents the concentration of PA and DA is the diffusion coefficient of PA in the polymer. 

���

��
= ��

����

���
 (3) 

To model the diffusion of PA that occurs in the compact tension specimen, the zone of diffusion 

was defined as the distance from the crack surface (x = 0) to half of the width of the compact tension 

specimen (x = L). Upon damage, there is a finite amount of PA that can be delivered to the crack 

interface from fractured microcapsules. The released volumes of PA (Vc) for a given fracture surface 

area (SA) were estimated using SEM micrographs by counting the number of fractured capsules and 

assuming them to be 90% filled. Furthermore, if a uniform film is formed at the interface, it would 

have a thickness lc = Vc/SA. Two major assumptions are made to solve this diffusion problem: first, 

volume changes due to solvent diffusion into the polymer matrix are negligible; second, the diffusion 

coefficient is constant and does not decrease over time due to the Diels-Alder reaction with the 

healing agent increasing cross-link density. 

To model the diffusion process, two stages were considered, each of which was solved 

analytically. In the first stage, solvent is released into the crack upon fracture. This volume (Vc) of 

solvent increases with increasing capsule content and is assumed to form a uniform film at the crack 

interface. At this stage, the diffusion of PA can be approximated as diffusion into a semi-infinite slab 

in which the initial concentration of solvent is CA = 0 throughout the sample (0< x <L), a no flux 

boundary condition is found at L (x = L, ∂CA/∂x = 0), and a constant equilibrium concentration of PA 

is applied at the crack surface (x = 0, CA = Ceq). The analytical solution for this problem is given by 

Equation (4) [13]. 

��(�, �) = ��� �1 − ��� �
�

����
�� (4) 

At the point that the solvent film volume is fully absorbed, the boundary condition at the crack 

interface also becomes no flux (x = 0, ∂CA/∂x = 0). This happens at a time, tfill, when the amount of PA 

that has diffused through the system is equal to the initial amount of PA delivered from the fractured 

microcapsules. This time is found analytically as the time when Equation (5) is satisfied. In this 

equation, CA0 is the molar concentration of pure PA. 

����� =  � ��(�, �) 
�

�

�� (5) 

Based on previous and current diffusion studies, [10] Ceq = 3.12 × 10−3 mol/cm3 and D = 7.68 × 10−9 

cm2 s−1, and using Equations (4) and (5), values of tfill for samples with 5, 10, 15, and 20 wt% capsule 

content were calculated to be 0.22, 0.50, 0.66, and 1.14 h, respectively. 

For the second stage of the diffusion process, when the solvent reservoir has been depleted, no 

flux boundary conditions are applied at x = L and x = 0. At x = 0, this is the case because two 

symmetrical halves of the fracture surfaces come together. The boundary condition at x = L is set to 
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no flux for convenience and because the volatility of PA at 25 °C is low. Therefore, the second stage 

of the diffusion process is approximated by diffusion within a flat sheet, where both surfaces x = 0 

and x = L are impermeable, with the initial condition being the concentration profile defined by 

Equation (4) at t = tfill. The analytical solution for this problem is given in Equation (6), where f(x’) 

defines the initial concentration profile13. A schematic representation of the two-stage model is shown 

in Figure 9. 

 

Figure 9. Schematic of model for diffusion of phenyl acetate through compact tension specimen 

fracture surface. 

��(�, �) =
1

�
� �(��)��� +  

2

�

�

�

� ��� �−
�������

��
� ���

���

�
� �(��) ���

��

�
��′

�

�

�

���

 (6) 

Equations (4) and (6) were used to solve for PA concentration profiles in the systems having 5, 

10, 15, and 20 wt% microcapsules for healing times of 2, 4, 7, and 14 days. The resulting concentration 

profiles were used to obtain the surface concentration of PA for all the capsule systems at each healing 

time. The surface solvent concentration values in turn were used in Equation (2) to predict the Tonset 

values at the time of healing and subsequent testing. Using the procedures described above, the 

calculated concentrations of PA at the crack surface for the four capsule contents at varying healing 

times are plotted in Figure 10. In addition, the concentration of PA that results in a Tonset of 25 °C is 

shown as a horizontal line on the plot. 
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Figure 10. Calculated concentration of PA in the polymer for samples with varying microcapsule content 

at varied healing times (2, 4, 7, and 14 days). The concentration at which Tonset = 25 °C is also plotted. 

