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Abstract: Polymer optical fibers (POFs) were used for preparing side-emitting polymer optical fibers
(SPOFs), which were processed with acetone and n-hexane combined in selected proportions by a
solvent treatment method. The effects of the volume ratio of acetone to n-hexane and treatment
time on response variable factors were investigated. The center composite design (CCD) based
response surface methodology (RSM), a quadratic model, and a two-factor interaction model were
developed to relate the preparation variables of illumination intensity, breaking strength, and rigidity.
According to analysis of variance (ANOVA), the factors affecting the optimization of each response
factor were determined. The predicted values after process optimization were found to be highly
similar to the experimental values. The optimal conditions for the preparation of SPOF were as
follows: the volume ratio of acetone to hexane was 1.703, and the treatment time was 2.716 s. The three
response variables of SPOF prepared under the optimal conditions were: illumination intensity
19.339 mV, breaking strength 5.707 N, and rigidity 572.013 N·mm2.

Keywords: side-emitting polymer optical fibers; solvent treatment method; center composite design;
response surface methodology; optimization

1. Introduction

As a textile material, side-emitting polymer optical fibers (SPOFs) have the advantages of softness,
light weight, and flexibility, which can be combined with other fibers to form light-emitting fabric,
used in the optical medical field [1]. Thus, the properties and application of SPOFs have gradually
become one of the research hotspots in the field of phototherapy [2–6].

Traditionally, SPOFs for commercial use have the disadvantages of having a large diameter and
high rigidity, and not being easy to weave and knit [7]. To obtain SPOFs with ideal optical properties,
researchers paid more attention to the processing and treatment on their surface structure [8].

There are two main methods for POFs to realize the side-emitting effect [9]: to destroy the fiber
structure and to bend the fiber. The former focuses on the change of the POF cladding structure,
causing light to leak out of the fiber’s interior. The latter changes the transmission path of light in the
core, which cannot satisfy the total reflection condition. Chemical solvent treatment is a method of
destroying the cladding structure of the optical fiber, which has the advantages of low cost, convenient
operation, and high luminous intensity.

To study the behavior of POFs treated by chemical solvent, a lot of research has been done by
some scholars. Merchant et al. [10] applied chemical tapering techniques to prepare POF sensors,
which was a significant enhancement of POF devices. They had earlier clarified the treatment of
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POF with hydrofluoric acid, pure acetone, and organic solvent. Batumaiay et al. [11] studied the
reaction of acetone as a chemical solvent treatment agent with POF surface polymer. After a large
amount of deionized water rinsing, the white reactant attached to the surface and was sanded with
sandpaper to obtain SPOF. Rajan et al. [12] and Bhowmik et al. [13,14] used acetone and methanol to
mix. The volume ratio of the mixed solution and the treatment time were determined. The surface
morphology and structure of the POFs were characterized. However, the quantitative relationship
between the processing factors and the performance of the obtained SPOFs were seldom mentioned.

Based on the above references, acetone and n-hexane were combined in selected proportions
for the solvent treatment method. The volume ratio of the mixed solution and treatment time were
taken as independent variables, and the illumination intensity, breaking strength, and rigidity were
taken as response variables. With the help of CCD [15] based RSM [16,17], the relationship between
independent variables and response variables was optimized and analyzed. The optimal preparation
parameters were obtained. SPOFs were prepared under optimum conditions, and the predicted
values were compared with the actual values. The reliability of the design model was proved by the
morphological characterization of SPOFs by scanning electron microscopy (SEM).

2. Experimental

2.1. Materials

POFs (Jiangxi Dasheng Plastic Optical Co., Ltd., Jiangxi, China) were used in the experiment.
Their core material is polymethyl methacrylate (PMMA), and the cladding material is fluororesin.
Characteristics of the POFs are listed in Table 1. Theses fibers were treated in a device that is made with
glass and has a groove of 100 mm × 5 mm × 5 mm, as shown in Figure 1. Acetone (99.5%, Tianjin Komeo
Chemical Reagent Co., Ltd., Tianjin, China) and n-hexane (99.5%, Tianjin Fengchuan Chemical Reagent
Co., Ltd., Tianjin, China) were combined in selected proportions to treat POFs.

Table 1. Characteristics of the polymer optical fibers (POFs) used in this study.

