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Abstract: Thermal interface material (TIM) is crucial for heat transfer from a heat source to a heat
sink. A high-performance thermal interface material with solid–solid phase change properties was
prepared to improve both thermal conductivity and interfacial wettability by using reduced graphene
oxide (rGO)-coated polyurethane (PU) foam as a filler, and segmented polyurethane (SPU) as a
matrix. The rGO-coated foam (rGOF) was fabricated by a self-assembling method and the SPU was
synthesized by an in situ polymerization method. The pure SPU and rGOF/SPU composite exhibited
obvious solid–solid phase change properties with proper phase change temperature, high latent heat,
good wettability, and no leakage. It was found that the SPU had better heat transfer performance
than the PU without phase change properties in a practical application as a TIM, while the thermal
conductivity of the rGOF/SPU composite was 63% higher than that of the pure SPU at an ultra-low
rGO content of 0.8 wt.%, showing great potential for thermal management.

Keywords: reduced graphene oxide; segmented polyurethane; composites; solid–solid phase change;
thermal interface material; thermal conductivity; interfacial wettability

1. Introduction

Thermal management is crucial for the electronic industries, and strongly affects the performance,
reliability, and lifetime of devices with high integration and power density [1]. Because of the surface
roughness of electronic chips and heat sinks, the real contact area between them is less than 10% [2],
seriously affecting the thermal contact resistance, causing heat concentration on the chip surface
and thermal induced failures. A thermal interface material (TIM), mainly composed of polymer
matrixes and thermal conductive fillers such as metals, ceramics, carbon materials, and hybrid fillers,
can be applied between the heat source and the heat sink to fill the voids and grooves caused by
imperfections of mating surfaces, thus minimizing the thermal contact resistance [3,4]. With its
excellent mechanical, electrical, and thermal properties, graphene has become an ideal reinforcement
material of composites [5–7]. With the advantages of high thermal conductivity and a lightweight
nature, graphene composites have attracted great attention in thermal management applications [8–10].
In recent years, three-dimensional (3D) interconnected structures of graphene, forming large numbers
of conduction paths at low content [11,12], have been developed rapidly and used for thermal
conduction in many TIMs. Many methods have been developed to prepare 3D interconnected
structures, including self-assembly, freeze drying, and chemical vapor deposition [13–18].

The performance of TIMs depends on both thermal conductivity and contact resistance [4].
Because their good wettability and low modulus of elasticity can increase the contact area and
reduce the contact resistance, thermal greases are widely used, alongside traditional phase change

Polymers 2020, 12, 3004; doi:10.3390/polym12123004 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
https://orcid.org/0000-0001-6571-9946
http://www.mdpi.com/2073-4360/12/12/3004?type=check_update&version=1
http://dx.doi.org/10.3390/polym12123004
http://www.mdpi.com/journal/polymers


Polymers 2020, 12, 3004 2 of 9

materials (PCMs), which can become liquid and fill gaps and voids at high temperatures [19–21].
However, thermal greases are limited by the problems of pump-out and dry-out [22], while solid–liquid
PCMs have the disadvantages of leakage and extra encapsulations [23]. The use of solid–solid
PCMs is an excellent solution to these problems [24–28]. Segmented polyurethane (SPU)
with solid–solid phase change properties, a new and rapidly developing material, is a kind of
block copolymer, composed of polyethylene glycol (PEG) with high molecular weight as the soft
segment, 4,4′-diphenylmethane diisocyanate (MDI) as the hard segment, and 1,4-butanediol (BDO)
as the chain extender [29]. When the temperature is higher than the phase change temperature, the SPU
transforms into an amorphous solid phase and becomes soft, which leads to good interfacial wettability.
Furthermore, the high latent heat and proper phase change temperature makes SPU attractive for many
applications, including thermal energy storage, thermal conduction, thermal interface, and thermal
insulation. [30–32]

