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Abstract: Cementitious composites with microencapsulated healing agents are appealing due to
the advantages of self-healing. The polymeric shell and polymeric healing agents in microcapsules
have been proven effective in self-healing, while these microcapsules decrease the effective elastic
properties of cementitious composites before self-healing happens. The reduction of effective
elastic properties can be evaluated by micromechanics. The substantial complicacy included in
micromechanical models leads to the need of specifying a large number of parameters and inputs.
Meanwhile, there are nonlinearities in input–output relationships. Hence, it is a prerequisite to know
the sensitivity of the models. A micromechanical model which can evaluate the effective properties
of the microcapsule-contained cementitious material is proposed. Subsequently, a quantitative global
sensitivity analysis technique, the Extended Fourier Amplitude Sensitivity Test (EFAST), is applied
to identify which parameters are required for knowledge improvement to achieve the desired level
of confidence in the results. Sensitivity indices for first-order effects are computed. Results show
the volume fraction of microcapsules is the most important factor which influences the effective
properties of self-healing cementitious composites before self-healing. The influence of interfacial
properties cannot be neglected. The research sheds new light on the influence of parameters on
microcapsule-contained self-healing composites.

Keywords: polymeric healing agents; self-healing composites; global sensitivity analysis;
extended Fourier amplitude sensitivity test; micromechanics

1. Introduction

Self-healing is the remarkable ability of living organisms to repair their own damage by themselves.
Inspired from nature, the great challenge now is to create and develop composites with high potential
for self-healing, offering alternatives to the current options and moving toward materials with extended
service lifetime for various applications. Most of these are innovative materials with excellent healing
performance, such as ionomers, semiconductors, self-assembling systems, hydrogels, micro- and
nanoparticles, coatings, films and membranes, microcapsules, vascular networks, shape memory
or stimuli-induced self-healing materials [1–5]. Concretes with microencapsulated healing agents
are appealing since they are able to spontaneously repair themselves after damage or degradation,
recovering structural integrity and functionality by increasing the rate of healing versus the rate of
damage [6–12]. The microcapsule-contained self-healing cementitious composite involves the polymeric
healing agent (repairing the cracks), the catalyst (speeding up the polymerization) and the polymeric
shell (encapsulating the healing agent), as exhibited in Figure 1. The healing agents can be cyanoacrylates,
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epoxy, methyl methacrylate and multicompound healing agents, while polyurethane, polyurea resin
and formaldehyde resin can be adopted as shells to produce the self-healing microcapsules [13].
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Even though microcapsule-contained cementitious composites can achieve self-healing, the elastic
properties of the cementitious composite before self-healing happens are influenced because of
these soft inclusions based on our previous research [14–24]. The effective elastic properties can
be evaluated by micromechanics. There are many theoretical methods to tackle the effective elastic
moduli of multiphase composites, such as mathematical lower and upper bounds, the self-consistent
method, the differential scheme, the Mori–Tanaka method and the generalized self-consistent method,
etc. A new micromechanical model which can reflect the properties of pothole patching material is
proposed [25]. However, it does not apply to microcapsule-contained composites directly since it ignores
the microstructure of microcapsules. Existing experimental results show that interfaces exist between
the microcapsules and the concrete matrix, which significantly affect the mechanical properties of the
microcapsule-contained self-healing cementitious composite at the micro and macro level [26]. Hence,
the interfaces should be considered to calculate the effective properties of microcapsule-contained
cementitious materials. Recently, the effect of interfacial damage on the effective elastic modulus
of spherical-particle-reinforced composites has been investigated based on the linear-spring model
by Yanase and Ju [27]. Further, many other theoretical models concentrate on the interface between
inclusions and the matrix [28–33]. The microcapsules have a multilayer microstructure [34,35].
However, a micromechanical model which can consider both the interfacial performance and the
structure of microcapsules has not been built.

