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Abstract: Magnetorheological elastomers (MREs) are magneto-sensitive smart materials, widely used
in various applications, i.e., construction, automotive, electrics, electronics, medical, minimally
invasive surgery, and robotics. Such a wide field of applications is due to their superior properties,
including morphological, dynamic mechanical, magnetorheological, thermal, friction and wear,
and complex torsional properties. The objective of this review is to provide a comprehensive review
of the recent progress in isotropic MREs, with the main focus on their properties. We first present the
background and introduction of the isotropic MREs. Then, the preparation of filler particles, fabrication
methods of isotropic MREs, and key parameters of the fabrication process—including types of polymer
matrices and filler particles, filler particles size and volume fraction, additives, curing time/temperature,
and magnetic field strength—are discussed in a separate section. Additionally, the properties of
various isotropic MREs, under specific magnetic field strength and tensile, compressive, or shear
loading conditions, are reviewed in detail. The current review concludes with a summary of the
properties of isotropic MREs, highlights unexplored research areas in isotropic MREs, and provides
an outlook of the future opportunities of this innovative field.

Keywords: magneto-sensitive smart materials; magnetorheological elastomers (MRE); carbonyl iron
particles; rheological properties; construction and medical applications

1. Introduction

The materials, i.e., piezoelectric [1,2], biomimetic [3], thermochromic [4], electrorheological [5],
thermoelectric [6], photochromic [7], magneto-sensitive [8], magneto-active [9,10], and shape memory
alloys [11], intelligently respond to variations in the surrounding conditions and are termed as
smart materials [12]. The magnetorheological (MR) materials, invented by Jacob Rabinow in 1948,
are magneto-sensitive smart materials [13,14]. These materials are produced in different forms, such as
MR foams, MR elastomer (MRE), MR gel [15], and MR fluid (MRF) [16–18]. Although the response time
of MRE is slower than MRF [19], MRE still effectively overcomes the deficiencies of MRF, particularly
the particle sedimentation, leakage, and environmental contamination problems [20]. Due to their
rapidly and reversibly controllable properties, including morphological [21], tomographical [22],
mechanical [23], dynamic mechanical [24–26], magneto-mechanical [27,28], magneto-shear [29],
rheological and melt rheological [30], complex torsional [31], physicochemical [32], thermal [33],
friction and wear [34], fatigue life [35], and viscoelastic [12] properties, as well as a fail-safe feature [19],
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MREs have a wide range of applications. These applications include damping and smart sensing in
vibration absorbers [36,37] and vibration isolators [38–41], other sensing devices [42,43], engine mounts,
vehicle seat suspension [44], adaptive stiffness devices, actuators to control the flow [31], MR elastic
polishing composites [45], seismic dampers and base isolators [46–50], multilayer MRE-based vibration
isolators [51], MREs embedded beams [52], variable impedance surfaces, artificial muscles [24],
deformable wings [53], MRE embedded sandwich plates [54], adaptive blades [55], active vibration
isolation platforms [56–58], tunable absorption systems [59], MREs and MRFs based isolators [60],
and dielectrics for plane capacitors [61,62]. MREs have also been used in soft, small-scale continuum
robots with navigation and active steering capabilities [63]. The polydimethylsiloxane (PDMS)-based
sterilizable and biocompatible MREs have recently been introduced for medical and cellular intervention.
Moreover, MREs are the most suited candidates for minimally invasive surgery (MIS) and robotic
MIS (RMIS) applications [64]. Several numerical studies and models investigating the performance of
MREs have also been developed [65–68].

MREs are generally fabricated from three thoroughly mixed primary components, including
elastomeric material (matrix), magnetic filler particles, and additives [69]. The structure of MREs
consists of micro- to nanosized filler magnetic particles, dispersed in a polymeric nonmagnetic
matrix [70–72]. MREs have been fabricated from various types of matrix materials, such as natural
rubber, polyurethane (PUR) rubber [73], silicone rubber (SR) [74], ethylene propylene diene rubber
(EPDM) [75], and PDMS rubber [76]. Similarly, a variety of magnetic filler particles have been utilized in
fabricating MREs, but bare iron particles (BIPs) [77] and carbonyl iron particles (CIPs) [78] are the most
widely used magnetic filler particles. These particles are used in different shapes (sphere, flower, flake,
and nugget) and sizes (5 to 100µm). It has been reported that CIPs with an average diameter of 1–9µm in
the volume concentration from 25% to 30% offer ideal magnetic filler particle properties [31]. To further
improve the properties of MREs, several additives, including plasticizers, silane coupling agents,
and nanosized particles—such as carbon black, carbon nanotubes, graphite, and graphene—have also
been incorporated [61,79]. Plasticizers improve elastomer mobility, matrix/filler affinity, and reduce the
viscosity of matrix and storage modulus [80]. Silane coupling agents modify the surface properties of
filler particles and improve their compatibility with the matrix [13]. Similarly, the addition of nanosized
particles, particularly carbon black powder, increases the MR effects and tensile strength and decreases
the damping ratio of MREs [24].

MREs can be classified into two groups based on the application of the magnetic field during
vulcanization [81]. The MREs, cured without the application of the magnetic field and possessing
uniformly distributed filler magnetic particles in the elastomeric matrix, are termed as isotropic
MREs [82]. On the other hand, MREs cured in the presence of an external magnetic field and
possessing a chainlike columnar structure with filler magnetic particles aligned along the applied
magnetic field direction are known as anisotropic MREs [83]. Although the isotropic MREs provide
smaller MR effects and relatively slow time response to the externally applied magnetic field than
anisotropic MREs, their fabrication is much simpler and easier than anisotropic MREs. This is
because the fabrication of anisotropic MREs needs a significantly high magnetic field strength (0.8 T)
during crosslinking [24]. Additionally, upgraded rubber processing instruments and a properly
designed setup to successfully apply the magnetic field are required to fabricate anisotropic MREs
with improved properties. Furthermore, thicker anisotropic MREs cannot be fabricated, because an
increase in the thickness of MRE rapidly decreases the magnetic flux density [24,84]. Isotropic MREs
provide significant properties for a wide range of industrial applications at a low cost compared to
anisotropic MREs. Due to these advantages, isotropic MREs are achieving great industrial importance
nowadays [85]. Depending upon the applied magnetic field strength, the moduli of MREs immediately
alter due to strong magnetic forces between magnetic filler particles. The ratio of change in moduli with
an applied magnetic field to the initial modulus is called the MR effect [77,86]. Till now, different MR
effects ranging from 4% to as high as 24,515% have been achieved [19]. Although the functionality,
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MR effect, and abrupt time response to the applied magnetic field of anisotropic MREs are much better
than isotropic MREs, their fabrication is quite difficult compared to isotropic MREs [87].

The major objective of this work is to review the recent progress in isotropic MREs with the
main focus on their properties. After the introduction (Section 1), fabrication of isotropic MREs
including preparation of magnetic filler particles, fabrication methods, process parameters, types of
elastomeric matrix materials and magnetic filler particles, and additives will be reviewed in Section 2.
Section 3 will provide details about the properties of new and conventional isotropic MREs and the
effects of various factors, including types of elastomeric matrix, magnetic filler particle, and additives;
temperature, fraction, and size of magnetic filler particles; the viscosity of matrix/filler mixture before
curing; strain frequency, strain amplitude, magnetic field strength, and types of loading conditions
on the properties of isotropic MREs. A few highlights of this review, unexplored areas of isotropic
MREs, and future recommendations will also be proposed in Section 5. The rapidly increasing use
of MREs in various applications is evident in the literature. This review will provide a collection of
information on recently developed and conventional isotropic MREs to the concerned researchers,
industries, and end-users in this field.

2. Fabrication of Isotropic Magnetorheological Elastomers

MREs are composed of three major constituents: an elastomeric matrix, magnetic reinforcing
particles, and additives. A variety of elastomeric materials, including liquid silicone [73],
room temperature vulcanized (RTV)-based SR [31,45], high temperature vulcanized (HTV)-based
SR [88], EPDM rubber [24], PUR [12,70], PDMS rubber [77,81], propylene rubber [30], SR resin [89],
natural rubber (NR) [84], and scrub tire rubber [33] have been used for the fabrication of MREs.
Among all, SR is the most extensively used rubber due to its unique properties such as room
temperature vulcanization, ease of handling and processing, a wide range of operating temperatures,
excellent hardness, stiffness [31], nontoxicity, and aging resistance [34]. Various magnetic reinforcing
particles, i.e., BIPs [81,90], CIPs [21,69,91], Penta CIPs [92], magnetite (Fe3O4) [33], titanium dioxide
(TiO2) [61], and hard FeNdB [93,94] particles have been utilized for the fabrication of MREs. However,
CIPs are the most commonly employed magnetic particles due to their high saturation magnetization
and a wide range of particle size availability (1–200 µm) [95]. A fabricated MRE sample is illustrated in
Figure 1, whereas various types of elastomeric matrices, magnetic filler particles, additives, and key
parameters—used in the fabrication of isotropic MREs—are tabulated in Table 1.
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2.1. Preparation of Magnetic Filler Particles

Sometimes, magnetic filler particles are prepared for improving surface properties or altering
the shape of particles (sphere, flower, or plate) to improve the interfacial and MR properties of
MREs [78,91,96]. The surface or interfacial properties of magnetic filler particles (CIPs) can be improved
by depositing Polyaniline (PANI) coating on their surfaces. PANI coating modifies the surface of CIPs
through in situ chemical oxidative polymerization process, using ammonium peroxodisulfate (APS) as
an oxidant and p-toluenesulfonic acid (p-TSA, C7H8O3S) as a dopant. The schematic of the surface
modification mechanism of CIPs with PANI coating and fabrication of PANI-modified CIP-based
isotropic MREs are illustrated in Figure 2 [91]. Table 1 shows various types of elastomeric matrices,
magnetic filler particles, additives, and key parameters—used in the fabrication of isotropic MREs.