Project Parameter

Fiber diameter (mm) 0.250
Fiber cladding thickness (mm) 0.025

Numerical aperture 0.5
Maximum transmission loss (dB/km) 250

Working temperature (°C) −50–(+70)
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2.2. Central Composite Design (CCD)

A standard RSM called CCD was used in this investigation. The multivariate quadratic regression
equation was used to fit the functional relationship between the factors and response values. By analyzing
the regression equations, the optimal process parameters were sought to solve the multivariate
problem [18]. CCD naturally divides the factor into two subsets: the first subset estimates linear
and two-factor interaction effects, and the second subset estimates the curvature effect. CCD is also
characterized by its effectiveness and flexibility. It provides a lot of information about experimental
variables and experimental errors with a minimum of test cycles, and its design type can be applied to
the operability region and region of interest [19]. In simple terms, CCD can be applied to the fitting of
quadric surfaces. Generally, CCD consists of 2n factorial runs with 2n axial runs and nc center runs.

In this study, the independent variables X1 and X2 were volume ratio and treatment time,
respectively. For each categorical variable, a CCD [20] for the two variables consisting of four factorial
points, four axial points, and five replicates at the center points were employed, indicating that
altogether 13 experiments were required, as calculated from Equation (1):

N = 2n + 2n + nc = 22 + 2 × 2 + 5 = 13, (1)

where N is the total number of experiments required and n is the number of factors.
The independent variables were coded to the (−1, 1) interval where the low levels were coded as

−1 and the high levels were coded as +1. The axial points were located at (±α, 0) and (0, ±α) where α
is the distance of the axial point from the center and makes the design rotatable. The α value was fixed
at 1.414, and the factor level table is shown in Table 2.

Table 2. Experimental range and levels of independent variables.

Factor Range and Levels

Independent variable −α −1 0 1 α

Volume ratio of acetone to n-hexane (X1) 0.3 0.5 1 1.5 1.7
Treatment time (X2, s) 1.5 4 10 16 18.5

2.3. Preparation of SPOFs

Several POFs [21] with a length of 400 mm were obtained, which were marked 100 mm ± 5 mm in
the middle. The marked part of the optical fiber was placed in the trough of the solvent processor,
and acetone and n-hexane were combined in selected proportions as described in Table 2 and were
dripped into the trough for the corresponding reaction time. After solvent treatment, the optical
fibers were washed by high-pressure water and immersed in an ultrasonic cleaner (KQ-500VDE,
Kunshan Ultrasound Instrument Co., Ltd., Kunshan, China) to remove the white adhesion on the
fiber’s surface. After the above operation, the SPOFs were prepared.

2.4. SEM Text of SPOFs

A Phenom Pure scanning electron microscope (SEM, Phenom Pure, FUNER, Eindhoven, The Netherlands)
was used to observe the surface morphology and structure of SPOFs after acetone and n-hexane were
combined in selected proportions and with different time treatments.

2.5. Illumination Intensity Test

An illumination intensity [22] test system, as shown in Figure 2, was built in a darkroom.
The system includes a light source generator (LSB-RD-VIS-CW-30, Tianjin junfeng technology co.
LTD, Tianjin, China), electric translation platform (42BYG250Bk-B, Beiyang company, Tianjin, China),
InGaAs detector (DET10N, Thorlabs, Tianjin, China), and oscilloscope (DS1102D, RIGOL, Tianjin, China).
The light source power was 0.6 W. When the light source generator was 150 mm apart from the side
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luminous region of the SPOFs, the InGaAs detector collected the first data and converted the optical
signal into an electrical signal. Then, nine movements with 10 mm intervals were carried out by using
the electric translation platform. The luminous data were collected in turn, and the effective values
were recorded by the oscilloscope. Six groups of parallel experiments were set up, and the average
value was taken as the valid data.
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2.6. Breaking Strength Test

The breaking strength test equipment was a vertical universal strength tester (5969B10860, INSTRON,
New York City, NY, USA). The length of the tested sample between the two clamping devices was
100 mm. The constant tensile speed was 100 mm/min. Six groups of parallel experiments were set
up, and the average values of the six groups of parallel experiments were summarized as the final
effective data.

2.7. Rigidity Test

The samples were clamped on both sides of the universal strength tester (5969B10860, INSTRON,
America) in a straight line with a clamping distance of 100 mm. When the fixture distance was reduced
to 30 mm, the optical fiber was U-shaped. The bending radius of the optical fiber was measured.
Then, the elastic force of the optical fiber on the machine was collected. Finally, the rigidity was
calculated by Equation (2). Six groups of parallel experiments were set up, and the average values of
the six groups of parallel experiments were summarized as the final effective data.