In this work, a reduced graphene oxide (rGO)-coated foam (rGOF)-filled SPU composite was
prepared as a high-performance thermal interface material with solid–solid phase change properties.
The rGOF was fabricated by a self-assembling method and its microstructure and chemical properties
were investigated by a scanning electron microscope (SEM) and Raman spectra. The SPU as a matrix
was synthesized by an in situ polymerization method. The properties of the SPU and the rGOF/SPU
composite were investigated by differential scanning calorimetry (DSC), polarizing optical microscopy
(POM), and a thermal conductance meter. A self-development in situ test system was used to study
their performances in a practical application as a TIM. This work has provided a method to greatly
improve the heat transfer performance of thermal interface material and thermal conductive polymer
composites for thermal management.

2. Materials and Methods

2.1. Materials

Commercial polyurethane (PU) sponge with a density of 18 mg·cm−3 and a pore diameter of
1 mm was used in this work. Flake graphite (325 mesh, 99%) was purchased from Qingdao Laixi
graphite Co. Ltd., Qingdao, China. Polyethylene glycol (PEG; Mn = 6000) and 4,4′-diphenylmethane
diisocyanate (MDI) were purchased from Shanghai Aladdin Chemical Reagent Co. Ltd., Shanghai,
China. The 1,4-butanediol (BDO) was purchased from Fisher Scientific Worldwide (Shanghai) Co.,
Ltd, Shanghai, China. Other reagents of analytical grade were purchased from Sinopharm Chemical
Reagent Co. Ltd, Shanghai, China.

2.2. Preparation of the rGOF/SPU Composite

Figure 1 shows a schematic illustration of the synthetic route to preparing the rGOF/SPU composite.
The graphene oxide (GO) was synthesized by a modified Hummer’s method. Concentrated H2SO4

(46 mL) was added to the mixture of flake graphite (2 g) and NaNO3 (3 g) in an ice bath. KMnO4 (6 g)
was added slowly with the temperature of reaction system below 5 ◦C. Then, the mixture was heated
to 35 ◦C for 2 h with stirring. Deionized water (150 mL) was added to the flask and the temperature
was maintained at 98 ◦C for 30 min. The mixture was then diluted with deionized water (500 mL),
30% H2O2 was added gradually until the solution turned yellow. The product was washed by HCl
(1 mol·L−1) to remove metallic ions, and by deionized water several times until the pH reached 7.
The GO was dried by lyophilization.
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Figure 1. Schematic illustration of the synthetic route to preparing the reduced graphene oxide (rGO)-
coated foam (rGOF)/segmented polyurethane (rGOF/SPU) composite. PU, polyurethane. 

Flexible PU foam was then immersed into hydrazine hydrate for several minutes until the color 
turned from yellow to white, and was then washed with deionized water. The dye was removed 
during decolorizing to facilitate the binding between the GO and PU foams. After drying in a vacuum 
oven, the foam was immersed in a GO colloidal solution of a relatively high concentration (15 
mg·mL−1) and turned dark brown. A GO-coated foam (GOF) was obtained after drying in open 
conditions. The reduction of GO was reacted in hydrazine hydrate solution at 80 °C for 1 h. The foam 
turned black after reaction and was washed in deionized water several times. The obtained rGOF 
was placed in a vacuum oven until completely dry. 

Finally, the rGOF/SPU composite was obtained by an in situ polymerization method. The PEG 
was degassed and dried under a vacuum (–100 kPa) at 100 °C for 2 h. The MDI (1.79 g) and the chain 
extender BDO (added by drops) were introduced into melted PEG (7.68 g) and stirred. The rGOF was 
infiltrated into the mixture using a vacuum-assisted method. The temperature was raised to 75 °C for 
24 h to promote curing. An rGOF/SPU composite with good structural integrity and excellent 
properties was obtained. According to the weights of the pure foam, rGOF, and rGOF/SPU 
composite, the rGO content in the composite was calculated as an ultra-low value of 0.8 wt.%. 