The model results suggest that for initial healing times (2–4 days), the samples with higher 

capsule content (10, 15, and 20 wt%) would be significantly affected by solvent plasticization. After 2 

days of healing, the 10, 15, and 20 wt% samples are predicted to have very high concentrations of PA 

at the crack interface, as they are well above the Tonset = 25 °C threshold. This high amount of PA 

means that the plasticized crack interface of these samples will have a Tonset below 25 °C and a Tg 

much lower than that of the cured neat resin. As the healing time progresses to 4 and 7 days and the 

PA diffuses from the crack throughout the polymer, the 10 and 15 wt% systems move below the 

threshold line while the 20 wt% samples still contain enough PA to keep them fully plasticized and 

weak. At 14 days, all systems are below the threshold PA concentration, although the concentration 

varies proportionally to the capsule content. The healing efficiency of systems with Tonset less than 25 

°C at the crack interface are predicted to exhibit poor healing efficiency. 

The healing efficiency values for all samples were compared to the PA surface concentration 

values predicted by the analytical model. These values are given in Figure 11 as a plot of healing 

efficiency versus calculated surface concentration of PA. The concentration needed for Tonset = 25 °C 

is also plotted as a vertical line that can be used to differentiate which specimens would be severely 

affected by plasticization and which would not. The points to the right of the line are predicted to be 

highly plasticized and, in fact, show reduced healing efficiencies ranging from 20–35% than the points 

to the left of the line, which have healing efficiencies ranging from 40–75%. The plot also shows that 

for 5% loading, the interfacial solvent concentration is lower than the Tonset threshold for all healing 

times. 

Figure 11 can also be used to define the sets of points that are not significantly affected by 

plasticization, allowing for meaningful comparisons to better understand the influence of capsule 

loading on healing efficiency. Comparisons of the datasets to the left of the Tonset concentration show 

that there is an optimum capsule loading in the range of 10% for these systems that is not a result of 

plasticization. For the same predicted low concentration of solvent, the healing efficiency for 10% 

capsule loading is always highest. There are several potential explanations for this result currently 

under investigation: (1) Greater amounts of maleimide could saturate furan sites at the interface, 

resulting in less bridging between fracture surfaces; (2) increasing capsule concentration decreases 

the surface area available for bonding; and (3) more debris is generated with a higher concentration 

of capsules, which further reduces the available surfaces for bonding. We conclude that the observed 

optimum capsule concentration is not only a result of the plasticization effect as it remains observable 

when the solvent dissipates. 
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Figure 11. Healing efficiency, η, vs. concentration of PA in the polymer as calculated by the analytical 

model for specimena with varying microcapsule content at varied healing times (2, 4, 7, and 14 days). 

The concentration needed for Tonset = 25 °C is plotted to differentiate which specimens are affected by 

plasticization. 

4. Conclusions 

Microcapsules filled with solutions of bismaleimide in phenyl acetate with an average diameter 

of 150 µm were made. A furan-functionalized polymer network was used to prepare systems 

containing varying amounts of the MMI2-PA-filled capsules in order to investigate the influence of 

capsule content on healing efficiency. Results showed that there is an optimum capsule content at 

which the highest healing efficiency of the epoxy-amine network was achieved. The optimum capsule 

content was found to be 10 wt% with a healing efficiency of 75% for the range of compositions 

investigated. Solvent is needed for healing as it promotes fracture surface contact by localized 

swelling as well as a reaction by reducing diffusion limitations associated with the glassy state; 

however, the accompanying reduction in Tg by plasticization also weakens the interface. Higher 

capsule loading increases maleimide moieties available for the healing reaction but also the amount 

of solvent that can remain trapped at the interface, reducing healing efficiency. A diffusion analysis 

was conducted to estimate the solvent concentration remaining at the interface as a function of 

healing time and microcapsule loading. Analysis of healing performance as a function of predicted 

solvent concentration at the fracture interface shows that high capsule loadings lead to greater 

degrees of plasticization. This is a partial explanation for the observed optimum microcapsule 

concentration because the analysis also shows that the optimum is observed for systems with the 

same interfacial solvent concentration. Possible physical and chemical explanations for this include: 

(1) a reduction in surface area available for healing, and (2) the saturation of interfacial furan moieties 

by reaction with the higher amounts of maleimide, both resulting from increased microcapsule 

volume fraction. The results also suggest that for higher capsule loadings, longer healing times (>14 

days) should result in higher healing efficiency and that experiments conducted at longer healing 

times could be used to further decouple the influence of solvent plasticization from other physical 

and chemical effects. 
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