The surface modification mechanism of CIPs by PANI-coating involves the preparation of a
solution of 1.8 mmol p-TSA in 240 mL of distilled water and mixing of specific amounts of CIPs and
Aniline (Ani) in this solution with ultrasonication for 30 min under the ice–water bath. A 36-mmol
APS aqueous solution is then mixed in this solution and left with vigorous stirring under an ice–water
bath for 14 h to promote polymerization. PANI-modified CIPs are collected after washing with ethanol
and distilled water several times and drying at 60 ◦C for 24 h under vacuum. SEM micrographs of
pure and PANI-modified CIPs are illustrated in Figure 3. These micrographs demonstrate the spherical
shape of both pure and PANI-modified CIPs. They also confirm successful preparation of the gauzelike
PANI coating of thickness 50–200 nm on CIPs [91].

On the other hand, the shapes of filler particles (CIPs) can be altered from sphere to plate by a
specific milling process. In this process, a rotary type ball mill and zircon balls as a grinding media are
used in the ratio of 20:1. Additionally, pure ethanol is added as a control agent to prevent particle
adhesion and to improve process efficiency. Sphere-shaped CIPs are milled in this rotary mill for 40 h
and operated at a speed of 380 rpm to transform their sphere shape into plate shape [78].
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Table 1. Elastomers, filler particles, additives, and key parameters used for the fabrication of isotropic
MREs. PDMS—polydimethylsiloxane; PUR—polyurethane; SR—silicone rubber; EPDM—ethylene
propylene diene rubber.

Matrix Filler
Particles

Particles
Size (µm)

Particles
Content Additives Curing

Temp (◦C)
Curing

Time (min) Ref.

SR CIPs 2–5 27 vol% Catalyst RT 1440 [73]
SR CIPs 5 27 vol% Silicone oil RT 1440 [31]
SR CIPs 3–5 0–30 vol% PDMS 25 10 [45]
SR CIPs 3.9–5 30 vol% – RT 1440 [19]
SR CIPs 3.9–5 12.5–40 vol% Slacker, Silicone thinner 65 20 [95]
SR CIPs 3.9–5 5–40 vol% – RT 1440 [83]
SR CIPs 4.5–5.4 20 vol% Silicone oil, Graphene nano powder, RT [97]
SR CIPs 5.89 20 vol% Silicone oil 60 120 [29]
SR CIPs 6–7 15–35 vol% Catalyst RT 2880 [35]
SR CIPs 5–9 10–40 wt% Dimethyl silicone oil, RT 720 [23]
SR CIPs 1−10 70 wt% Ethanol, Curing Agent RT 120 [78]
SR CIPs 40 40 wt% 1,3-divinyl-1,1,3-Tetramethyldisiloxane – – [22]

SR Resin CIPs 3–5 70 wt% – 25 1440 [89]
NR IPs – 18.3 vol% Carbon Black – – [90]
NR IPs – 18.3 vol% Carbon Black – – [84]
NR CIPs 1.25 0–30 vol% – 180 10 [27]

PUR CIPs 4.9 – Silicone oil – – [12]
SR, PUR TiO2, CIPs 5 10 vol% – – – [61]

PUR CIPs 1–8 60 wt%

Aniline, Ammonium, Peroxodisulfate,
p-toluenesulfonic Acid,

2,4,6-Tri(dimethylaminomethyl)phenol,
Di-butyl phthalate,

– – [91]

PUR CIPs 6–9 33 vol% – – – [98]
Propylene- Rub CIPs 6.5–8 31 vol% – – – [30]

EPDM CIPs, IPs 5−16 2–30 phr Carbon Black, Sulfur, Processing oil,
Activators, Antidegradants, Accelerators 180 10 [24]

PDMS IPs 20–80 7.66 vol% – RT – [77]
Waste Tire

Rubber Penta-CIPs 6 10–40 wt% Carbon black, Rubber additives,
Minerals, Sulfur 200 60 [92]

Scrub Tire Rub IPs 16.99 10–40 wt% – 200 17–20 [32]

Scrap Tire Rub Magnetite
(Fe3O4) – 10–40 wt% – 200 17–20 [33]
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2.2. Fabrication of Isotropic Magnetorheological Elastomer

In the case of SR, the fabrication of isotropic MREs is quite easy and simple. The first step in SR-based
MRE fabrication is the thorough mixing of liquid SR with suitable additives, such as catalyst [73], silicone
oil (SO) [31], PDMS [45], graphene nanopowder [97], or 1,3-divinyl-1,1,3-tetramethyl disiloxane [22],
and suitable magnetic filler particles for sufficient time to obtain a uniform dispersion of particles in
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the solution [45]. The magnetic filler particles are usually added in the volume fractions, ranging from
5–40 vol%, whereas additives are added as per the required properties. Afterwards, this blend is placed
inside a vacuum chamber for sufficient time to remove the trapped air bubbles during mixing [73].
After proper degassing, the blend is poured into plastic or metal molds. Then, the molds are again
placed in the vacuum chamber for sufficient time for further degassing. As mentioned earlier, SR has
the property of room temperature vulcanization, therefore, the solution is cured (vulcanized) in the
molds at room temperature [23] or slightly higher temperature (65 ◦C) [95] after sufficient time, ranging
from 10–2880 min [35,45]. In the case of any other polymeric matrix, high-temperature vulcanization is
carried out.

On the other hand, the PUR-based MREs are fabricated by mixing PUR rubber with additives
(SO) and magnetic filler particles (CIPs) thoroughly at room temperature [12] or a slightly higher
temperature (67 ◦C) [61]. This mixture is then poured into molds and cured at a specific temperature and
pressure (20 KNm−2) to get a final product [12,61]. Similarly, NR-based MREs are fabricated by mixing
NR with filler particles homogeneously by two-roll mill or any other means and pouring into molds.
Curing of NR-based MREs is performed in an oven, maintained at 180 ◦C under specific pressure
(200 bar) for a specific time (10 min) to get the final isotropic MRE [27]. Furthermore, the fabrication
of isotropic MRE from scrap tire rubber involves the separation of rubber from metals and fabrics,
shredding into powder of 60-mesh size, and analyzing its chemical composition (usually 7% acetone
extract, 5.45 ash, 32.9% carbon black, 54.6% hydrocarbon rubber). The Fe3O4 (60-mesh size) or Penta
CIPs (6 µm) particles in 10–40 wt% are usually used as magnetic filler particles and sulfur, zinc oxide,
stearic acid, and latex solutions as additives. The fabrication process of MREs from scrap tire rubber is
comprised of several stages, including mixing of 100 phr of crumb rubber with 2 phr of sulfur, 1.5 phr
of stearic acid, and 5 phr of zinc oxide for 15–30 min; addition of 15% latex solution; and further mixing
for 15 min. Finally, the mixture is poured into molds and placed in a high-pressure high-temperature
(HPHT) sintering device [92]. Sintering of molds was performed by applying a pressure of 25 MPa,
heating to a temperature of 200 ◦C at a heating rate of 10 ◦Cmin−1 within 17–20 min, and soaking at
this temperature for 1 h. The hot molds are then cooled to room temperature. The volume fraction of
produced MREs can be derived using Equation (1) [33].

ϕ =
dMRE − dW

dMP − dW
, (1)

where dMRE is the density of MREs, dW is the density of pure reclaimed rubber, and dMP is the density
of magnetite powder. The base densities for the pure reclaimed rubber and magnetite powder were
1.107 gcm−3 and 5.27 gcm−3, respectively [33,92].