The substantial complicacy often included in micromechanical models leads to the need for
specifying a large number of parameters and inputs. Additionally, there are nonlinearities in
input–output relationships. Hence, it is a prerequisite to know the sensitivity of these models.
Sensitivity analysis (SA) is a fundamental tool in the building, use and understanding of models
of all forms. It provides information about the behavior of the model being evaluated, such as the
identification of relevant model inputs, information on the model balance [36], indications for model
simplification, model building and identification parts of the model which could be improved. There are
two groups of sensitivity analyses: the local sensitivity analysis and the global sensitivity analysis.
The local SA checks the local response of the outputs by varying input parameters one at a time and
holding other parameters at central values. Hence, the sensitivity index is dependent on the central
values chosen by other parameters. The global SA examines the global response of model outputs
by exploring a finite region. Hence, the global SA is more precise than the local SA. There are many
global SA methods, such as the Morris method, sampling-based methods and variance-based methods,
etc. The Fourier Amplitude Sensitivity Test (FAST) and Extended Fourier Amplitude Sensitivity
Test (EFAST) belong to the variance-based method. Sensitivity analysis has been applied to many
models [36–39]. The Partial Rank Correlation Coefficient (PRCC) method appears to be the most
efficient and reliable among the sampling-based indices [40]. Correlation provides a measure of the
strength of a linear association between an input and an output. PRCC is a sampling-based method for
nonlinear relationships between an input and an output. It is adopted to validate the results of the
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EFAST in this paper. Our predictions of the micromechanical model will be strengthened if we can
reduce uncertainty and get better estimates on specific parameters of the model.

In this research, a new micromechanical model of the microcapsule-contained self-healing
cementitious composite was developed. The sensitivity analysis of the model was conducted using
EFAST. The influence of microcapsules before self-healing happens was focused on. An outline of
this paper is as follows. In Section 2, the micromechanical model of the microcapsule-contained
cementitious composite is proposed, and the influence of the interface can be considered. In Section 3,
EFAST is introduced. Moreover, relative parameters of the micromechanical model are presented.
In Section 4, the results and discussion are illustrated. Conclusions of the study are drawn in Section 5.

2. A Micromechanical Model for the Microcapsule-Contained Cementitious Composite

2.1. Multilevel Homogenization Scheme for Predicting the Effective Properties

To obtain the effective properties of the microcapsule-contained cementitious composite,
the multilevel homogenization method was applied [26]. The two-level homogenization process can
be summarized as follows: (1) First, the effective properties of microcapsules, composed of shells and
healing agents inside, were obtained by the homogenization of the two-phase composite as illustrated
in Figure 2a; (2) second, the effective properties of microcapsule-contained cementitious materials
can be estimated by homogenizing the three-phase composite composed of the intrinsic concrete,
the interface and the equivalent inclusion, as demonstrated in Figure 2b.
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2.2. The First-Level Homogenization

The microcapsules consisted of two parts: the polymeric healing agents inside and the polymeric
shell outside. To calculate the effective properties of a coated particle, an analytical solution was
derived. The process was similar with that use in previous research [25]. A 2D cylindrical shell was
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considered under the internal pressure p and the external pressure q. The displacement field, ur, can be
expressed as [41]

ur =
(1− υ)

E
(pa2
− qb2)r

b2 − a2 +
(1 + υ)

E
a2b2(p− q)
(b2 − a2)r

, (1)

where E, ν, a and b are Young’s modulus, Poisson’s ratio, the radius of the inner ring and the radius of
the outer ring, respectively. p and q are the internal and external pressures on the ring. The core–shell
ratio is defined as k = a/b.

Then, another outside layer, called the equivalent coated particle, is necessary to obtain the
effective properties of the coated particle. The elastic properties are equal to the effective properties of
the inner microcapsule, as shown in Figure 3.
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According to the displacement continuity conditions on each interface given in Figure 3 and
Equation (1), the displacement on each layer can be calculated:

−
(1− υ2)

E2
P2a =

1
E1

(1− υ1)

(
P2a2

− P1b2
)
a

b2 − a2 + (1 + υ1)
a2b2(P2 − P1)

(b2 − a2)a

, atr = a (2)

1
E1

(1−υ1)
(P2a2

−P1b2)b

b2−a2 +(1+υ1)
a2b2(P2−P1)

(b2−a2)b

= 1
Eeq

(1−υeq)
(P1b2

−Pc2)b

c2−b2 +(1+υeq)
b2c2(P1−P)
(c2−b2)b

, atr=b (3)

−
(1− υeq)

Eeq
Pc =

1
Eeq

(1− υeq)

(
P1b2

− Pc2
)
c

c2 − b2 + (1 + υeq)
b2c2(P1 − P)
(c2 − b2)c

, atr = c (4)

where Eeq, E1 and E2 denote Young’s moduli of the equivalent particle, the shell and the healing agent,
respectively. Further, veq, v1 and v2 mean the Poisson’s ratios of the equivalent particle, the shell and
the healing agent, respectively.