B = Fπr2, (2)

where B represents the rigidity, F is elasticity at the lowest measured point (N), and r is the measured
minimum bending radius of optical fibers (mm).

3. Results and Discussion

3.1. Model Fitting and Statistical Analysis

Multivariate regression fitting analysis was performed using Minitab17 software, which can
perform linear two-factor interaction and quadratic polynomial or high-order model fitting on the
data, and is also used to evaluate the statistical significance of the regression equation.

3.2. Data Processing

Table 3 shows the complete design matrix of the experiment and inputs of the response variables:
illumination intensity (Y1), breaking strength (Y2), and rigidity (Y3). Each response is used to establish
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an empirical model, which uses the second-degree polynomial equation given by Equation (3) to
correlate the response with variables:

Y = β0 +
k∑

i=1

βiXi

k∑
i=1

βiiX
2
i +

k∑
i=1

k∑
j=1

βiiXiXj+ε, (3)

where Y represents the process response, β0 is the free term, k is the number of patterns, i and j are
index numbers for patterns, Xi . . . Xk are coded independent variables, βi is the first-order effect,
βii is the quadratic effect, βij is the interaction effect, and ε [23] is the random error accounting for the
discrepancies or uncertainties between predicted and observed values.

Table 3. Full factorial central composite design matrix for two test variables in uncoded units, along
with the observed and predicted responses.

Run
Volume Ratio
of Acetone to
n-hexane, X1

Treatment
Time, X2(s)

Illumination
Intensity, Y1(mV)

Breaking Strength,
Y2(N)

Rigidity,
Y3(N·mm2)

1 1(0) 10(0) 7.064 5.481 582.512
2 0.5(−1) 16(1) 4.374 5.876 659.076
3 1.5(1) 4(−1) 6.869 5.584 568.832
4 0.3(−1.414) 10(0) 2.775 6.396 726.526
5 1(0) 10(0) 6.938 5.601 596.322
6 1(0) 10(0) 6.670 5.510 590.384
7 1(0) 18.5(1.414) 7.190 5.355 496.218
8 0.5(−1) 4(−1) 2.670 6.249 715.862
9 1.5(1) 16(1) 7.615 5.133 508.738
10 1(0) 1.5(−1.414) 4.281 5.930 660.651
11 1(0) 10(0) 7.159 5.593 590.010
12 1.7(1.414) 10(0) 9.238 5.409 510.682
13 10(0) 10(0) 7.000 5.536 582.214

3.3. Application of Central Composite Model

CCD was used to develop correlation between the SPOFs’ preparation variables and the illumination
intensity (Y1), breaking strength (Y2), and rigidity (Y3). It was found that the illumination intensity of the
SPOFs prepared by the solvent treatment method ranged from 2.670 to 9.238 mV, the breaking strength
ranged from 5.133 to 6.396 N, and the rigidity ranged from 496.218 to 726.526 N·mm2.

The central composite model (Table 3) can enable the development of mathematical equations from
which each response Y = f(X) was estimated as a function of X1 and X2 and calculated as the sum of a
constant, two first-order effects (X1, X2), one interaction effect (X1X2), and two second-order effects (X1

2, X2
2).

The final model equations obtained in terms of uncoded variables are given in Equations (4)–(6).
According to the sequential model sum of squares, the models were selected based on the highest

order polynomials where the additional terms were significant and the models were not aliased. The final
empirical models in terms of coded factors after excluding the insignificant terms for illumination intensity
(Y1), breaking strength (Y2), and rigidity (Y3) are shown in Equations (4)–(6), respectively:

Y1 = 12.851 + 6.992X1+2.251X2 + 0.613X2
1 − 1.400X2

1 − 0.680X1X2 (4)

Y2 = 5.5442−0.3505X1 − 0.2046X2 + 0.1636X2
1 + 0.0337X2

2 − 0.0195X1X2 (5)

Y3 = 588.29−75.33X1 − 43.68X2 + 18.81X2
1 − 1.27X2

2 − 0.83X1X2 (6)

A positive sign in front of the terms indicates a synergistic effect, whereas a negative sign indicates an
antagonistic effect. The quality of the model developed was evaluated based on the correlation coefficient
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value. According to the regression Equations (4)–(6), the single-form coefficient values, the priority
between the main influences of the three response factors, is volume ratio (X1) > treatment time (X2).