3. Properties of Isotropic Magnetorheological Elastomers

3.1. Morphological Properties

Various characterization techniques—i.e., scanning electron microscopy (SEM), energy dispersive
spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy,
and X-ray diffraction spectroscopy (XRD)—have been employed to explore the morphological properties
of isotropic MREs. It has been reported that the morphology of SR- and CIP-based MREs comprises
homogeneously distributed CIPs throughout the SR matrix [34]. The large size CIPs of 6.25-µm diameter
exhibit fairly uniform distribution, whereas small diameter CIPs produce agglomerates in the matrix.
In the case of small diameter CIPs, the distance between particles was observed to be smaller and
filler–filler particle interactions was greater, resulting in agglomeration of particles [99]. The addition
of 10 wt% silicone oil causes more homogeneous dispersion of CIPs in the SR matrix without any
structuring or surface defect [29]. SEM images, a histogram of particle size, XRD, FTIR spectra of SR,
and CIP-based MREs, having PDMS as an additive, are illustrated in Figure 4. It was found that the
morphology of CIPs-free MRE validated the formation of nonporous composite elastomers due to



Polymers 2020, 12, 3023 7 of 34

vulcanization under vacuum conditions (Figure 4a). On the other hand, Figure 4b demonstrated the
random distribution of CIPs in the SR matrix. Similarly, Figure 4c,d confirmed the random distribution
of CIPs with 2.5-mm average particle diameter in the SR matrix in the range of 0.5–4 mm. Two broad
peaks at 12◦ and 23◦ in the XRD spectra validated the presence of PDMS and amorphous nature of
SR-based polymer composite, whereas intense peaks at 44.8◦, 65◦, and 82.3◦ confirmed the presence
and crystalline nature of CIPs (Figure 4e). The FTIR spectra of this MRE confirmed the asymmetric
stretching vibration motion of Si–O–Si bond by absorption band at 800 cm−1 and the bending motion
of Si–OH group by a peak near to 875 cm−1 (Figure 4f). The stretching vibrations of Si–O, and Si(CH3)2

groups were also validated by peaks in the range of 1000−1100 cm−1. The additional absorption
bands in the region of 1250 cm−1 and 2960 cm−1 presented the stretching vibration of Si(CH3)2 [23].
XPS spectra verified the results of FTIR spectroscopy, as illustrated in Figure 5.
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and (f) FTIR spectra of MREs [23] (reprinted with permission from ElsevierTM).
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Figure 5. (a) XPS spectra of MRE with 20 wt% CIPs, demonstrating carbon, oxygen, silicon, and tin
elements in the selected area, presented in inset figure. (b) XPS maps and atomic percentages of
elements for the selected area [23] (reprinted with permission from ElsevierTM).

It has also been reported that the CIPs of 4–5 µm diameter exhibit uniform distribution in EPDM-
and CIP-based MRE, whereas CIPs of diameter 8−10 µm demonstrate aggregation of 2–3 particles.
This aggregation begins with the addition of 10 phr of CIPs and 60 phr of carbon black in the EPDM.
The MRE with 5 phr of CIPs demonstrated the fair distribution of single CIP within the EPDM matrix
without aggregation. In two separate MREs, containing 30 phr of CIPs and 30 phr of BIPs of a diameter
of 4–5 µm, a combination of single-particle distribution and aggregation of 2–3 particles was observed.
But the MRE containing 30 phr of CIPs demonstrated a very homogeneous distribution compared
to BIP-based MRE [24]. Cvek et al. [30] reported the uniform dispersion of CIPs in both virgin and
reprocessed thermoplastic elastomer (TPE)-based matrix CIPs without agglomeration and air bubbles.
On the other hand, the morphology of PUR-based MREs, containing pure CIPs and PANI-modified
CIPs, have also been explored. Compared to pure CIP-based MREs, homogeneous and agglomerated
free morphology was achieved in the PANI-modified CIP-based MREs. A particular self-assembled
structure of modified CIPs and excellent compatibility between the CIPs and PUR was observed in the
PANI-modified CIP-based MRE, attributed to the bridging of the CIPs/PUR covalent bonds [91].

3.2. Particle Distribution

Arrangement of particles within the matrix has been reported to have a great influence on
the macroscopic properties of MREs and is considered a key parameter in tailoring MREs [100,101].
X-ray computed microtomography (CT) has been proved as a reliable and accurate method of analyzing
the arrangement of the particles in the matrix of MREs [102,103]. The distribution of CIPs in the SR
matrix has been evaluated using the CT technique. No clear alteration of the CIPs distribution in the SR
matrix was observed after the application of a 10-mT magnetic field or 12% strain. But the application
of a 10-mT magnetic field caused significant particle rotation and increased the number of small-angle
particles towards the magnetization axis. Whereas, the application of strain forced back the particles to
their initial state to some extent and reduced the amount of small-angle particles. At 250-mT magnetic
field, the CIPs aligned into the chainlike structure and the number of small-angle particles increased,
as illustrated in Figure 6 [22].
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Figure 6. The 3D reconstructed images of tomography data after particle separation. (Left) Initial
microstructure of particles distribution under 0-mT magnetic field and (Right) microstructure of
the same sample under 250-mT magnetic field with particles chains [22] (reprinted with permission
from ElsevierTM).

On the other hand, elongated and oblate-shaped particles were observed in the microstructure of
PDMS- and CIP-based MREs, which were challenging for sieving and resulted in an overlap of the size
fractions. The sphere-shaped particles were observed by laser diffraction measurements, whereas the
largest ellipsoid dimensions of the particles were observed by CT, but overall identical particle size
distribution was observed through both techniques. A classification of the shape of particles was
conducted, similar to the work of Zingg et al. [104,105]. A broad distribution of aspect ratios was also
observed without preferred oblate and prolate shapes. The classes of small size particles feature less
extreme aspect ratios, preferring spherical shapes [77]. It has been reported that the dispersion of
magnetic filler particles as well as resulted properties of isotropic MREs strongly depend on the size,
shape, and volume fraction of magnetic filler particles. Due to the bonding nature and agglomeration
of magnetic filler particles, small-sized particles exhibit a better reinforcing effect than large-sized
particles. Agglomeration of small-sized particles occurs due to greater filler–filler particle interaction
and lower matrix–filler interaction [31]. Similarly, at a lower volume fraction of magnetic filler particles,
the distance between the particles remains larger, and particles disperse homogeneously throughout the
matrix without agglomeration. With the increase of volume fractions of particles, the distance between
the particles decreases and results in poor dispersion, greater agglomeration, and poor properties.
This might also be attributed to the greater filler–filler particle interaction and lower filler–matrix
interaction at a higher volume fraction of magnetic filler particles [99]. In the fabrication of isotropic
MREs, homogenous dispersion of filler particles is usually achieved by the use of appropriate additives,
such as slackers or silicon thinner, or by ultrasonication for sufficient time. The distance between
the particles has a significant impact on particle dispersion in the polymer matrix. The interparticle
distance (H) can be calculated by Equation (2) [106]:

H
d

=

[
ϕmax

ϕ

] 1
3

− 1, (2)
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where “d” is the diameter of particle, “ϕ” is the volume fraction of the particle, and “ϕmax” is the
volume fraction at maximum random packing (≡0.64) [106].

3.3. Mechanical Properties

The mechanical properties, including Shore A hardness, tensile strength, elongation, and modulus,
without the application of the magnetic field, can be evaluated by shore A hardness and tensile
tests. Tensile testing of SR- and CIP-based MREs showed that the addition of 10%, 20%, and 30% of
CIPs caused 34%, 95%, and 58% improvement in tensile strength, compared to bare SR of Shore A
hardness 25. Although the addition of 20% CIPs caused maximum improvement in tensile strength,
it also caused a 24% reduction in tensile modulus. Contrary to the work of Farshad and Benine [107],
an unexpected reduction in the stiffness of MREs was also observed after the addition of CIPs in SR.
This might be associated with the use of CIPs of smaller diameter and SR of low hardness. Further,
according to the Flory statistical theory of rubber elasticity, the addition of CIPs decreases the mass
fractions with cross-linked structures, reduces the number of cross-links, and thus reduces the stiffness
of MREs [23].

Similarly, the mechanical properties of EPDM-based MREs with varying content (phr) of BIPs and
CIPs were also evaluated. The variations in their shore A hardness values with varying content (phr)
of BIPs and CIPs are plotted in Figure 7. It was observed that the hardness of the EPDM-based MREs
increased with increasing BIPs content, whereas increasing content of CIPs caused no considerable
change in hardness. Conversely, the EPDM-based MRE with 5 phr of CIPs exhibited significantly
higher tensile strength and elongation than the MRE with 5 phr of BIPs. Increasing content of CIPs and
BIPs between 10–30 phr decreased the tensile strength and elongation but increased the elastic modulus,
which can be attributed to the particle agglomerations. An optimum combination of mechanical
properties was exhibited by MRE with 5 phr of CIPs. MRE-incorporated BIPs exhibited much higher
elastic modulus than MREs incorporating CIPs [24].
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Figure 7. The plot of shore A hardness as a function of magnetic particle content (phr) of EPDM-based
MREs containing BIPs and CIPs [24] (reprinted with permission from ElsevierTM).