By solving above equations, Young’s modulus of the equivalent particle can be expressed as

Eeq =
E1(1− a2/b2)(1− υeq)

(a2/b2)(1 + υ1) + (1− υ1) −
4E2a2/b2

E1(1−a2/b2)(1−υ2)+E2[(1+υ1)+a2/b2(1−υ1)]

(5)
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Meanwhile, νeq can be obtained by [42]

veq =
v1 f1E1 + v2 f2E2

f1E1 + f2E2
(6)

where f 1 and f 2 are the volume fraction of the shell and healing agents, respectively.

2.3. The Second-Level Homogenization

Then, the effective properties of cementitious materials are considered. Three traditional solid
phases, i.e., mortar, coarse aggregates and their interfaces, are merged into one matrix phase, namely the
intrinsic concrete, in the representative volume element [26]. To simplify the model, we consider the
effective properties of the intrinsic concrete directly. The interface between the microcapsules and the
intrinsic concrete is involved here, as demonstrated in Figure 4.
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The effective elastic stiffness tensor of a composite can be obtained [27]

C∗ =

 N∑
r=0

φ(r)C(r)
•T(r)

MT

•
φ(0)I +

N∑
r=1

φ(r)
[(

C(r)
)−1

+ R(r)
]
•C(r)

•T(r)
MT


−1

(7)

where φ(r) and C(r) are the volume fraction and the elastic stiffness tensor of r-th phase, respectively.

0-th represents the intrinsic concrete. I denotes the fourth-order identity tensor. T(r)
MT and R(r) are two

tensors relative to interfacial properties, and can be calculated by [27]

T(0)
MT = I (8)

T(1)
MT = I− SMD

•

[
SMD +

(
C(1)
−C0

)−1
•C0

]−1
(9)

Ri jkl =
1
a

[
β− α

5
δi jδkl +

3α+ 2β
10

(
δilδ jk + δikδ jl

)]
(10)

where SMD is the modified Eshelby tensor and can be obtained by the Direct Computation method [27]

SMD
ijkl = λ̂δi jδkl + µ̂

(
δilδ jk + δikδ jl

)
(11)
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λ̂ =

(
5(5υ0 − 1)

(
−3 + 9υ0 − 6υ2

0

)
+ 8α′µ0

(
1− 2υ2

0

)
(5υ0 − 4) + 2β′µ0

(
1 + 71υ0 − 101υ2

0 + 45υ3
0

))[
−3 + 9υ0 − 6υ2

0 + 2β′µ0(1 + υ0)
2
]
[75(1− υ0) + 4µ0(5υ0 − 4)(3α′ + 2β′)]

(12)

µ̂ =
(5− 6α′µ0 − 4β′µ0)(4− 5υ0)

75(1− υ0) + 4µ0(5υ0 − 4)(3α′ + 2β′)
(13)

α′ =
α
b

, β′ =
β

b
(14)

whereα and β are related to the interfacial sliding and the interfacial separation, respectively. b represents
the radius of microcapsules.

By adopting the above micromechanical model, the effective properties of the microcapsule-
contained cementitious composites can be obtained.

