

Supporting Information

Bis-Tridendate Ir(III) Polymer-Metallocomplexes: Hybrid, Main-Chain Polymer Phosphors for Orange – Red Light Emission

K. Andrikopoulos¹, C. Anastasopoulos¹, J. K. Kallitsis^{1,2}, A. K. Andreopoulou^{1,2,*}

¹ Department of Chemistry, University of Patras, University Campus, Rio-Patras, GR26504, Greece

² Foundation for Research and Technology Hellas/Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Platani Str., Patras, GR26504, Greece

Figure S1. ¹H-NMR spectra area 5-0 ppm, of **HOtpy**, **HOtpy-IrCl**₃, **HOtpy-Ir-HOpy** and **HOpy** all in DMSO-d₆.

Figure S2. ¹H- NMR spectra of **C**₁₂**Otpy** in CDCl₃, **C**₁₂**Otpy-IrCl**₃ in DMSO-*d6* and **C**₁₂**Otpy-Ir-HOpy** in DMSO-*d6*. Peaks denoted with asterisks refer to alternative complexation modes or residual solvent traces.

Figure S3. ¹H- NMR spectra of **CH**₃**tpy** in DMSO-*d6*, **CH**₃**tpy-IrCl**₃ in DMSO-*d6* and **CH**₃**tpy-Ir-HOpy** in DMSO-*d6*.

Figure S4. LDI – TOF/MS spectra of HOtpy-IrCl₃.

Figure S5. LDI – TOF/MS spectra of C12Otpy-IrCl3

Figure S6. LDI – TOF/MS spectra of CH3tpy-IrCl3

Figure S7. LDI – TOF/MS spectra of HOtpy-Ir-HOpy

Figure S8. LDI-TOF MS spectra of C12Otpy-Ir-HOpy.

Figure S9. LDI – TOF/MS spectra of CH3tpy-Ir-HOpy

Figure S10. ATR spectra of the monomeric Ir(III) complexes based on the C12Otpy and CH3tpy ligands.

Figure S11. ¹H-NMR spectra of **a-CPOL-C**₁₂**Otpy-Irx** (where x=20% red and x=50% green) prepared by the "post polymerization" complexation method, and of the uncomplexated homopolymer ligand **pySO**₂ in DMSO-*d*₆. (a) shows the region of 10-6 ppm and (b) the region 3-0 ppm. The inset in (a) shows a magnification of the 10ppm – 8.5ppm area of the **a-CPOL-C**₁₂**Otpy-Ir20** spectrum.

Figure S12. ATR spectra of the polymeric Ir(III) complexes b-CPOL-CH₃tpy-Irx.

Figure S13. GPC trace of **a-CPOL-Rtpy-Irx** (indicated as **a-R-Irx**) and **b-CPOL-Rtpy-Irx** (indicated as **b-R-Irx**) with the detector set at 254nm (left) and at 450nm (right).

Figure S14. Absorption (black) and emission (color) spectra of the polymeric complexes **a-CPOL-C**₁₂**Otpy-Irx** where **x=5**, **50** recorded in 1,1',2,2'-TCE solution (left) and thin film (right)

Figure S15. Absorption (black) and emission (colored) spectra of the polymeric complexes **a-CPOL-CH**₃**tpy-Irx** where **x=5**, **50** recorded in 1,1',2,2'-TCE solution (left) and thin film (right)

Figure S16. Absorption and emission spectra of pySO2 in (a) solution using DMA and in (b) thin film form

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).