
polymers

Review

Current Advances in 3D Bioprinting Technology and
Its Applications for Tissue Engineering

JunJie Yu 1,2, Su A Park 2 , Wan Doo Kim 2, Taeho Ha 3, Yuan-Zhu Xin 4, JunHee Lee 2,*
and Donghyun Lee 1,*

1 Department of Biomedical Engineering, School of Integrative Engineering, Chung-Ang University,
221 Heukseok-Dong, Dongjak-Gu, Seoul 06974, Korea; junjie0801@hotmail.com

2 Department of Nature-Inspired System and Application, Korea Institute of Machinery & Materials,
156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, Korea; psa@kimm.re.kr (S.A.P.);
wdkim@kimm.re.kr (W.D.K.)

3 Department of 3D Printing, Korea Institute of Machinery & Materials, 156 Gajeongbuk-Ro, Yuseong-Gu,
Daejeon 34103, Korea; taehoha@kimm.re.kr

4 Department of Engineering Mechanics, School of Mechanical and Aerospace Engineering, Jilin University,
No. 5988, Renmin Street, Changchun 130025, China; xyz0208@jlu.edu.cn

* Correspondence: meek@kimm.re.kr (J.L.); dhlee@cau.ac.kr (D.L.)

Received: 12 October 2020; Accepted: 7 December 2020; Published: 11 December 2020
����������
�������

Abstract: Three-dimensional (3D) bioprinting technology has emerged as a powerful biofabrication
platform for tissue engineering because of its ability to engineer living cells and biomaterial-based 3D
objects. Over the last few decades, droplet-based, extrusion-based, and laser-assisted bioprinters
have been developed to fulfill certain requirements in terms of resolution, cell viability, cell density,
etc. Simultaneously, various bio-inks based on natural–synthetic biomaterials have been developed
and applied for successful tissue regeneration. To engineer more realistic artificial tissues/organs,
mixtures of bio-inks with various recipes have also been developed. Taken together, this review
describes the fundamental characteristics of the existing bioprinters and bio-inks that have been
currently developed, followed by their advantages and disadvantages. Finally, various tissue
engineering applications using 3D bioprinting are briefly introduced.
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1. Introduction

The goal of tissue engineering, which is based on scaffold-based approaches, is the
replacement/regeneration of damaged tissues or organs. A key prerequisite for such scaffold-based
approaches is that the scaffold should be biodegraded after tissue restoration. Moreover,
the structural design of scaffolds is important for successful tissue regeneration because the 3D
structural characteristics and physical properties of native tissues/organs can play an essential
role in the biological/physiological characteristics through appropriate cell–cell and cell-matrix
interactions [1]. Additionally, scaffolds offer a suitable microenvironment for cell attachment,
proliferation, and migration to promote cell growth and function [2].

Conventionally, scaffolds are fabricated using solvent casting/particulate leaching [3],
gas foaming [4], melt molding [5], phase separation [6], freeze-drying [7], and electrospinning [8].
Although such manual methods allow the fabrication of porous structures, these processes could not
construct tailored/regular porous structures. Notably, seeding cells on scaffolds cause considerable cell
loss, resulting in poor cellular performance [9]. More important, it is difficult to create heterogeneous and
multicellular structures mimicking actual tissues/organs using such conventional methods. Collectively,
new biofabrication methods are necessary for advanced tissue engineering.
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3D bioprinting is an attractive biofabrication method because it enables the precise deposition of
various cells/biomaterials onto predefined locations [10–12]. Additionally, it offers several advantages
when compared with conventional methods. For example, this automated technique facilitates
both mass production and high-throughput production with high-resolution [13]. Furthermore,
customized structures for patients can be printed through computer-aided design modeling.
Moreover, 3D bioprinted regular and porous structures can provide superior interconnectivity for cell
growth/function. These advantages could lead to better tissue and organ regeneration (Figure 1a).
Moreover, many outcomes have been published annually based on 3D bioprinting (Figure 1b).