2.3. Material Characterizations 

The microstructures of the foam and composite were observed by a scanning electron 
microscope (SEM) (S4800, Hitachi Co., Tokyo, Japan) with an accelerating voltage and a current set 
as 5 kV and 10 μA, respectively. The Raman spectra were measured by a Micro Raman imaging 
spectrometer (DXRxi, ThermoFisher Co., Waltham, MA, USA) with a laser of 532 nm and power of 5 
mW. The exposure time was set as 0.5 s, and the step number was 100. The observation of polarizing 
optical microscopy (POM) was performed using a transmitted polarization microscope (59XC-PC, 
Shanghai Optical Co. Ltd., Shanghai, China) equipped with a halogen lamp of 765 nm. The sample 
was placed on a coverslip and heated with a constant temperature heating plate (KER 3100-08S, 
Nanjing Kaier Co. Ltd., Nanjing, China). Differential scanning calorimetry (DSC) was performed on 
a differential scanning calorimeter (DSC 8000, PerkinElmer Co., Waltham, MA, USA) with a heating 
rate of 10 °C min−1 over a temperature range between room temperature and 100 °C. Thermal 
conductivity was measured by the heat flux method using a thermal conductance meter (DRL-III, 
Hunan Xiangyi Instruments Co. Ltd., Xiangtan, China) in accordance with ASTM D5470 standard 
test method. A pressure of 170 kPa was applied to enhance the thermal contact between the sample 
and the copper bars. The temperatures of the hot end and the cold end were 50 °C and 20 °C, 
respectively. Each test was repeated three times to obtain the average value. 

3. Results and Discussion 

The internal morphology of the PU foam, rGOF, and rGOF/SPU composite were observed by 
the SEM. The three-dimensional porous structure of the PU foam was clearly observed with a pore 
size of several hundred microns (Figure 2a). The smooth surface of the PU foam skeleton indicated 
good impurity and no coating, which is beneficial to the self-assembling of GO. After dip-coating and 
reduction, the skeleton surface became rough and wrinkled (Figure 2b,c), suggesting successful 

Figure 1. Schematic illustration of the synthetic route to preparing the reduced graphene oxide
(rGO)-coated foam (rGOF)/segmented polyurethane (rGOF/SPU) composite. PU, polyurethane.

Flexible PU foam was then immersed into hydrazine hydrate for several minutes until the color
turned from yellow to white, and was then washed with deionized water. The dye was removed during
decolorizing to facilitate the binding between the GO and PU foams. After drying in a vacuum oven,
the foam was immersed in a GO colloidal solution of a relatively high concentration (15 mg·mL−1)
and turned dark brown. A GO-coated foam (GOF) was obtained after drying in open conditions.
The reduction of GO was reacted in hydrazine hydrate solution at 80 ◦C for 1 h. The foam turned black
after reaction and was washed in deionized water several times. The obtained rGOF was placed in a
vacuum oven until completely dry.

Finally, the rGOF/SPU composite was obtained by an in situ polymerization method. The PEG
was degassed and dried under a vacuum (−100 kPa) at 100 ◦C for 2 h. The MDI (1.79 g) and the chain
extender BDO (added by drops) were introduced into melted PEG (7.68 g) and stirred. The rGOF was
infiltrated into the mixture using a vacuum-assisted method. The temperature was raised to 75 ◦C
for 24 h to promote curing. An rGOF/SPU composite with good structural integrity and excellent
properties was obtained. According to the weights of the pure foam, rGOF, and rGOF/SPU composite,
the rGO content in the composite was calculated as an ultra-low value of 0.8 wt.%.