From the significance test of the regression coefficient in Table 4, the X1 term in model (4) is
significant, and the other terms are not significant; in model (5), X1, X2, and X1

2 are significant, and other
items are not significant; in model (6), X1 and X2 are significant.

Table 4. Significance test of coefficients in the regression equation.

Source Y1 Y2 Y3

Coefficient p-Value Coefficient p-Value Coefficient p-Value

X1 6.922 <0.001 −0.351 <0.001 −75.331 <0.001
X2 2.251 <0.001 −0.205 <0.001 −43.683 <0.001
X1

2 0.163 0.568 0.164 <0.001 18.812 0.028
X2

2 −1.400 0.001 0.034 0.128 −1.270 0.857
X1X2 −0.680 0.101 −0.020 0.474 −0.847 0.929

3.4. Statistical Analysis

ANOVA is a statistical technique that subdivides the total variation in a set of data into component
parts associated with specific sources of variation for the purpose of testing hypotheses on the
parameters of the model [24,25]. Table 5 summarizes the results of ANOVA to test the reliability of
the model. The average square values were calculated by dividing the sum of squares of each variant
source by their degrees of freedom, and then using a 95% confidence level (alpha = 0.05) to determine
the statistical significance of all of the analyses.

Table 5. ANOVA for the response surface quadratic model.

Source Degree of
Freedom

Sum of
Squares Mean Square F-Value Prob > F

Y1 (Illumination intensity, mV)
Model 5 440.246 88.049 169.832 <0.001
Linear 2 423.909 211.955 408.807 <0.001
Square 2 14.484 7.242 13.972 0.004

Two-Way Interaction 1 1.852 1.852 3.574 0.101
R2 = 0.992

R2(adj) = 0.986
Y2 (Breaking strength, N)

Model 5 1.507 0.301 113.648 <0.001
Linear 2 1.318 0.659 248.487 <0.001
Square 2 0.187 0.094 35.340 <0.001

Two-Way Interaction 1 0.002 0.002 0.573 0.474
R2 = 0.988

R2(adj) = 0.979
Y3 (Rigidity, N·mm2)

Model 5 63,218.912 12,643.836 39.346 <0.001
Linear 2 60,655.943 30,327.872 94.382 <0.001
Square 2 2560.324 1280.137 3.982 0.070

Two-Way Interaction 1 2.800 2.800 0.001 0.929
R2 = 0.966

R2(adj) = 0.941

Table 5 shows the regression ANOVA predicting the parameters of the response surface quadratic
model Y1–Y3 processed by synthesis. Results are evaluated using various descriptive statistics, such as
p-values, F-values, and degrees of freedom (df). When p < 0.05, the model is significant, and a
small probability value (p < 0.001) indicates that the model is highly significant and can be used to
accurately predict the response function. All linear parameters were significant, and the quadratic
parameters were significantly different, except for the stiffness, for which the p-value was less than
0.05; the interaction term parameters were not significant, and the p-value was greater than 0.05.
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The ANOVA results for three parameters (Y1–Y3) showed significant RSM with high R2 values,
which varied from 0.966 to 0.992 (Table 5). The R2 valued representation model took into account the
variability of data, while R2 (adj) modified the R2 valued by considering the number of covariates or
predictors in the model. These higher R2 coefficients ensured satisfactory adjustment of the quadratic
models to the experimental data [26].

R2(adj) values of 0.986, 0.979, and 0.941 for the three models Y1, Y2, and Y3, respectively, were also
high, indicating the significance of the models [27]. Therefore, the RSM was used to predict the
variation in these three parameters within the range of the chosen variables.

3.5. Effects of Model Parameters and Their Interactions

The Minitab17 software was used to produce three-dimensional (3D) response surfaces and
two-dimensional (2D) contour plots [28,29]. The 3D surface and 2D contour plots are graphical
representations of the regression equation for optimizing reaction conditions, which are the most useful
methods for revealing reaction system conditions. In these plots, the response functions of two factors
are given, while all other factors are at a fixed level.