Considering the working principles of tissue engineering, bioprinting techniques can be
categorized into four modules: (1) droplet-based, (2) extrusion-based, (3) laser-assisted, and (4)
stereolithography techniques. For the fabrication of an ideal 3D biomimetic structure using such
printing modules, bio-inks should be carefully selected. To be used as a source of a bio-ink, biomaterials
should meet the following requirements: (1) biocompatibility, (2) biodegradability, (3) bioprintability,
and (4) structural integrity after printing [14,15]. To satisfy such requirements, various bio-inks
have been formulated by considering their mechanical properties; in particular, mixtures of different
biomaterials have attracted attention as potential bio-ink sources.
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Figure 1. (a) Numerous applications of tissue engineering and (b) the number of publications based
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illustration of the (b) was using search the terms of “3D bioprinting”. Data analysis was searched
Pubmed and Scopus system on 11 November 2020.

Over the past decade, research on the use of two or more bio-inks that combine cells has garnered
great interest in the regeneration of artificial tissues. Various types of cells have been used in mixtures
of different bio-inks to achieve remarkably successful results in the repair of bone, cartilage, trachea,
blood vessels, and liver tissue. Although several studies related to 3D bioprinting have been reported,
the objective of this review is to provide useful information regarding the current state of 3D bioprinting
techniques and bio-inks. Moreover, based on each bio-ink characteristic, we propose blends of two or
more bio-inks for use in various tissue engineering applications. Notably, in this review, we provide
insights into the combination formulas of bio-inks, cell types, cell density, and crosslinkers, which are
major challenges for building successful structures. Finally, the current limitations and future prospects
are discussed.

2. 3D Bioprinters for Tissue Engineering

As mentioned previously, 3D bioprinters can be commonly classified into four groups based on
their working principles. In this section, we introduced seven types of bioprinters: (1) inkjet-based,
(2) extrusion-based, (3) laser-assisted, (4) stereolithography, (5) acoustic, (6) microvalve, and (7) needle
array bioprinters (Figure 2). We also provide a brief overview of the working principles of each printing
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module and its fundamental characteristics. The type of bioprinter should be carefully selected based
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Figure 2. Different types of 3D bioprinters. (a) Inkjet- and (b) extrusion-based bioprinters were
reproduced with permission from [17]; Copyright 2013 John Wiley and Sons. (c) laser-assisted
bioprinter was reproduced from [18]; (d) stereolithography-based bioprinter was reproduced from [19];
(e) acoustic and (f) microvalve bioprinters were reproduced permission from [20]. Copyright 2016
Elsevier; (g) scaffold-free bioprinter was reproduced from [21].

2.1. Inkjet-Based Bioprinters

Inkjet-based bioprinters were first reported in 1988 by Klebe; he utilized a commercially available
Hewlett-Packard (HP) thermal drop-on-demand inkjet printer to print using a hydrogel solution [22].
Subsequently, inkjet-based printing modules have been successfully adopted to deposit cells or
biomaterials as a droplet unit through various dispensing forces based on heating reservoirs or
piezoelectric actuators. The heating element adjacent to the printing nozzle increases the temperature,
which eventually causes gasification while generating bubbles [23,24]—the generated bubbles are
forcefully printed as droplets on a substrate. In contrast, piezoelectric inkjet-based bioprinters generate
pressure pulses that print cell-containing droplets through the nozzle [23]. Although inkjet-based
bioprinters possess several advantages, such as high print speed and low cost [25], their application
is limited because of the narrow ranges of printable biomaterial viscosities [17]. Heat-based and
piezoelectric-based printing modules, owing to their working principles, may cause cell damage and
cell lysis during the printing process [26]. However, the heating element only lasts a few microseconds
at high temperatures; the cell viability of the printed cells can be maintained at 89%, with only a few
cells being damaged using a thermal inkjet printer [27]. Moreover, non-uniform droplet size and
nozzle clogging make the process cumbersome [25].

2.2. Extrusion-Based Bioprinter

Extrusion-based bioprinters were first introduced in 2002 [28]. Such printers deposit hydrogels
through the forces exerted by pneumatic pressure or mechanical tools (piston or screw). When compared
with inkjet-based bioprinters, extrusion-based printers can deal with high cell density, viscosities,
and dynamical crosslinking mechanisms [29]. Additionally, extrusion provides a varied selection of
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biomaterials, including synthetic polymers, cell-laden hydrogels, cell aggregates, and microcarriers,
because it enables the use of a wide range of biomaterial viscosities [29,30]. Moreover, they can produce
a cell-laden bio-inks in the form of continuous extruded strands which is capable of engineering a
large-scale biomimetic structure by use of their speedy printing velocity [10]. Despite these advantages,
the relatively low resolution and poor cell viability due to the shear damage caused by the printing
nozzle through pressure or mechanical force need to be ameliorated [31–33].