On the other hand, the tensile properties of pure TPEs and TPE-based MREs, subjected to several
processing iterations, are plotted in Figure 8. It was observed that the tensile strength of pure TPE
decreased by ~10% and elongation at the break increased by ~11% after the final last processing iteration.
This might be due to a decrease in Mn and the development of scarce transversal cross-links after
processing, respectively [108]. Conversely, the tensile strength of TPE-based MREs remained virtually
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unaltered, but a decrease of ~20% in elongation at the break was observed after the final processing
iteration. This unexpected behavior might be attributed to the interfacial particle/matrix bonding [108].
As per processing-induced particle/matrix bonding theory, TPE-based MREs demonstrated slightly
better modulus than pure TPEs, particularly after the last processing iteration, their modulus enhanced
by ~11−19% [30].Polymers 2020, 12, x FOR PEER REVIEW 11 of 35 
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(stripped) subjected to various processing cycles (R0–R3) (a) Tensile strength, (b) Elongation at break,
(c) 100% Modulus, (d) 300% Modulus [30] (reprinted with permission from ElsevierTM).

3.4. Dynamic Mechanical Properties

The dynamic mechanical analyzer is usually used to evaluate the dynamic mechanical properties
of MREs, including storage modulus, loss modulus, and damping factor (tan δ), as a function of
frequency and amplitude. The dynamic mechanical properties of EPDM-based MREs with CIPs and
BIPs were evaluated without the application of the magnetic field, their frequency dependence is
illustrated in Figure 9. It was found that the storage modulus values of both MREs increased with
the increase of frequency as well as CIPs and BIPs contents. But the MRE with CIPs demonstrated
comparatively higher storage modulus than MREs with BIPs (Figure 9a,b). The addition of 2 phr and
5 phr of CIPs produced greater storage modulus than 10 phr of CIPs. But further addition of 20 phr and
30 phr of CIPs significantly increased the storage modulus for all frequencies. This can be attributed to
the load transfer between CIPs and EPDM matrix. Conversely, the storage modulus of MREs with
BIPs increased systematically with BIPs addition. The loss modulus values of both MREs, as a function
of frequency, are plotted in Figure 9c,d, respectively. The loss modulus increased with an increase in
frequency, with a significantly higher slope compared to the storage modulus. The MRE with 10 phr
of CIPs offered lower loss modulus than all the samples, even lower than the control sample, for all
frequencies. However, a further increase in CIPs content to 20 and 30 phr caused a drastic increase
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in loss modulus. The tan δ of both the MREs was observed to increase with increasing CIPs and
BIPs content, as illustrated in Figure 9e,f. It is important to note that MREs with 2−10 phr of BIPs
demonstrated a considerably greater value of tan δ than MREs with CIPs, for all frequencies. On the
other hand, increasing strain amplitude up to 2.5% caused such a decrease in storage modulus and
increase in tan δ that they reached a plateau region, which might be attributed to the loosening of CIPs
and BIPs within the EPDM matrix [109]. It was observed that the addition of 2−10 phr of both CIPs
and BIPs resulted in much lower storage modulus values than the control sample, whereas 20–30 phr
addition caused much higher values, for all strain amplitudes [24].
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(a) MRE containing CIPs; (b) MRE containing BIPs, loss modulus; (c) MRE containing CIPs;
(d) MRE containing BIPs, and Tan δ; (e) MRE containing CIPs; (f) MRE containing BIPs as a function of
frequency [24] (reprinted with permission from ElsevierTM).

3.5. Thermal Properties

The evaluation of the thermal properties of MREs is also very important to estimate the effect
of atmospheric temperature on MREs. Therefore, the thermal degradation of waste tire rubber and
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Fe3O4-particle-based MREs were evaluated by differential scanning calorimetry (DSC). The DSC curves
of MRE samples contained varying Fe3O4 content and pure reclaimed scrap tire rubber. The transition
from the glassy phase to the rubbery phase through endothermic reaction occurred between −65 ◦C
to −55 ◦C. The measured glass transition temperatures (Tg) of all MREs were −0.6 ◦C ± 0.5 ◦C [110].
Although the Fe3O4 content demonstrated no significant effect on Tg values, it considerably improved
the thermal conductivity of MREs compared with pure reclaimed tire rubber. Consequently, increasing
the fraction of Fe3O4 particles increased the thermal conductivity, as presented by upshift in the DSC
curves for all samples [33].

3.6. Magneto-Mechanical Properties

Magneto-mechanical properties of MREs present the deformation behavior of MREs in the presence
of a magnetic field under tensile or compressive forces. Magneto-mechanical properties of SR- and
CIP-based MREs, under the conditions of the constant peak-to-peak displacement (0.6 mm), constant
frequency (0.1 Hz), and various preload and magnetic field strengths, are illustrated in Figure 10.
It was observed that increasing preloading separated the force–displacement curves, made the curves
steeper, increased the area enclosed by the hysteresis loops, and thus increased the damping capability
and stiffness of MREs. Moreover, the relative shift in the curves of preload without the magnetic field
looked comparatively greater than with the magnetic field, presenting a strong impact of preload
without the magnetic field [89].
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and various magnetic field strengths: (a) 0 mT, (b) 190 mT, (c) 320 mT, (d) 520 mT [89] (reprinted with
permission from ElsevierTM).

The stress–strain diagrams of NR- and CIP-based MREs are illustrated in Figure 11. It can be
observed that within the linear viscoelastic (LVE) region, the increasing strain made the amplitude of
ellipses wider and larger without altering the shape. Under lower frequency and higher CIPs
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concentration conditions, the elliptical shape disappeared with strain amplitude. Furthermore,
increasing CIPs concentrations from 0% to 30% caused a 75% improvement in the storage modulus by
0% filler reinforcement mechanism [111], similar to the work of [109]. Conversely, MRE with 15% and
30% CIPs demonstrated a decrease in loss factor. This can be attributed to the development of internal
particle friction and interfacial damping between the particles and matrix by the introduction of CIPs to
the polymeric matrix, which improves the damping of MRE produced by polymeric chains [112–114].
The evaluation of the effect of magnetic field strength on storage modulus of an MRE with 30% CIPs
showed that increasing the magnetic field strength increased the storage modulus. The MRE with
a higher CIPs concentration exhibited a larger MR effect under higher magnetic field strength but
not as large as reported in the literature in compression mode [115–117] due to lower magnetic field
strengths. In addition, the MR effect in the compression mode was observed to be greater than in the
shear mode [27].
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On the other hand, the magneto-mechanical properties of PDMS- and fractionized IP-based MREs
were also evaluated and analyzed under various compressions. It was found that the first compression
resulted in an irreversible deformation, whereas the subsequent compression as well as compression
without the magnetic field offered no irreversible deformation. Increasing the size of IPs considerably
decreased the moduli without the magnetic field, whereas it maintained the moduli constant with
the magnetic field. The decrease in moduli may be attributed to the particle/matrix interaction [77].
For a constant mass fraction of IPs, increasing particle size decreases particle surface and increases the
MR effect. Small IPs having a large surface increased the overall stiffness and Young’s modulus of the
MRE [118,119]. The Young’s modulus and corresponding MR effect of the extremely soft SR matrix and
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magnetically soft CIP-based MRE were determined. This MRE offered an extraordinary large MR effect
(633% ± 55%), which can be associated with the high concentration of CIPs and extremely low hardness
of matrix. This MRE also demonstrated the highly reversible Young’s modulus, which returned to its
initial value right after the removal of the magnetic field. It was concluded that the MRE possessed
high elasticity and low viscosity [22].

Magneto-Shear Properties

Magneto-shear properties describe the deformation behavior of MREs in the presence of a magnetic
field under shear stress. Magneto-shear properties of SR- and CIP-based MREs were evaluated under
both static and dynamic shear loads. The results of static tests performed on all six types of MREs under
various magnetic field strengths (0–450 mT) showed that stiffness of the MREs increased with increasing
magnetic field strength, as previously reported [120,121]. MREs exhibited nearly linear stress–strain
curves in the absence of a magnetic field, whereas nonlinear curves in the presence of a magnetic field
were more prominent at 540 mT. The increasing volume fraction of CIPs also contributed to improving
nonlinearity behavior. Increasing strains decreased the slopes of stress–strain curves, particularly
at higher magnetic fields (450 mT), attributed to the strain-softening properties of filled polymeric
matrix [122]. This effect is more prominent at a higher volume fraction of CIPs. The strain-stiffening
effect associated with saturation of the chains of polymers or the limited extensibility plays a significant
role in improving the shear modulus of MREs, as previously reported [123–125]. Although the static
shear modulus of all samples of MREs improved with the increase of the strength of the magnetic field,
the MRE with the highest CIPs concentration (40%) exhibited the highest value among all. The results
also revealed the saturation of static shear modulus of this sample exceeding 300 mT, similar to the
works of [95,126,127].