2.3. Material Characterizations

The microstructures of the foam and composite were observed by a scanning electron microscope
(SEM) (S4800, Hitachi Co., Tokyo, Japan) with an accelerating voltage and a current set as 5 kV and 10µA,
respectively. The Raman spectra were measured by a Micro Raman imaging spectrometer (DXRxi,
ThermoFisher Co., Waltham, MA, USA) with a laser of 532 nm and power of 5 mW. The exposure time
was set as 0.5 s, and the step number was 100. The observation of polarizing optical microscopy (POM)
was performed using a transmitted polarization microscope (59XC-PC, Shanghai Optical Co. Ltd.,
Shanghai, China) equipped with a halogen lamp of 765 nm. The sample was placed on a coverslip and
heated with a constant temperature heating plate (KER 3100-08S, Nanjing Kaier Co. Ltd., Nanjing,
China). Differential scanning calorimetry (DSC) was performed on a differential scanning calorimeter
(DSC 8000, PerkinElmer Co., Waltham, MA, USA) with a heating rate of 10 ◦C min−1 over a temperature
range between room temperature and 100 ◦C. Thermal conductivity was measured by the heat flux
method using a thermal conductance meter (DRL-III, Hunan Xiangyi Instruments Co. Ltd., Xiangtan,
China) in accordance with ASTM D5470 standard test method. A pressure of 170 kPa was applied to
enhance the thermal contact between the sample and the copper bars. The temperatures of the hot end
and the cold end were 50 ◦C and 20 ◦C, respectively. Each test was repeated three times to obtain the
average value.

3. Results and Discussion

The internal morphology of the PU foam, rGOF, and rGOF/SPU composite were observed by
the SEM. The three-dimensional porous structure of the PU foam was clearly observed with a pore
size of several hundred microns (Figure 2a). The smooth surface of the PU foam skeleton indicated
good impurity and no coating, which is beneficial to the self-assembling of GO. After dip-coating
and reduction, the skeleton surface became rough and wrinkled (Figure 2b,c), suggesting successful
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coating of rGO on the PU skeleton. The wrinkled structure was attributed to the huge specific surface
area of graphene, and is consistent with other works [33]. As graphene is flexible and easy to curl,
the rGO-coated PU foam inherited the porous structure and flexibility of PU foam. A three-dimensional
interconnected structure with continuous rGO coated on the surface is advantageous to heat transfer by
formation through thermal conduction paths at low content [6,34]. The rGOF observed at the cutting
edge of the rGOF/SPU composite showed that the rGOF was completely embedded in the SPU matrix
without obvious defect, which is beneficial for thermal and mechanical properties (Figure 2d).
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Raman spectra were used to investigate the reduction in GO. From the Raman spectra of the GO
and the rGO, two main bands were found at approximately 1350 cm−1 and 1580 cm−1, corresponding
to D band and G band, respectively [35] (Figure 3). The D band is usually regarded as a reflection
of disorder and defects in a carbon structure, while the G band as a signature of the graphitic
component [36]. Compared to the spectra of graphite, the intensity ratio of the D band to the G
band (ID/IG) increased from 0.96 to 1.19 after chemical reduction using hydrazine hydrate. This was
attributed to the smaller size of the rGO and some remaining functionalities, or to increasing defects
after reduction [37]. The 2D band of the rGO of approximately 2700 cm−1 also suggested the restoration
of sp2 carbon structure [38]. The color change from dark brown to black is also evidence of a reduction.
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Figure 4 shows the DSC results of the pure PEG6000, SPU, and rGOF/SPU composite. The latent
heat of the rGOF/SPU composite during the heating and cooling cycles was 61.12 J·g−1 and 58.54 J·g−1,
respectively. Compared with the SPU, the phase change properties of the rGOF/SPU composite were
not influenced significantly by adding rGOF. The melting peak of the rGOF/SPU composite occurred at
56.3 ◦C and was well matched to the working temperature range of electronic chips. As the temperature
rose, solid–solid phase change occurred and lots of heat was absorbed as latent heat. The SPU, which is
hard at room temperature, turned soft and easy to reshape in an amorphous solid state.