2.3. Laser-Assisted Bioprinter

Laser-assisted bioprinters were first introduced in 1999 by David Odde using optical cell
trapping [34]. This system consists of an energy-absorbing layer, a donor ribbon, and a bio-ink
layer [35]. In brief, a laser illuminates a small part of the donor ribbon layer, and a high-pressure
bubble is created. The bubble pushes the bio-ink layer while generating droplets so that the bio-ink
can be deposited on the substrate. During the printing process, the risk of contamination is low
because the dispenser and the bio-inks are not in contact [36]. The main advantage of this system is
that it can deposit bio-inks with relatively high viscosity and resolution [37]. Moreover, the issue of
nozzle clogging is eliminated because this system involves a nozzle-free printing process [25]. In a
previous study on laser-assisted bioprinters, Catros et al. conducted Ea.hy926 cell viability tests using
a live/dead assay [38]. They reported that cell viability is related to the laser pulse energy, substrate
thickness of the extracellular matrix (ECM), and viscosity of bio-inks. The results indicated that higher
laser energy tends to increase cell damage. To prevent cell mortality, a higher thickness of substrate
and viscosity could protect the cells in the bio-ink. Therefore, the potential inducement of cell damage
due to laser intensity, high cost of printing modules, and difficulty in use are regarded as the main
disadvantages of this technique [25,37].

2.4. Stereolithography Bioprinters

The first stereolithography was introduced by Charles W. Hull in 1986 [39]. Compared with the
inkjet-based, extrusion-based, and laser-assisted bioprinting techniques, this method uses light to
crosslink the bio-inks in the reservoir using a layer-by-layer process. Owing to its working mechanism,
this technique is limited to light-responsive bio-inks, typically including gelatin methacrylamide
(GelMa) and polyethylene glycol diacrylate (PEGDA) [40]. In addition to the limitations of options
with bio-inks, another main disadvantage of stereolithography is that the reservoir may be filled with
photopolymers, which entails material waste and a high cost of experimentation.

2.5. Additional Bioprinters

Acoustic and microvalve bioprinters are categorized as droplet-based bioprinters. An acoustic
bioprinter ejects droplets when a force is generated using acoustic waves [41]. Compared with the
abovementioned inkjet- and extrusion-based bioprinters, the living cells in bio-inks are not exposed to
heat or high pressure that causes cell damage [20]. A microvalve bioprinter ejects droplets using an
electromechanical microvalve consisting of a valve coil and plunger [20]. In brief, a magnetic field is
generated by the valve coil, which forces the plunger upwards. Bio-inks in the barrel are pressurized
by the resulting pneumatic pressure and are then ejected through the unblocked barrel. However,
because the droplets generated from microvalve bioprinters are larger than those from inkjet-based
bioprinters at the same nozzle size, the resolution is lower [20]. The Kenzan method is a scaffold-free
method that laces pre-formed cell aggregates or spheroids onto a needle-array platform. LaBarge et al.
developed a novel 3D bioprinter by fabricating entire layers of the construct at once, which alleviated
the problem that only single spheroids were placed on the needle array at a time (i.e., one-by-one) [21].

2.6. Hybrid Printing Strategies

As noted previously, each 3D bioprinting module has its own inherent characteristics. To develop
a highly complex/ideal tissue construct, further approaches based on combinations of such printing
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modules are required. Numerous efforts have been made to develop comprehensive structures using
multiple printing modules, such as an inkjet-based bioprinter integrated with electrospinning [42],
extrusion-based bioprinter combined with electrospinning [43], integrated inkjet-based and
extrusion-based bioprinter [44], and laser-assisted bioprinter combined with electrospinning [45].
As a representative example, Xu et al. enhanced the mechanical strength of the cellular construct
by combining an inkjet-based bioprinter with electrospinning for cartilage tissue engineering [42].
The supportive polycaprolactone (PCL) mesh was electrospun between the cellular layers to improve
the mechanical strength of the structure. Kim et al. fabricated a composite scaffold using extrusion
and electrospinning methods [43] and demonstrated that the composite structure exhibited enhanced
mechanical and biological performance. Kim et al. suggested a hybrid bioprinting system that could
simultaneously use inkjet-based and extrusion-based bioprinting modules to engineer 3D in vitro
skin models [44]. Collectively, the hybrid printing strategies can produce structures with better
mechanical and biological activities than conventional 3D bioprinting. However, this strategy requires
more complex fabrication processes and more complicated software modes and hardware controllers,
making it difficult for potential researchers to use such printing systems.