Figures 3 and 4 show the effect of the volume ratio of acetone to n-hexane and the treatment time
on the illumination intensity. It can be seen that with the increase of the volume ratio of acetone to
n-hexane, the illumination intensity of SPOFs increased. When the volume ratio of acetone to n-hexane
was at a certain level, the illumination intensity of SPOFs increased with the increase of the treatment
time, and then tended toward a relatively stable state. Increasing the proportion of acetone in the mixed
solution increased the polarity of the mixed solution. The greater the polarity of the mixed solution and
the longer the treatment time, the greater the corrosion degree of the fluororesin in the POFs’ cortex.
The more light that leaked in the transmission of POFs, the higher the side illumination intensity.
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Figures 5 and 6 are compositions of the effects of the volume ratio of acetone to n-hexane and
treatment time on breaking strength. It can be seen that with the increase of the volume ratio of acetone
to n-hexane, the breaking strength decreased rapidly at first and then tended to be flat. With the
increase of treatment time, the breaking strength decreased, but the overall decline curve was gentle.
When the volume ratio of acetone to n-hexane began to increase, the cladding tissue of POFs slowly
expanded, the structure of fluororesin changed, and the physical and mechanical properties decreased.
However, with the volume ratio of acetone to n-hexane increasing again, the cladding tissue of optical
fiber dissolved and fell off. The treatment time deepened the swelling and dissolution of the cortex.
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Figures 7 and 8 show the interaction effect of the acetone volume ratio with the hexane volume
ratio and treatment time on rigidity. It can be seen that the rigidity of SPOFs decreased with the
increase of the volume ratio of acetone to n-hexane. With the increase of treatment time, the rigidity
decreased, but the overall downward trend was gentle. The structure and properties of fluororesin in
the optical fiber cortex were changed, the plastic deformation of optical fiber was enhanced, and the
rigidity of SPOFs was reduced.
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The contour map and response surface map were analyzed by Minitab software. When the
volume ratio of acetone to n-hexane was 1.703 and the treatment time was 2.716 s, the illumination
intensity and breaking strength could be satisfied, optimizing the maximum value and minimum
value of the rigidity optimization. The optimized result was an illumination intensity of 19.339 mV,
breaking strength 5.707 N, and rigidity 572.013 N·mm2 (Table 6).

Table 6. Multiple response prediction.

Variable Setting Response Fit SE Fit 95% CI 95% PI

Y1 19.339 0.932 (17.135, 21.542) (16.554, 22.123)
Y2 5.707 0.067 (5.550, 5.865) (5.508, 5.907)

Y3 572.013 23.218 (517.132,
626.841)

(502.557,
641.326)

X1 1.703
X2 2.716

3.6. Optimal Conditions

To confirm whether the model was sufficient to predict the solvent treatment method for preparing
the SPOF process parameters, a new experiment was carried out at the optimum level, as shown in
Table 7. The results in Table 5 indicate that there was good agreement between the predictions, and the
best level of experimental results gave a high degree of validity of the model.
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Table 7. Comparison of the predictive and experimental result optimum values.

Parameter Optimum Value Response Predictive Experimental

X1 1.703 Y1 19.339 18.862
X2 2.716 Y2 5.707 5.736

Y3 572.013 563.647

Figure 9a,b shows the SEM surface and cross-sectional views, respectively, of SPOFs obtained under
optimal preparation conditions. It can be seen from Figure 9a,b that the surface of the fiber had a convex
surface, a small part of the cladding structure was detached, and the surface was relatively flat. The swell
effect was mainly caused by the fiber skin layer as a whole, thereby increasing the inherent loss of the fiber,
potentially causing the light to leak from the fiber. The outermost part of the cortex had a dissolution
effect, which increased the illumination intensity of the fiber while reducing the rigidity, causing the
breaking strength to not attenuate too much. Under optimal preparation conditions, preparing SPOFs
using the solvent treatment method ensured not only the luminescent property, but also the physical and
mechanical properties. This was an ideal preparation scheme for SPOFs.
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4. Conclusions

An effective method for preparing SPOFs by solvent treatment was established. The CCD-based
RSM was used to evaluate and optimize the effects of the volume ratio of acetone to n-hexane and
treatment time on illumination intensity, breaking strength, and rigidity. It was found that in the
process of preparing SPOFs by using the solvent treatment method, the fiber cortex structure had
two effects of swelling and dissolution, causing the light transmittance and physical and mechanical
properties of the fiber to change. The combination of RSM based on CCD proved to be a powerful tool
in the optimization of SPOF preparation process parameters. The optimum conditions for preparing
SPOFs is with a solvent treatment area volume ratio of acetone to n-hexane of 1.703 and a treatment
time of 2.716 s. The results of the three properties of the SPOFs prepared by using the optimized values
are highly consistent with the model prediction results.
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