3. Global Sensitivity Analysis Method

FAST is one of the most elegant methods for the sensitivity analysis [43]. It can be applied to many
nonlinear models. EFAST inherits the advantages of FAST with some modifications. It quantifies the
contribution of each input parameter to the total variances of the output by variance-based methods.
In this paper, EFAST is applied to carry out the sensitivity analysis. The main idea of EFAST is to
explore the multidimensional space by a suitably defined search-curve. If the i-th factor has a strong
influence on the output, the amplitude of oscillation of y = f (x) at frequency wi is great. The main
process of EFAST is summarized as follows:

In a model with n inputs, y = f (x1, x2, . . . , xn), with parameters in the domain of unit hypercube

Kn = (x |0 ≤ xi ≤ 1; i = 1, . . . , n) (15)

Then, a new function is introduced

xi = Gi(s), i = 1, 2, . . . , n (16)

Gi is a search-curve. There are many forms of xi. Here, we take the transformation proposed by
Saltelli et al. [43]

xi =
1
2
+

1
π

arcsin(sin wis) (17)

where wi is a set of different, linearly independent of integer frequencies associated with each factor xi. s
varies in (−π/2, π/2). By using Fourier transform, the first-order sensitivity index Ŝi can be obtained [43]

Ŝi = D̂i/D̂ (18)

where D̂ and D̂i are the total variance and the variance caused by the i-th parameter, respectively.
The detailed process can be found in previous research [43].

The total variance can be decomposed into the variance caused by a single parameter and
combined parameters. Then, the higher-order sensitivity index can be calculated [44]. In this paper,
the direct influence of inputs is studied, while the higher-order influence is ignored.

The model outputs—the bulk modulus K and the shear modulus G—were considered in this
sensitivity analysis. They were chosen as they are the main parameters to evaluate the elastic properties
of a material. There are only two independent elastic constants in isotropic media, such as ordinary
concretes and polymers. By using G and K, other elastic parameters can be obtained. Further, the elastic
performance of materials can be simulated [23]. Some rational parameters are presented to illustrate
the process in Table 1. The elastic properties of some common concretes are listed in Table 2.
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Table 1. Parameters used for the sensitivity analysis.

Parameter Description Unit Scope

E1 Elastic modulus of the shell GPa (1, 10)
v1 Poisson’s ratio of the shell - (0.001, 0.499)
k The core-shell ratio - (0.1, 0.9)
α The interfacial sliding compliance 1/MPa (0.001, 0.01)
β The interfacial separation compliance 1/MPa (0.001, 0.01)
f The volume fraction of microcapsules - (1%, 10%)

Table 2. Elastic properties of some common concretes.

Type Elastic Modulus Poisson’s Ratio

C30 30 GPa 0.2
C40 32.5 GPa 0.2
C50 34.5 GPa 0.2

4. Results and Discussion

Here, the normalized EFAST first-order effects with respect to the input parameters were
investigated. The normalization was conducted by [39]

Sn,i = Si

/ 6∑
i=1

Si (19)

The first-order sensitivity indices (FSIs) of the bulk modulus in the C30 concrete were obtained by
applying the EFAST variance-based sensitivity analysis in Figure 5.
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Figure 5. First-order sensitivity indices (FSIs) computed by the Extended Fourier Amplitude Sensitivity
Test (EFAST) for the bulk modulus in the C30 concrete.

By analyzing the results in Figure 5, the influence of input parameters is known. The volume
fraction of microcapsules (f ) and the interfacial separation property (β) had the greatest effect (around
57% and 21%, respectively) on the bulk modulus of the C30 concrete. Hence, the volume fraction
of microcapsules should be selected carefully to maintain the desired bulk modulus. The interfacial
separation property (β) is also a sensitive factor for the microcapsule-contained cementitious materials.
The interfacial bonding should be good to avoid weak elastic behaviors. The properties of the shell (i.e.,
E1, v1 and k) have a medium influence on the outputs. They make up approximately 20% altogether.
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The interfacial sliding property α only takes up about 0.42% of the influence, which can be neglected.
The result was acceptable since the interfacial sliding parameter has little influence on the bulk modulus
as illustrated in previous studies [27].

The FSIs of inputs for the shear modulus of the C30 concrete are evaluated in Figure 6. According
to Figure 6, the FSI of the volume fraction of microcapsules (f ) is the largest (around 63%). Hence,
the volume fraction should be given extra attention in order to obtain the desired effective shear
properties. The elastic modulus and the core-shell ratio of microcapsules also have a medium influence
on the effective properties (approximately 11%). The interfacial sliding property α has a greater impact
on the shear modulus (5%) than that on the bulk modulus (0.42%). The results prove that elastic
properties may have insensitive parameters in some objective functions and not in others, as illustrated
in Figures 5 and 6. It is clear that the two objective functions are sensitive to the volume fraction
of microcapsules.
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Figure 6. FSIs computed by the EFAST sensitivity analysis for the shear modulus in the C30 concrete.