3. Bio-Inks: Biomaterials for 3D Bioprinting

In parallel to the technological advances in 3D bioprinting, bio-inks (termed as printable hydrogels)
are another key element for engineering functional tissue constructs. Biomaterials used for the
manufacture of bio-inks should be biocompatible, bioprintable, and degradable in the human body
without toxic byproducts. Here, we introduce conventional bio-inks based on natural and synthetic
polymers and describe their features (Table 1). To better understand the chemical structure of the
abovementioned polymers (Figure 3), some examples of crosslinking mechanisms (Figure 4) are
provided. Finally, other bio-inks that have recently been adopted for 3D bioprinting are briefly covered.

3.1. Natural Polymers

Natural polymers, especially in the form of hydrogels, have the advantage of providing a favorable
microenvironment for encapsulated cells. Here, we explain various types of natural polymers that are
applied as bio-ink sources and their basic characteristics.

3.1.1. Alginate

Alginate is a natural polymer derived from brown seaweeds [46]. Because its polymeric backbone
is negatively charged, alginate can form ionically crosslinked chains by applying a solution with a
positive charge. Calcium chloride (CaCl2) is well known as a typical solution that allows the alginate
hydrogel to be ionically crosslinked [47]. Calcium sulfate (CaSO4) and calcium carbonate (CaCO3) can
also be used as crosslinkers for alginate gelation; however, because their water solubility is inferior to
that of CaCl2, the time required to crosslink the alginate increases accordingly [48].

Alginate-based hydrogels have been extensively employed for many biomedical applications
owing to their biocompatibility, low toxicity, and relatively low price [47]. However, alginate hydrogels,
based on ionic crosslinking, have limitations in terms of maintaining long-term stability under
physiological conditions [47]. Another limitation of the use of alginate is that it does not provide
binding sites for cell attachment [49]. This means that merely using alginate hydrogel would hinder
cellular growth/function, and therefore, further approaches, such as the use of RGD peptide conjugation
in combination with other cell-friendly biomaterials, should be implemented [47,50].

3.1.2. Chitosan

Biocompatibility, biodegradability, nonallergenicity, and antimicrobial activity are the
advantageous properties of chitosan, because of which it is widely employed in the engineering
of various tissues, such as bone, cartilage, skin and liver [51,52]. The solubility of chitosan depends
on the pH, and the bio-ink can be gelled at 40 ◦C under neutral conditions [23]. Genipin [53] and
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glutaraldehyde [54] can stabilize chitosan through a chemical crosslinking mechanism. The major
disadvantages of chitosan are its weak mechanical integrity and rapid dissociation under certain
physiological conditions, and the absence of cell-binding domains limits cell attachment [49]. To address
these challenges, a chitosan-based blended bio-ink was developed by Ng et al., who formulated a
mixture of polyelectrolyte gelatin and chitosan and optimized it for 3D bioprinting [55]. The results
showed that the mixture maintained higher cell viability over four days of culture when compared
with the pure chitosan group.