On the other hand, the dynamic magneto-shear properties of MRE having 40% SR, 40% CIPs,
and 20% additives were also evaluated. Perfectly elliptical hysteresis loops and the almost viscoelastic
response were observed without a magnetic field. An increase in slope and nonelliptical hysteresis
loops of stress–strain curves with increasing frequency under a magnetic field ranging from 0−150 mT
presented considerable sensitivity of damping and effective stiffness of the MREs. The nonlinearity
becomes more significant under a higher magnetic field strength (300 and 450 mT) associated with the
strain-softening effect. Higher magnetic field strength also caused a greater increase in loss modulus
than the storage modulus of MRE irrespective of the strain amplitude. Improvement in strain amplitude
exponentially decreased the storage modulus and loss modulus without the magnetic field, whereas they
decreased significantly with the magnetic field irrespective of the excitation frequency and magnetic
field strength. Under higher strain amplitude, the MRE behaved like a nonlinear viscoelastic material.
It was also observed that the elastic shear modulus decreased with increasing excitation amplitude
and significantly decreased under higher magnetic field strength. The impact of varying magnetic
flux density on elastic shear modulus under ranges of excitation frequency and strain amplitude of
the MRE having 40% SR, 40% CIPs, and 20% additives is illustrated in Figure 12. It was observed
that irrespective of the strain amplitude and excitation frequency, elastic shear modulus increased
considerably with the increase in magnetic flux density. Under lower values of excitation frequency
and strain amplitudes, elastic shear modulus increased significantly. Under 2.5% strain amplitude and
0.1 Hz frequency up to 1672%, increased storage modulus was observed. This tremendous variation in
the relative MR effect of this MRE having a higher concentration of CIPs presented that this MRE can
be used in applications of controllable vibration absorbers and isolators [95].
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Magneto-shear properties of SR- and CIPs-based MREs were investigated by lap-shear instrument
(Experiment). Under smaller shear deformation less than 0.25, an almost linear relationship was
observed between shear stress and shear strain. Increasing magnetic field strength increased the slope
of shear stress–strain curves whereas increasing concentration of SO slightly decreased it. The higher
concentration of SO in MRE caused more softening effect in the MRE matrix [29,128].

Stress–strain relationships of MREs having 7.5 wt% SO under gradient magnetic field were also
evaluated. Approximate linear stress–strain curves were obtained, and the slope of these curves
increased with an increase in the magnetic field similar to curves obtained under a uniform magnetic
field. Similar results were obtained for two permanent magnets of different strengths (PM100 and PM50).
Moreover, an almost linear slight increase in shear stress was observed with increasing strength of the
magnetic field at higher strain under smaller deformation. The load-bearing ability of this MRE was
higher in the presence of PM100 (lower gradient magnetic field) than PM50 (higher gradient magnetic
field) under the same shear strain and magnetic field. Shear modulus also showed higher sensitivity
to magnetic field strength, SO concentration, and gradient of the magnetic field. Shear modulus
considerably improved with increasing magnetic field strength and decreased with the increase in
SO concentration. PM100 caused considerable strengthening of modulus of magnetic induction,
compared to PM50. This is associated with the mean magnetic field strength within the sample
reduced under a magnetic field of high gradient, resulting in a reduction of the magnetic energy
density input. The MR effect also exhibited sensitivity to both SO concentration and gradient of the
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magnetic field. The MR effect of MREs increased with an increase in SO concentration but decreased
with an increase in magnetic field gradient, attributed to the lower mean magnetic field intensity under
higher magnetic field gradient. Considerably larger magneto-induced properties can be achieved in
MREs by the addition of higher fractions of magnetic particles and by selecting a matrix with lower
elastic modulus [29].

3.7. Rheological Properties

Rheological properties of bare and 20% CIP-reinforced SR- and PDMS-based MREs were
investigated through parallel plates configuration at a controlled angular strain of 1% and a frequency
of 1 Hz. The addition of CIPs in MREs caused a considerable decrease in storage modulus from 19.5 to
9.6 kPa and tan δ from 39.8% to a strain of 25% presenting fluidlike behavior with less strain of CIPs
compared to the bare polymer. Their addition also reduced the complex viscosity and viscosity related
to dynamic rigidity and diminished the MRE capacity of storing energy. Variations in frequency
also significantly alter the rheological properties of MREs as the highest value of tan δ was achieved
at 63.1 Hz for bare polymer, whereas for 20% CIP-reinforced MRE, the highest value of tan δ was
achieved at 19.95 Hz. These MREs behaved like solids as the tests were performed at a strain of 1%
and the achieved values of tan δ were not close to 1. The effect of change in intensity of magnetic
field on rheological properties of MREs was also evaluated by varying between 7 mT to 1000 mT.
It was observed that increasing magnetic field intensity increases the storage modulus. Even at a
very-small magnetic field intensity, a considerable increase can be observed in storage modulus from
approximately 9 kPa to 53.7 kPa. The addition of more CIPs to the SR matrix caused improvement in
MREs deformational energy and reduction in shear modulus compared to bare polymer [23].

EPDM-based MREs containing various percentages of CIPs were observed to be highly sensitive
to the magnetic field. Their complex shear moduli was measured under varying magnetic flux density
and plotted in Figure 13. Increasing magnetic flux density caused no change in the complex shear stress
of the control sample having zero percentage of CIPs but increased the complex shear modulus of MREs
samples having various percentages of CIPs. Among all, MRE containing 5 phr of CIPs exhibited the
highest sensitivity to magnetic flux density and the highest improvement in complex shear modulus
with an increase in magnetic flux density. This is due to the fact that the highest EPDM/CIPs interaction
was present in this MRE (with 5 phr of CIPs). Under the application of a magnetic field, CIPs push each
other and well-oriented CIPs develop stress in the cross-linked vulcanizate, thus increasing the complex
shear modulus. On the other hand, MREs having 2−10 phr BIPs demonstrated no improvement in
complex shear modulus under varying magnetic fields. MREs with 5 phr of CIPs also showed the
highest (77%) MR effect among all samples, whereas MREs with 2−10 phr BIPs did not demonstrate a
considerable improvement in MR effect. The major reasons behind the lower complex shear modulus
and lower MR effect of MREs with BIPs are their higher elastic modulus, higher hardness, higher Pyane
effect, higher tan δ values, and lower elasticity value compared to MREs with CIPs [24].

The storage modulus values of reprocessed TPE-based MREs were firstly analyzed under various
strains. At lower strains, the storage modulus of these MREs exhibited strain independency defining
the linear viscoelasticity region (LVR), whereas at high strains, it showed a decrease in storage modulus
presenting permanent deformation of MREs sample. Each reprocessing cycle caused a significant
increase in the storage modulus of these MREs. In the LVR region, both the reprocessing cycles and
applied magnetic field had zero effect [30].

On the other hand, it has been reported that elasticity of matrix considerably affects the
restructuration of particles and thus, the MR effect given by the Equation (3) [129]:

Relative MR Effect =

(
G′H − G′0

)
G′0

, (3)
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where G′H and G′0 are the magnetic field on and magnetic field off storage moduli, respectively.
The relative MR effects were calculated at 1-Hz frequency and 288-kAm−1 magnetic field strength
providing the values of 68%, 46%, and 29% for the reprocessed samples, respectively. These values are
the result of lower relative CIPs motion within the TPE-based reprocessed MREs [130]. Reprocessing
was observed to decrease the MR effect of TPE-based MREs. Reprocessing of MREs could be utilized
to preserve significant mechanical and rheological properties after a large number of cycles [30].
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Both the storage and loss moduli of pure and PANI-modified MREs measured under various
frequencies ranging from 0.1−100 Hz at fixed 0.1% amplitude have also been investigated. It can be
seen that both the storage modulus and loss modulus of PANI-modified MREs are greater than pure
MREs. Due to mismatching between the relatively low-speed movement of polymeric chains and
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the fast shear force applied to the sheet matrix, the storage modulus of all MREs improved with the
increase in frequency with and without the magnetic field [131]. Increasing frequency also decreased
the dynamic response time of MREs, produced small structures of polymeric matrix and particles,
and consequently increased the stiffness of MREs. On the other hand, a slight decrease in loss modulus
at high magnetic field strength and low frequency was also observed. At this low test frequency,
the shear velocity is very low and the particle/matrix interface friction is static friction. With the
increase in frequency, particle/matrix interface friction transited from static friction to dynamic friction.
This transition caused a decrease in loss modulus and this phenomenon is more obvious at a higher
magnetic field [91].