Polymers 2020, 12, x FOR PEER REVIEW 5 of 9 

 

Figure 4 shows the DSC results of the pure PEG6000, SPU, and rGOF/SPU composite. The latent 
heat of the rGOF/SPU composite during the heating and cooling cycles was 61.12 J·g−1 and 58.54 J·g−1, 
respectively. Compared with the SPU, the phase change properties of the rGOF/SPU composite were 
not influenced significantly by adding rGOF. The melting peak of the rGOF/SPU composite occurred 
at 56.3 °C and was well matched to the working temperature range of electronic chips. As the 
temperature rose, solid–solid phase change occurred and lots of heat was absorbed as latent heat. The 
SPU, which is hard at room temperature, turned soft and easy to reshape in an amorphous solid state. 

 

Figure 4. Differential scanning calorimeter (DSC) curves of PEG6000, SPU, and rGOF/SPU. 

The crystalline morphology of the pure PEG6000 and SPU at room temperature was observed 
by POM micrographs (Figure 5a,b). The obvious cross-extinction patterns in both micrographs 
indicated their spherulites crystal structures, consistent with other works [29,39]. The size of the 
spherulites of the SPU was several hundred microns, much smaller than that of the PEG. As a block 
copolymer, the crystallization of the PEG in the SPU was restricted by the hard segment, and the 
crystalline perfection was damaged. This phenomenon was also reflected by a smaller transition 
enthalpy of the SPU and the rGOF/SPU composite. When heated to 60 °C (above the phase change 
temperature), the spherulite structures of the SPU disappeared because the soft segments had become 
amorphous. 

 

Figure 5. Polarizing optical microscopy (POM) micrographs of PEG6000 (a), SPU (b) at room 
temperature, and SPU at 60 °C (c). 

To visualize the interfacial wettability of the rGOF/SPU composite, the sample was heated 
between two copper plates at 80 °C, simulating a TIM being between a heat source and a heat sink. 
The surfaces of the copper plates and the rGOF/SPU before and after heating were observed by the 
SEM. Figure 6 shows that the surface of the rGOF/SPU before heating is smooth, and then becomes 
matching with the surface morphology of copper plate after heating, due to the solid–solid phase 
change of polyurethane. The soft segments of the SPU block copolymer became amorphous and filled 
the interface voids when heating was applied, showing good wetting characteristics and a low 
modulus of elasticity to help eliminate the thermal contact resistance [2].  

Figure 4. Differential scanning calorimeter (DSC) curves of PEG6000, SPU, and rGOF/SPU.

The crystalline morphology of the pure PEG6000 and SPU at room temperature was observed by
POM micrographs (Figure 5a,b). The obvious cross-extinction patterns in both micrographs indicated
their spherulites crystal structures, consistent with other works [29,39]. The size of the spherulites
of the SPU was several hundred microns, much smaller than that of the PEG. As a block copolymer,
the crystallization of the PEG in the SPU was restricted by the hard segment, and the crystalline
perfection was damaged. This phenomenon was also reflected by a smaller transition enthalpy of
the SPU and the rGOF/SPU composite. When heated to 60 ◦C (above the phase change temperature),
the spherulite structures of the SPU disappeared because the soft segments had become amorphous.
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Figure 5. Polarizing optical microscopy (POM) micrographs of PEG6000 (a), SPU (b) at room
temperature, and SPU at 60 ◦C (c).