3.1.3. Gelatin

Gelatin is a natural polymer obtained from animal connective tissues. It can be divided into
two categories: (1) acid treatment of type A gelatin and (2) alkaline treatment of type B gelatin [49].
Different types of gelatin exhibit distinct characteristics—(1) type A and B show positive and negative
charges at neutral pH [56] respectively; (2) type B shows a lower gel strength [57] but has better
biocompatibility than type A [56], and (3) both are widely used in tissue engineering as bio-inks.
Singh et al. mixed collagen type B and silk for the optimization and development of a crosslinker-free and
printable bio-ink in cartilage engineering [58]. Erkoc et al. blended gelatin type A, cellulose, and alginate
to conduct swelling and degradation tests using crosslinkers of glutaraldehyde or CaCl2 [59]. Based on
these previous studies, the selection of gelatin type was dependent on the purpose of use. Moreover,
it exhibits thermo-reversible gelation properties. Specifically, at low temperatures, it has a gel-like
form, and at high temperatures, it can easily exhibit liquefied form. To induce irreversible gelation of
gelatin hydrogels, glutaraldehyde can be used as a chemical crosslinker because of its high crosslinking
efficiency [60]. However, glutaraldehyde is toxic to living cells. Therefore, alternative crosslinkers have
been proposed, including transglutaminase, horseradish peroxidase (HRP) and H2O2 [61]. Recently,
carbodiimide and genipin have been considered as potential candidate crosslinker for gelatin because
their cytotoxicity is relatively lower than that of the other crosslinkers [62]. Although gelatin has
biocompatible properties, non-immunogenicity and cell-friendly binding domains, pure gelatin cannot
be used as a bio-ink source for cell growth because of its low viscosity and poor mechanical strength at
37 ◦C [23,49,63]. More recently, gelatin was modified with methacrylamide [64] and methacrylate [65]
groups. Methacrylation makes the gelatin photocrosslinkable, with the developed gelatin being termed
gelatin methacrylamide (GelMA). Many outcomes have been accumulated using this bio-ink [66–68].
As a representative example, Colosi et al. blended alginate/GelMA and bioengineered heterogeneous
and functional 3D tissue structures [66].

3.1.4. Collagen

Collagen is the main protein component of the ECM in actual tissues/organs [69], and sources of
collagen have been obtained from animal tendon materials, such as rat and porcine [70,71]. Therefore,
it has been extensively employed in the field of tissue engineering. Because of the rich integrin-binding
domains, collagen provides superior microenvironments for cell growth, adhesion, and function [63,72].
Although collagen is in the form of a pre-gel at low temperatures, it can be thermally crosslinked when
treated at 37 ◦C [36]. It can also be crosslinked with UV [73], glutaraldehyde [74], carbodiimide [75]
and genipin [76] and is prone to degradation by collagenase [69]. However, it is difficult to print pure
collagen because of its low viscosity. Therefore, several efforts are required to improve the viscosity
of collagen; for example, the blends of collagen with other hydrogels [77,78] or the hybrid printing
technique using synthetic polymers as a supporting framework to maintain the shape of printed
collagen have been reported [79].

3.1.5. Silk

Natural silk fibers that are produced by silkworms and spiders are an attractive source
for the manufacture of bio-inks because of their nontoxicity, gradual degradation, and low
immunogenicity [80,81]. Silk has a high viscosity and shear thinning inherently; these properties are
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advantageous for the fabrication of the desired structure [49]. The major disadvantage of silk is that
nozzle clogging can easily occur owing to the shear force induced by β-sheet crystallization [82].
Moreover, the poor cell binding capacity of silk may limit cell adherence, growth, and function [49].
As a representative study, Das et al. reported sonication and enzyme-based crosslinking methods to
improve the cellular function as well as the bioprintability of silk [83]. When a mixture of silk and
gelatin was used as a bio-ink, mechanical integrity, cell viability, and differentiation were improved.

3.1.6. Fibrinogen

Fibrinogen, which is essential for proper blood clot formation, can also be applied as a bio-ink
source. It can be polymerized to fibrin through thrombin-fibrinogen interactions [84]. Fibrin has
excellent biocompatibility, providing large binding sites for cell attachment and proliferation, as well
as the inducement of minimal inflammation and low immunogenicity [85]. The main drawback
of using fibrin as a bio-ink is that it is not suitable for a long time culture for in vivo applications
because of its rapid degradation [63]. In addition, it is difficult to formulate fibrinogen itself as a
printable hydrogel because of its low viscosity. Therefore, many studies using 3D bioprinting have
used fibrinogen together with alginate, gelatin or collagen to improve its bioprintability during the
printing process [78,86,87].

3.1.7. Agarose

Agarose is a polysaccharide that is generally extracted from certain red seaweed [88]. Similar to
other bio-inks, agarose is a hydrate and nonimmunogenic material, but it is brittle in a solid state [20,63].
However, its poor cell adhesion capacity [63] makes it unsuitable for use as a cell-laden biomaterial.
It exhibits a sol–gel transition from 32 ◦C to 47 ◦C [89]. Due to its thermo-reversible feature, it normally
works as a sacrificial bio-ink for hollow channels [90,91], rather than cell encapsulation and cell
culture [77,92].