The storage modulus and loss modulus values of pure and PANI-modified MREs as a function of
strain amplitude ranging from 0.005–20% at a fixed frequency of 10 Hz and stationary magnetic flux
densities are illustrated in Figure 14. A decrease in the storage modulus was observed with an increase
in strain amplitude for all samples (Figure 14a,b). The storage modulus values of PANI-modified
MREs were greater than pure MREs at all strain amplitudes. This increase in storage modulus is
attributed to the two kinds of particle/matrix and particle/particle interactions. These interactions are
highly dependent on the properties of CIPs and matrix interfaces, and the applied magnetic fields.
It has been reported that during fabrication, adsorption of polymeric chains occurs on the surface of
magnetic particles and develops a core/shell structure in the MRE. The clusters of particles form the
core, whereas immobilized polymeric chains form the shell. This core/shell structure considerably
participates in improving the rheological properties of MREs [132,133]. On the other hand, the loss
modulus of all samples also improved with increasing strain amplitude at a small range of strain,
as illustrated in Figure 14c,d. This is because increasing strain amplitude increases the energy required
for the continuous rupture of magnetic coupling [134]. With the further increase in strain amplitude,
the Payne effect rapidly decreased the loss modulus attributed to the decreased particle interactions
and increased particle distances [91].
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3.8. Viscosity

Previously, the viscosity of MREs suspension was considered constant and independent of
time [135]. To explore the effect of curing time on the viscosity of MREs’ suspension, SR-based
MREs with varying fractions of CIPs ranging from 0–30 vol% were prepared. Figure 15 illustrated the
theoretical and experimental values of the viscosity of MREs calculated through the Einstein–Guth–Gold
equation [136], under various curing times and CIP fractions. It was found that the pure SR without
CIPs exhibited an experimental viscosity of 1300 MPa. Both the theoretical and experimental viscosities
of MREs increased with the increase of CIP fractions (Figure 15a). This is because increasing the fraction
of CIPs in MRE considerably improves the adhesion and changes the particle velocity. The change
in particle velocity produces a hydrodynamic effect, which causes direct particle/particle interaction
and consequently increases the viscosity of MRE suspension [137]. Furthermore, varying curing time
also affected the viscosity of MREs suspension, as illustrated in Figure 15b. A double exponential
decay function was used to fit the relationship between the viscosities and curing time, as illustrated
in Figure 15b [45].Polymers 2020, 12, x FOR PEER REVIEW 21 of 35 
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3.9. Complex Torsional Stiffness

Zero field stiffness of CIP-filled MREs was higher than the unfilled elastomer, but the application
of the magnetic field improved the particle/particle interaction which further improves the stiffness.
The complex stiffness values of SR-based MREs containing CIPs were observed to increase with an
increase in magnetic field explainable with MR effect. An identical trend was reported in the complex
stiffness values of MREs measured under translatory shear conditions [138]. The complex stiffness
under 10 Hz and 0 A conditions was 5.194 N-mrad−1, whereas the increasing magnetic field to 5 A
caused an 8.87% increment in the complex stiffness (5.65 N-mrad−1) similar to other frequencies.
This increment in complex stiffness is related to the increased particle/particle interactions due to the
increased magnetic field [31].

The results of the simulation of a unit cell performed on ANSYS software in both unconstrained
and constrained conditions are illustrated in Figure 16. It was observed that the applied magnetic field
aligned the CIPs and produced the magnetic flux, which further developed an attraction force among
the CIPs in an unconstrained MRE position (Figure 16a). External torque assigned a new position
to CIPs, increased the distances between the dipoles, and consequently reduced the magnetic force
on CIPs (Figure 16b). The produced magnetic force of the CIPs exerts a compressive force on the
elastomeric matrix which increases the localized complex stiffness of MRE. A mechanical strain of the
CIPs as illustrated in Figure 16c presented a compressive force on the SR matrix by CIPs. The effect of
thickness of the MRE on magnetic field intensity caused a maximum variation of 8.87% in the MR effect.
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It was also observed that for fixed sample/dipole distance, the magnetic force of the CIPs decreased
with the increased sample thickness, as illustrated in Figure 16d, and signified the reduction in CIPs
displacement compared to thinner samples (Figure 16c) [31].Polymers 2020, 12, x FOR PEER REVIEW 22 of 35 
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The Lissajous curves of angular displacement and blocked torque for various frequencies ranging
from 10–30 Hz at 0 A and 5 A are plotted in Figure 17. Increasing frequency from 10 to 30 Hz caused a
smaller shift in the slope. Under the condition of 0 A and 10 Hz, the MRE experienced a maximum
torque of 0.0409 Nm, whereas an increase in frequency to 30 Hz increased the torque to 0.0436 Nm.
This is associated with the properties sensitive to the frequency of viscoelastic material under the
conditions of dynamic loading [139]. Lower frequencies allow polymeric chain molecules to regain
their original position but higher frequencies do not. Consequently, elastic material dominates over the
viscous material. Without a magnetic field, a maximum 4.68% improvement in the complex stiffness
was observed under varying frequencies, whereas the application of a 5 A magnetic field caused a
3.82% improvement. Moreover, frequency-induced improvement of complex stiffness is comparatively
less than the magnetic-field-induced improvement [31].

3.10. Frictional Properties

It has been reported that the values of coefficient of friction of SR- and CIP-based MREs at various
frequencies of vibration with magnetic field were lower than without magnetic field and the behavior
remained the same at zero vibration. The application of the magnetic field increases the surface
hardness of MREs, which leads to very little surface deformation and consequently decreases the
coefficient of friction [140,141], regardless of the applied vibration. Under the application of vibration,
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the coefficient of friction increased except at the resonant frequency. This is attributed to the increased
surface temperature, from 27.3 to 29.6 ◦C, of the MRE due to vibration. The increasing frequency of
vibration (100–2100 Hz) increased contact time between the pin and MRE surface and thus increased
the coefficient of friction, as illustrated in Figure 18. At the resonant frequency, MRE exhibited a
lower value of the coefficient of friction than at 0, 100, and 200 Hz frequencies, which contradicts the
literature. This opposite behavior might be due to a momentary reduction in the vertical load of the
test system at the resonant frequency. The variations in the coefficient of friction were observed to
be lower at a vibration amplitude of 4 mm than at other vibration amplitudes under both with and
without magnetic field conditions. This is because of the increased separation between the pin and
the MRE surface and the increased acceleration of vibration, resulting in decreased real contact area,
momentary vertical load, and normal force [142]. Consequently, the coefficient of friction decreased
with increasing vibration amplitude [34].Polymers 2020, 12, x FOR PEER REVIEW 23 of 35 
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3.11. Wear Properties

The wear test results of SR- and CIP-based MREs are plotted in Figure 19. In the case of baseline,
low wear depth and small Schallamach wave were observed with a magnetic field, which can be
attributed to the high surface hardness of the MRE. Vibration caused a significant increase in the
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wear depth and Schallamach wave’s size due to readily material flow at moderate pressures and
temperatures. Under constant load and velocity, the wear mainly occurred due to increased vibration,
which increased the surface temperature. After the application of the magnetic field, the wear depth
and Schallamach wave’s size decreased both with and without vibration conditions. This is because the
applied magnetic field increased the surface hardness of MRE, reduced the surface deformation and
temperature, and thus reduced the wear depth. The increasing frequency of vibration increased the
wear depth and Schallamach wave’s size by increasing the pin and MRE contact time. Furthermore, the
increasing amplitude of vibration decreased the wear depth and reduced the Schallamach wave’s size
by increasing the distance between two surfaces, increasing the acceleration of vibration, and reducing
the real contact area [34].
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3.12. Fatigue Life of MREs

The equi-biaxial fatigue life of SR- and CIP-based MREs were determined by the bubble inflation
method. Figure 20 shows the plots of total energy density vs. cycles under various concentrations of
CIPs. Variations in total energy density were observed to be highly sensitive to CIPs concentration and
stress amplitude. For MREs with CIPs content ranging from 15% to 30%, a decrease in total energy
density was observed with an increase in cycles at higher stress amplitudes, whereas an improvement
in total energy density was achieved with an increase in cycles at lower stress amplitudes. Irrespective
of the applied stress amplitude, total energy density improved with an increase in cycles in the case of
MRE with 35% CIP content. A decrease in total energy density at failure was observed when drawn
against log10 cycles. This fact suggested that the total energy could be used to predict the fatigue life
of MREs subjected to equi-biaxial loading [35]. Uniaxial and biaxial cyclic fatigue properties of NR-
and IP-based MREs were investigated between constant strain limits. The uniaxial cyclic fatigue test
demonstrated that MREs exhibited stabilized properties at the latter stages of cyclic tests and any change
in their properties was attributed to the applied magnetic flux density. An increase in the modulus
from 1.325 MPa to 1.413 MPa was observed at the 360th cycle and at strain amplitudes ranging from
0.04–0.08. This was an approximate increase of 6.5% in the 50-cycle block average modulus attributed
to the magnetic field applied at the 360th cycle. On the other hand, the block average modulus
increased from 3.562 MPa to 3.591 MPa at the 350th cycle and at strain amplitudes ranging from
0.04–0.57. This was an approximate 0.8% increase in mean modulus of the 50-cycle block associated
with the applied magnetic field at the 350th cycle. After comparison, it was concluded that increased
strain amplitude decreases the MR effect attributed to the increase in separation distance between
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the particles and reduction in screening effects, whereas the biaxial bubble inflation cyclic fatigue test
performed at a low strain of 0.0–0.1 and magnetic flux density of 198 mT showed that an increment in
modulus from 3.066 MPa to 3.132 MPa was observed at the 90th cycle. This increment is attributed
to the 2.2% improvement in block mean modulus under a specific magnetic flux density. Under the
application of relatively higher strain (0–0.5) and the same magnetic flux density, an increment of 1%
was observed at the 90th cycle in the block average modulus from 3.375 MPa to 3.410 MPa. In the case
of strain amplitude ranging from 0.4–0.5 and the same magnetic flux density, an increment of 0.4% was
observed in the MR effect at the 90th cycle from 3.553 MPa to 3.570 MPa [84].
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3.13. Degradation of MREs