To validate the results, PRCC was applied in this research. Figure 7 shows the overall sensitivity
of each parameter of the bulk modulus and the shear modulus in the C30 concrete. The result of
PRCC was similar to that obtained by EFAST (see FSI values in Figures 5 and 6). However, there was a
slight difference in the ordering of the parameter sensitivities. The order of sensitivity for the bulk
modulus by EFAST method was E1 > v1 > k, while PRCC values yielded a slightly different order
k > v1 > E1. The other rankings were the same. These results support that the results of EFAST are
correct, and PRCC provides a similar identification of sensitive parameters.

The sensitivity of parameters of the micromechanical model may change between different
cementitious matrices. However, the difference is not obvious and can be neglected. Let us examine
this finding in the case of the bulk modulus. In all three situations in Figure 8 (i.e., the C30 concrete,
the C40 concrete and the C50 concrete), the FSI of each parameter is similar. This implies that even
though the FSI of each parameter may be varied in different concretes, the general rankings can
be summarized. The volume fraction and the interfacial separation property should be paid extra
attention to. Considering the properties of concretes, the order of FSIs of parameters is the same in
different concretes.
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Figure 7. The Partial Rank Correlation Coefficient (PRCC) sensitivity analysis for the (a) bulk modulus
and (b) shear modulus in the C30 concrete.

Global sensitivity analysis such as EFAST requires the range of parameter values to be explored.
Changing the parameter range may affect the sensitivity index [45]. We investigated the influence of
the parameter range of our micromechanical model by repeating the sensitivity analysis with other
parameter ranges. The objective function of bulk modulus used for sensitivity analysis was taken
to illustrate the influence of the range in the C30 concrete. Here, the range of the volume fraction
changed from (1%, 10%) to (1%, 5%). The results are displayed in Figure 9. For the bulk modulus,
if the volume-fraction parameter range changes from (1%, 10%) to (1%, 5%), the FSI of the volume
fraction decreases by 16.24%. Meanwhile, the elastic modulus, the core–shell ratio and the interfacial
separation property become more sensitive. Their FSI values increase up to 4.83%, 6.53% and 3.29%,
respectively. Therefore, the analysis confirms that FSI values of parameters can change substantially if
the range of the volume fraction of microcapsules changes. However, the volume fraction still has the
greatest impact on the elastic properties.
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Figure 8. FSIs computed by the EFAST sensitivity analysis for the bulk modulus of the (a) C30 concrete,
(b) the C40 concrete, and (c) the C50 concrete.
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5. Conclusions

The study presents the results of sensitivity analysis using EFAST on the proposed micromechanical
model of microcapsule-contained self-healing cementitious composites. The proposed micromechanical
model can consider the microstructures and interfaces of microcapsules. EFAST helps to identify which
parameters are required for knowledge improvement to achieve the desired level of confidence in the
results. The results show that the volume fraction of microcapsules is the most important factor which
influences the effective properties of the microcapsule-contained self-healing cementitious composites.
The influence of interfacial properties cannot be neglected. The sensitivity analysis is affected by the
parameter ranges. Not all elastic properties are sensitive to the same inputs. Even though the properties
of the matrix make a difference, the general rankings of FSIs of parameters are the same among different
concretes. From the research, the volume fraction of microcapsules should be chosen after a precise
design. Meanwhile, the surface treatment should be conducted on the self-healing microcapsules to
enhance the interfacial bonding between the microcapsules and the cementitious matrix. The optimal
volume fraction of microcapsules is related to the healing probability, the healing ratio, properties of
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healing agents, the radius of microcapsules, the size of cracks in the matrix, etc. This investigation
mainly concentrated on the influence of different parameters on the elastic properties before self-healing.
The optimum volume fraction can be obtained using our previous models [20–24]. In the future,
a viscoelastic model will be developed based on the present research to extend its application.
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