3.1.8. Hyaluronic Acid

Hyaluronic acid (HA) is used because of its excellent biocompatibility and ability to form hydrogels
with various chemical modifications [93,94]. However, HA hydrogels undergo rapid degradation and
exhibit poor mechanical stability under physiological conditions [23]. To overcome these limitations,
many researchers have attempted to blend HA with other suitable hydrogels [95,96].

3.1.9. Matrigel

Matrigel is a gelatinous protein mixture derived from Engelbreth–Holm–Swarm (EHS) sarcoma
cells and can be gelled at 37 ◦C [97]. It contains laminin, collagen, and a myriad of growth factors [98].
Matrigel is also a thermally reversible biomaterial and is in the liquid state at 4 ◦C; it exhibits a phase
transition between 24 and 37 ◦C and requires approximately 30 min [97]. It has been reported that
cells cultured on Matrigel exhibit exceptional cellular differentiation/functionalities when compared
with those cultured on other homogeneous biomaterials [63]. Therefore, Matrigel may be a promising
bio-ink source for successful tissue regeneration [63]. However, it has certain disadvantages. It is
expensive and not suitable for clinical translation because of its origin [99]. Furthermore, Matrigel itself
is not yet bioprintable. Therefore, it must be combined with other bio-inks to form a Matrigel-based
bio-ink formulation [100,101].

3.1.10. Bioceramics

Bioceramics are used as degradable and bioactive materials with excellent biocompatibility
and antibacterial properties [102]; they include hydroxyapatite and a-, β-tricalcium phosphate.
Owing to their restorability and bone conductivity, bioceramics have been widely used in bone healing
applications [103]. Kim et al. combined bioceramics (β-tricalcium phosphate) with collagen to bioprint



Polymers 2020, 12, 2958 8 of 30

a 3D porous cell-laden structure [104]. They found that the addition of bioceramics with composite
bio-ink significantly induced osteogenesis.

3.2. Synthetic Polymers

Synthetic polymer-based biomaterials are also a powerful source for manufacturing bio-inks
because they can be precisely deposited with high fidelity and mechanical strength. However,
poor biocompatibility and uncontrollable degradation remain a challenging issue. In this section,
the fundamental properties of various synthetic polymer-based biomaterials, including PCL,
polyethylene glycol (PEG), pluronic F-127 (PF127), polyvinyl alcohol (PVA), polylactic acid (PLA) and
polylactic-co-glycolic acid (PLGA) are briefly covered.

3.2.1. Polycaprolactone

PCL is a polyester-based biocompatible, and flexible material. It cannot encapsulate cells
because melting or dissolving the polymer in organic solvents produces it in the liquid state,
both of which are harmful to living cells [15]. Because of its relatively low melting point (~60 ◦C),
high stability, and long-term degradation, PCL has been widely employed for 3D bioprinting-based
tissue engineering [105]. In particular, PCL is used as a framework to support natural hydrogels
with weak mechanical properties [106]. For example, Shim et al. developed a hybrid printing
technique by depositing cell-laden natural hydrogels between the pores made of PCL [107]. With this
technique, many beneficial results have been achieved in the engineering of tissue of the bone, cartilage,
and liver [106,108–112].

3.2.2. Polyethylene Glycol

PEG is a hydrophilic polymer that is widely used in 3D bioprinting because of its biocompatibility,
non-immunogenicity, and protein rejection properties [113]. Owing to its high water solubility and
hydrophilicity, this synthetic polymer is used as a sacrificial bio-ink [114]. To improve the mechanical
strength, PEG can be modified using diacrylate (DA) [115] or methacrylate (MA) groups [116].
Bioprinted PEG-based systems can provide a 3D cell culture environment for various types of
cells [117,118].

3.2.3. Pluronic F-127

PF127 is a water-soluble and thermo-responsive material. At room temperature, it is in the gel
state [15], but below 10 ◦C, it is in a liquid state [15]. It provides high fidelity for fabricating elaborate
3D structures. However, its mechanical integrity is too weak, and cells can barely grow in PF127
because of its poor cell support [49]. Therefore, PF127 has generally been used as a sacrificial bio-ink
for generating perusable vascular structures [119].