FTIR spectroscopy was performed after each processing cycle to evaluate the degradation of the
TPE matrix. It has been reported that mechanical and thermal stress increase the atomic vibrations
and resist the rotation of molecules, thus causing scission of the polymer chain and formation of free
radicals. During processing, these radicals recombine with the present oxygen and cause an increased
amount of carbonyl and hydroxyl groups in the oxidized TPE [143]. In FTIR spectra, a broad intensity
peak appearing at around 3300 cm−1 presented the former group [144], whereas the absorption levels,
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varying at about 1650 cm−1, were assigned to the later ones [145]. The minimum-oxygen-containing
groups were observed in the original material; however, oxygen-containing groups increased as the
TPE was subjected to reprocessing cycles (R0–R3). The yellowness index (YI) measurements were
also performed to evaluate the variations in TPEs by reprocessing. The YI values gradually increased
and reached a value two times greater than neat TPE after the last processing cycle. The variations in
the molecular weight of both neat matrices and MREs of TPE were also explored by gel permeation
chromatography (GPC). The number average molar mass (Mn) was observed to decrease with several
processing cycles for all samples with a little difference. The neat TPE sample demonstrated the
~14% decrease in Mn after the final processing cycle, whereas the TPE-based MRE exhibited only ~9%
decreased Mn value. This implies that the incorporation of CIPs significantly reduced the degradation
of TPE. Mn was insignificantly increased on the transition to R1; however, it reduced on the transition
to R2 and R3 processing cycles, presenting two transition mechanisms. The first mechanism involved
linking of polymer chains individually, whereas the second involved scission of the polymer chain into
fragments of lower molecular mass. The key process, which defined the degradation of the TPE matrix
or MREs, is the diffusion of oxygen. Oxidation occurs more rapidly at the material surface than inside
the material [146]. Therefore, the degradation of TPE-based MREs due to CIPs was negligible and
solely attributed to TPE matrix degradation [30].

The processing of polymers can change molecular weight distribution, form low molecular weight
fractions, and cause cross-linking of molecules [147]. To analyze the molecular level variations in the
TPE matrix during processing, melt rheology was performed. In melt rheology, the TPE melt was
subjected to oscillatory shear stress. Due to the viscoelastic nature of polymer melts, the stress, as well
as strain, are not in phase [148]. Complex viscosity (η*) is used to describe such a response. Figure 21
illustrated the empirical Cole–Cole model applied to process the complex data. Results showed that
the reprocessing cycle number significantly affect TPE properties. Melt rheology proved that the
thermomechanical degradation of neat TPE occurred by chain-scission mechanism, whereas this was
by recombination processes during reprocessing for MREs. It was also proved that the incorporation
of CIPs in MREs strongly affects the degradation of MREs [30].
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Figure 21. The plot obtained from the Cole–Cole model for original TPE pellets (R*) and neat TPE
matrices after each reprocessing cycle (R0–R3). The best model fits are presented by solid lines, and the
materials are processed through the injection molding (IM) technique directly by R* [30] (reprinted with
permission from ElsevierTM).
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3.14. Capacitance of hybrid-MRE(hMRE)-Based Capacitor

Membranes of hybrid MRE consisted of SR, SO, CIPs, and graphene nanoparticles coated with
textolite cotton fabric that has been used as a dielectric between the parallel copper plates of a plane
capacitor. It has been reported that the increasing magnetic field intensity (H) increased the capacitance
of the plane capacitor, as illustrated in Figure 22. The volume concentration of graphene nanoparticles
has a significant impact on the capacitance of the plane capacitor. Conversely, the induced mechanical
tension in the membrane was observed to be independent of the volume concentration of graphene
nanoparticles and increased proportionally to H2. The components of deformation were also observed
to have a direct relation with H and the volume concentration of graphene nanoparticles. The graphene
nanoparticles in the membrane increased the modulus of elasticity in the Hooke model with increasing
H and decreased with an increasing volume concentration of graphene nanoparticles [97].
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4. Modern Applications of Isotropic Magnetorheological Elastomers

4.1. Sensors and Electrical Circuits

Normally, MREs are electrical insulators, but the addition of graphite powders makes them
conductors. The electroconductive MREs, incorporating iron and graphite microparticles in silicon
rubber matrix, are used to design active devices of the electric circuit. Several researchers have been
working in this field. Ioan Bica [149] developed an MRE-based magnetoresistor sensor device (MRD)
and found that the developed MRD satisfactorily fulfilled the function of the active element of an
electric circuit or/and quadrupolar magnetoresistor. The output voltage of the developed MRD was
observed to increase with the increase in magnetic field intensity and control voltages. Similarly,
Bica et al. [150] worked on the effect of the magnetic field and compression pressure on the electrical
conductivity of hybrid electroconductive MREs, incorporating graphene nanoparticles and CIPs in
the silicon rubber matrix. They reported that the electrical conductivity of fabricated hybrid MREs
increased with an increase in compression pressure and magnetic field intensity. Electroconductive
MREs can also be used as dielectric material in electrical condensers. The capacity of such MRE-based
condensers can be altered by applying an external magnetic field, associated with the magnetostrictive
effect. Due to this property, electroconductive MREs are widely used in devising thermosensors,
Hall sensors, and magnetoresistors [151].
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4.2. Soft Robotics

Various investigations are in progress in the field of soft robotics on the modeling, manufacturing,
design, and control of soft robots [152]. Reduction of soft robotic tethering or the dependence of soft
robot on a base station for pressure, power, and other forms of regulation is still a challenge [153].
The fields of biomimicry, robotic grasping, and biomedicine are taking interest in soft robotics using
soft actuators [154,155]. To achieve guidance and manipulation of soft actuators, MREs with both soft
and hard magnetic filler particles are the most suitable materials for several applications. Hybrid MREs
with varying magnetic domains have been utilized in creating soft robotic swimmers. Similarly,
MRE-based millimeter-scale soft robots with the abilities of swimming, rotating, and rolling with
varying external magnetic field intensities and directions have also been produced. The use of MREs
enabled the addition of a triangular tail and controlling the undulating gait behavior of soft robotics.
A thin, long, MRE-based microbot was produced for biomedical applications, which can be guided
remotely within a 3D phantom vascular network. An MRE-based, wearable, magnetic skin has also
been developed for various applications, such as remote gesture and eye-tracking control during
coordination with other sensors [156].

5. Conclusions and Outlook

This review paper outlines the recent research on isotropic MREs and their properties, developed
in the last five years. The isotropic MREs fabrication parameters are rigorously discussed, including
preparation of magnetic filler particles; types of matrices, i.e., liquid silicone, RTV-SR, HTV-SR, EPDM,
PUR, PDMS rubber, propylene rubber, SR resin, NR, and scrub tire rubber; types of magnetic filler
particles, such as BIPs, CIPs, Penta CIPs, Fe3O4, TiO2, and hard FeNdB particles; magnetic filler particles
sizes, shapes, and volume fractions; types of additives, curing time/temperatures, and fabrication
method. The properties of isotropic MREs, such as morphological, mechanical, magneto-mechanical,
magneto-shear, rheological, melt rheological, tomographical, friction, and wear properties, as well as
complex torsional stiffness and fatigue life have been reviewed in detail. The isotropic MREs have been
extensively used in various applications, such as automotive, medical, robotics, electric and electronic
devices, sensors, polishing composites, seismic dampers, and base isolators for many years. But in the
last few years, efforts have been more devoted to the development of modern MREs with superior
properties and the improvement of properties of existing isotropic MREs. However, the evaluation
and improvement of friction, wear, and thermal properties of isotropic MREs have not been given
much attention. A blend of various rubbers should be used as a matrix in isotropic MREs, having the
combined properties of all rubbers in the blend. The effect of Gamma radiation on the properties of
different isotropic MREs still needs to be explored.
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130. Cvek, M.; Mrlík, M.; Ilčíková, M.; Mosnáček, J.; Münster, L.; Pavlínek, V. Synthesis of Silicone
Elastomers Containing Silyl-Based Polymer- Grafted Carbonyl Iron Particles: An Efficient Way To Improve
Magnetorheological, Damping, and Sensing Performances. Macromolecules 2017, 50, 2189–2200. [CrossRef]

131. Niu, C.; Dong, X.; Qi, M. Enhanced electrorheological properties of elastomers containing TiO2/urea core-shell
particles. Appl. Mater. Interfaces 2015, 7, 1–27. [CrossRef]

132. Kumar, K.; Ponnamma, D.; Kumar, B.; Strankowski, M.; Cardinaels, R.; Moldenaers, P.; Thomas, S.; Grohens, Y.
Dielectric properties of modified graphene oxide filled polyurethane nanocomposites and its correlation
with rheology. Compos. Sci. Technol. 2014, 104, 18–25.