To visualize the interfacial wettability of the rGOF/SPU composite, the sample was heated
between two copper plates at 80 ◦C, simulating a TIM being between a heat source and a heat sink.
The surfaces of the copper plates and the rGOF/SPU before and after heating were observed by the
SEM. Figure 6 shows that the surface of the rGOF/SPU before heating is smooth, and then becomes
matching with the surface morphology of copper plate after heating, due to the solid–solid phase
change of polyurethane. The soft segments of the SPU block copolymer became amorphous and
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filled the interface voids when heating was applied, showing good wetting characteristics and a low
modulus of elasticity to help eliminate the thermal contact resistance [2].Polymers 2020, 12, x FOR PEER REVIEW 6 of 9 
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Figure 6. SEM images of the surfaces of the copper plate (a) and the rGOF/SPU composite before (b)
and after (c) heating.

The thermal conductivities measured by the heat flux method were 0.27 W·m−1
·K−1 and

0.44 W·m−1
·K−1 for the SPU and the rGOF/SPU composite, respectively. An increase in thermal

conductivity by 63% was achieved at an ultra-low graphene content of 0.8 wt.%. This was because
continuous coating of the rGO constructed an effective heat transfer network from surface to surface
and provided many thermal conduction paths, which makes 3D interconnected structures of graphene
an ideal filler in thermal conductive composites [40].

A self-development in situ test system based on infrared thermal imaging technology was used to
measure the performance of the rGOF/SPU composite in working conditions as a TIM. Figure 7 shows
that the system was composed of a heating element powered by an adjustable direct-current source,
two copper blocks, a heat sink, and an infrared thermal imager (T420, FLIR Co., North Billerica, MA,
USA). The copper block above the TIM was attached to the heating element with thermal grease and
employed as the hot end. Meanwhile, the copper block below the TIM was adhered to the heat sink
with thermal grease as well, and used as the cold end. The lateral surfaces of the copper blocks and the
TIM were coated with carbon black to get uniform emissivity. When the heating element is working,
the temperature of the copper blocks and the temperature gradient across the TIM can be recorded by
the infrared thermal imager.
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Figure 7. Schematic illustration of a self-development in situ test system. TIM, thermal interface material.

Commercial PU without phase change properties, SPU, and the rGO/SPU composite were
investigated by this in situ test system. The thickness of the TIM was 1.15 mm, while the areas of the
heating element, copper blocks, and TIM were 2 × 2 cm. The performance of the TIMs was compared
by the temperature differences of the two copper blocks: the more efficient the TIM was in heat
dissipation, the lower the temperature difference between the hot end and the cold end. When the
power supplied to the heating element was ~7.2 W, the distributions of temperature between the two
copper blocks were in a steady state (Figure 8b–d). Although the thermal conductivity of the SPU
was almost equal to that of a commercial PU, the temperature difference of the SPU TIM (64.3 ◦C)
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was 10.9 ◦C lower than that of commercial PU (75.4 ◦C). This is attributed to the final temperature
(above 80 ◦C) being higher than the phase change temperature, and that the SPU transforms to an
amorphous solid phase and lead to good interfacial wettability, causing increased contact area and
reduced contact resistance. The rGOF/SPU composite achieved the best heat transfer performance with
a temperature difference of 61.6 ◦C due to the higher thermal conductivity. Furthermore, no leakage
was observed during the testing process as the hard segments restricted the movement of the soft
segment molecular chains [29], indicating that the rGOF/SPU composite is an effective and stable TIM.
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4. Conclusions

The rGO-coated PU foam-filled SPU composite was successfully prepared as a TIM with solid–solid
phase change properties. It exhibited the advantages of proper phase change temperature, high thermal
energy storage capacity, good wetting ability, and no leakage. For TIMs of PU and SPU with almost
the same thermal conductivities, the solid–solid phase change properties were proved to significantly
improve the heat transfer performance by increasing interfacial wettability. Adding rGOF further
improved the thermal conduction of the composite with an enhancement of thermal conductivity by
63% at an ultra-low content of 0.8 wt.%. This work has provided a method to prepare high-performance
thermal interface materials with solid–solid phase change properties and rapid heat transfer ability.
The significant improvement of thermal conductivity and interfacial wettability has shown great
potential for thermal management in electronic industries.
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