3.2.4. Polyvinyl Alcohol

PVA is a biodegradable, biocompatible, thermostable, and water-soluble synthetic polymer,
which has already been approved by the Food and Drug Administration (FDA, USA) [120,121].
Glutaraldehyde, used as a cytotoxicity agent, can be crosslinked with PVA to obtain proper mechanical
and physical properties [120]. However, because PVA exhibits poor cell affinity, its physical modification
is achieved by alternative methods, such as freeze-thawing [120] and homogeneously blending with
other hydrogels to obtain stable and intended composites [122,123].

3.2.5. Polylactic Acid and Poly Lactic-co-Glycolic Acid

PLA and PLGA are polyester-based polymers, both of which are biodegradable, biocompatible,
and have been approved by the FDA [124]. However, due to their inherent hydrophobicity, they have
poor cell adhesion [124]. However, surface coating and plasma treatment can improve protein
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adsorption and enhance cell affinity [125]. Surface-modified bioprinted PLA and PLGA can provide a
3D cell culture environment for building various types of tissues [126–128].
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Figure 4. Crosslinking mechanisms of some instances. (a) alginate crosslinking with calcium ions
(adapted from [134]); (b) synthesis gelatin methacrylamide (GelMA) and crosslinking with UV was
adapted with permission from [65]. Copyright 2010 Elsevier; (c) chitosan crosslinking with genipin [135];
(d) collagen crosslinked with glutaraldehyde was adapted with permission from [136] Copyright 2018
Elsevier; (e) crosslinking mechanism of gelatin [137]; (f) PVA crosslinked with glutaraldehyde was
adapted from [138]. Copyright 2008 Elsevier.
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3.3. Potential Candidates as Bio-Inks

The ECM supports tissue and arranges cells within connective tissues [139]. It can be harvested
and decellularized from tissues such as bone, cartilage, and skin. The ECM contains numerous
factors, including collagen, glycosaminoglycans, and elastin, which are advantageous for cell growth
and differentiation [140]. Owing to the superiority of the ECM, decellularized ECM (dECM)-based
bio-inks (also termed as tissue-specific bio-inks) have attracted attention. Decellularization processes
that remove cellular components while leaving the ECM have been realized using various methods,
including physical, chemical, and enzymatic treatments [141]. The existing dECM bio-inks are primarily
thermally crosslinked because they are based on a collagen matrix [142]. However, it is difficult
to build a 3D tissue construct with high shape fidelity owing to its low viscosity [49]. Therefore,
various attempts have been made to overcome these restrictions by inducing rapid gelation or by
co-printing synthetic polymers [142,143]. However, the critical limitations of using such tissue-specific
bio-inks include batch-to-batch variation and complicated decellularization steps [15]. Furthermore,
potential residues or toxic detergents after decellularization may impair cellular performance [144].

Table 1. Current natural and synthetic bio-inks widely used for 3D bioprinting.

Bio-Ink Crosslinking Mechanism Advantages Disadvantages Ref.

Alginate Ionic crosslinking Biocompatibility, low
toxicity, low price

Absence of
cell-binding domains [47–49]

Chitosan Genipin, glutaraldehyde

Biocompatibility,
biodegradability,

antibacterial/fungal
activity

Poor mechanical strength
and rapid dissociation,

absence of
cell-binding domains

[49,51–54]

Gelatin

Temperature,
glutaraldehyde,

transglutaminase, HRP and
H2O2, carbodiimide, genipin

Biocompatibility,
non-immunogenicity and

cell-friendly
binding domains

Low viscosity and poor
mechanical strength at 37 ◦C [23,49,60–63]

Collagen
Temperature; UV,
glutaraldehyde,

carbodiimide and genipin

Improved cell adhesion,
attachment, and growth

Low viscosity and poor
mechanical strength [36,63,72–76]

Silk Enzymatic crosslinking

Nontoxicity, gradual
degradation, and low

immunogenicity; owning
high viscosity and

shear thinning

Inducement of nozzle
clogging, absence of cell
biding for cell adherence,

limited cell growth
and function

[49,80–83]

Fibrin

Cytocompatibility,
providing binding sites for

cell attachment,
proliferation, and low

immunogenicity

Rapid degradation, too soft,
low mechanical strength

and fragile
[63,85]

Agarose Temperature High mechanical strength,
low price Poor cell adhesion, brittle [20,63,89]

HA
Glutaraldehyde,

carbodiimide,
divinyl sulfone

Enhancement of
chondrocyte growth and

chondrogenic
differentiation

Rapid degradation and low
mechanical strength [23,93,94]

Matrigel Temperature Promotes cell growth and
differentiation

Expensive and unsuitable
for clinical translation [63,97–99]

PCL Low melting point and
high stability

Unsuitable for
cell encapsulation [105]
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Table 1. Cont.