133. Zhang, X.; Loo, L.S. Study of Glass Transition and Reinforcement Mechanism in Polymer/Layered Silicate
Nanocomposites. Macromolecules 2009, 42, 5196–5207. [CrossRef]

134. Sorokin, V.V.; Ecker, E.; Stepanov, G.V.; Shamonin, M.; Monkman, G.J.; Kramarenko, Y.; Khokhlov, A.R.
Experimental study of the magnetic fi eld enhanced Payne e ff ect in magnetorheological elastomers.
Soft Matter 2014, 10, 8765–8776. [CrossRef]

135. Shah, K.; Upadhyay, R.V.; Aswal, V.K. Influence of large size magnetic particles on the magneto-viscous
properties of ferrofluid. Smart Mater. Struct. 2012, 21, 075005. [CrossRef]

136. Chatterjee, B.K.; Roy, S.C.A. Viscosity divergence and gelation. Radiat. Phys. Chem. 2005, 74, 419–425.
[CrossRef]

http://dx.doi.org/10.1016/j.polymertesting.2015.01.008
http://dx.doi.org/10.1088/0964-1726/25/10/107001
http://dx.doi.org/10.1016/j.polymer.2015.08.040
http://dx.doi.org/10.1016/j.compositesb.2008.01.002
http://dx.doi.org/10.1088/0964-1726/22/3/035005
http://dx.doi.org/10.1177/1045389X04039264
http://dx.doi.org/10.1007/s00397-010-0446-9
http://dx.doi.org/10.1088/0964-1726/22/11/117001
http://dx.doi.org/10.1088/1361-665X/aa6126
http://dx.doi.org/10.1016/S0749-6419(02)00090-6
http://dx.doi.org/10.1088/0964-1726/5/5/009
http://dx.doi.org/10.1016/j.polymertesting.2007.12.003
http://dx.doi.org/10.1142/S0217979207045785
http://dx.doi.org/10.1002/mame.200900301
http://dx.doi.org/10.1021/acs.macromol.6b02041
http://dx.doi.org/10.1021/acsami.5b08127
http://dx.doi.org/10.1021/ma9004154
http://dx.doi.org/10.1039/C4SM01738B
http://dx.doi.org/10.1088/0964-1726/21/7/075005
http://dx.doi.org/10.1016/j.radphyschem.2005.08.006


Polymers 2020, 12, 3023 34 of 34

137. Jung, I.D.; Kim, M.; Jin, S. A comprehensive viscosity model for micro magnetic particle dispersed in silicone
oil. J. Magn. Magn. Mater. 2016, 404, 40–44. [CrossRef]

138. Poojary, U.R.; Hegde, S.; Gangadharan, K.V. Dynamic deformation-dependent magnetic field-induced force
transmissibility characteristics of magnetorheological elastomer. J. Intell. Mater. Syst. Struct. 2017, 28, 1491–1500.
[CrossRef]

139. Tian, T.F.; Li, W.H.; Alici, G.; Du, H.; Deng, Y.M. Microstructure and magnetorheology of graphite-based MR
elastomers. Rheol Acta 2011, 50, 825–836. [CrossRef]

140. Lee, D.; Lee, C.; Kim, C.; Cho, W. A Study on the Tribological Characteristics of a Magneto- Rheological
Elastomer. J. Tribol. 2013, 135, 014501. [CrossRef]

141. Lian, C.; Lee, K.; Lee, C.-H. Friction and Wear Characteristics of Magneto- Rheological Elastomers Based on
Silicone/Polyurethane Hybrid. J. Tribol. 2015, 137, 031607. [CrossRef]

142. Chowdhurya, M.A.; Helalib, M.M. The effect of amplitude of vibration on the coefficient of friction for
different materials. Tribol. Int. 2008, 41, 307–314. [CrossRef]

143. Schmiederer, D.; Gardocki, A.; Ku, I.; Schmachtenberg, E. Local Thermo-Oxidative Degradation in Injection
Molding. Polym. Eng. Sci. 2008, 48, 171–722. [CrossRef]

144. de Carvalho, C.L.; Silveira, A.F.; dos Santos Rosa, D. A study of the controlled degradation of polypropylene
containing pro-oxidant agents. Springer Plus 2013, 2, 1–11. [CrossRef]

145. Kósa, C.; Sedlačík, M.; Fiedlerová, A.; Chmela, Š.; Borská, K.; Mosnáček, J. Photochemically cross-linked
poly(e-caprolactone) with accelerated hydrolytic degradation. Eur. Polym. J. 2015, 68, 601–608. [CrossRef]

146. Zanetti, M.; Bracco, P.; Costa, L. Thermal degradation behaviour of PE/clay nanocomposites.
Polym. Degrad. Stab. 2004, 85, 657–665. [CrossRef]

147. Stloukal, P.; Verney, V.; Commereuc, S.; Rychly, J.; Matisova-rychlá, L.; Pis, V.; Koutny, M. Assessment of the
interrelation between photooxidation and biodegradation of selected polyesters after artificial weathering.
Chemosphere 2012, 88, 1214–1219. [CrossRef] [PubMed]

148. Bird, R.B.; Giacomin, A.J. Who conceived the “ complex viscosity ”? Rheol Acta 2012, 51, 481–486. [CrossRef]
149. Bica, I. Magnetoresistor sensor with magnetorheological elastomers. J. Ind. Eng. Chem. 2011, 17, 83–89.

[CrossRef]
150. Bica, I.; Anitas, E.M.; Bunoiu, M.; Vatzulik, B.; Juganaru, I. Hybrid magnetorheological elastomer: Influence of

magnetic field and compression pressure on its electrical conductivity. J. Ind. Eng. Chem. 2014, 20, 3994–3999.
[CrossRef]

151. Bica, I. Magnetorheological elastomer-based quadrupolar element of electric circuits. Mater. Sci. Eng. B
Solid-State Mater. Adv. Technol. 2010, 166, 94–98. [CrossRef]

152. Kim, J.G.; Park, J.E.; Won, S.; Jeon, J.; Wie, J.J. Contactless manipulation of soft robots. Materials (Basel)
2019, 12, 3065. [CrossRef]

153. Kim, Y.; Park, J.E.; Wie, J.J.; Yang, S.G.; Lee, D.H.; Jin, Y.J. Effects of helix geometry on magnetic guiding of
helical polymer composites on a gastric cancer model: A feasibility study. Materials 2020, 13, 1014. [CrossRef]

154. Park, B.J.; Fang, F.F.; Choi, H.J. Magnetorheology: Materials and application. Soft Matter 2010, 6, 5246–5253.
[CrossRef]

155. Won, S.; Kim, S.; Park, J.E.; Jeon, J.; Wie, J.J. On-demand orbital maneuver of multiple soft robots via
hierarchical magnetomotility. Nat. Commun. 2019, 10, 1–8. [CrossRef]

156. Bira, N.; Dhagat, P.; Davidson, J.R. A Review of Magnetic Elastomers and Their Role in Soft Robotics.
Front. Robot. AI 2020, 7, 1–9. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jmmm.2015.12.024
http://dx.doi.org/10.1177/1045389X16672730
http://dx.doi.org/10.1007/s00397-011-0567-9
http://dx.doi.org/10.1115/1.4023080
http://dx.doi.org/10.1115/1.4029942
http://dx.doi.org/10.1016/j.triboint.2007.08.005
http://dx.doi.org/10.1002/pen.21011
http://dx.doi.org/10.1186/2193-1801-2-623
http://dx.doi.org/10.1016/j.eurpolymj.2015.03.041
http://dx.doi.org/10.1016/j.polymdegradstab.2004.03.005
http://dx.doi.org/10.1016/j.chemosphere.2012.03.072
http://www.ncbi.nlm.nih.gov/pubmed/22534201
http://dx.doi.org/10.1007/s00397-012-0621-2
http://dx.doi.org/10.1016/j.jiec.2010.12.001
http://dx.doi.org/10.1016/j.jiec.2013.12.102
http://dx.doi.org/10.1016/j.mseb.2009.10.020
http://dx.doi.org/10.3390/ma12193065
http://dx.doi.org/10.3390/ma13041014
http://dx.doi.org/10.1039/c0sm00014k
http://dx.doi.org/10.1038/s41467-019-12679-4
http://dx.doi.org/10.3389/frobt.2020.588391
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Fabrication of Isotropic Magnetorheological Elastomers 
	Preparation of Magnetic Filler Particles 
	Fabrication of Isotropic Magnetorheological Elastomer 

	Properties of Isotropic Magnetorheological Elastomers 
	Morphological Properties 
	Particle Distribution 
	Mechanical Properties 
	Dynamic Mechanical Properties 
	Thermal Properties 
	Magneto-Mechanical Properties 
	Rheological Properties 
	Viscosity 
	Complex Torsional Stiffness 
	Frictional Properties 
	Wear Properties 
	Fatigue Life of MREs 
	Degradation of MREs 
	Capacitance of hybrid-MRE(hMRE)-Based Capacitor 

	Modern Applications of Isotropic Magnetorheological Elastomers 
	Sensors and Electrical Circuits 
	Soft Robotics 

	Conclusions and Outlook 
	References