PEG

Biocompatibility,
non-immunogenicity;

widely used
sacrificial bio-ink

Low cell adhesion [49,113,114]

GelMA UV Biocompatibility,
biodegradable

Negative effects on cell
viability in the

crosslinking process
[49]

PF127 Temperature, UV Commonly used as
sacrificial bio-ink

Poor mechanical properties
and unsuitable for

cell culture
[15,49,119]

PVA Glutaraldehyde

Biodegradable,
biocompatible,

thermostable, and
water-soluble

Low cell affinity [120,121].

PLA/PLGA Biodegradable,
biocompatible Poor cell adhesion [124,125]

dECM Temperature Promotes cell growth and
differentiation

Low viscosity; complicated
process of decellularization

and costly; requires
complete sterilization

of dECM

[15,140,142,144]

Recently, self-assembling peptides [145] and cellular aggregates/spheroids [146,147] have emerged
as candidates for designing bio-inks. In particular, spheroids can augment cellular functions while
promoting tissue formation [25]. Itoh et al. fabricated a 3D tube-shaped structure using multicellular
spheroids and observed that tubular tissues were formed by remodeling and endothelialization in
the abdominal aortae of nude rats [147]. Murata et al. also fabricated an osteochondral tissue by
applying a scaffold-free method [148]. The pre-formed mesenchymal stem cell (MSC) spheroids
were laced onto a needle array to form a columnar tissue using a 3D printer. The tissue morphology
was transformed over six days of culture, and then the tissue was used as an autologous graft
after extrication from the needle array. Although numerous tissue-mimicking constructs have
been fabricated using spheroid fabrication techniques, necrosis may occur in the core of the tissue
spheroid [63]. In addition, loading tissue spheroids into glass pipettes is still a challenging task because
it causes nozzle clogging [63]. Deformation or breakage depends on their uniform size, maturation,
and cell types [63].

Further, numerous nanobiomaterials have been incorporated into bio-inks for biomedical
applications [149,150]. Furthermore, nanoparticle addition to polymeric hydrogels may result in
the following physical and chemical modifications: (1) increase in stiffness, (2) shear-thinning,
(3) controllable degradation, (4) enhancement of hydrogel networks with controlled drug release,
and (5) photoresponsiveness [151,152]. Nanocellulose is one such nanoscale biomaterial—it can
be divided into cellulose nanofibers and nanocrystals. The main source of cellulose is derived
from plant cell walls and living organisms such as fungi, algae, and bacteria [153]. Nanocellulose
integrates the unique features of cellulose, namely, high stiffness, modulus, hydrophilicity, and thermal
stability [154,155] with the abovementioned properties of nanoparticles; consequently, nanocellulose
composites are widely used in biomedical engineering combined with other bio-inks. Han et al.
evaluated a composite of alginate/gelatin with the addition of different concentrations of nanocellulose
for improving the printability of the composite [156].

Consequently, the introduced bio-inks based on natural and synthetic polymers, dECM,
cell aggregates, spheroids, and nanocomposites have shown promising results for the development of
functional tissues or organs using 3D bioprinting technology.
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4. Current Applications of Tissue Engineering Based on 3D Bioprinting

Currently, there is a growing need for organ or tissue transplantation in tissue engineering because
of donor shortage [157]. Multiple tissues have been successfully fabricated using 3D bioprinting,
such as bone, cartilage, osteochondral tissue, blood vessels, liver, and organ-on-a-chip. To improve
the printability and viability of bio-inks or to enhance the mechanical strength of the structure,
complementary bio-inks have been developed in combination with two or more bio-inks. Here,
we present tissue engineering applications based on 3D bioprinting. Additionally, we also listed
the effective variables for successful biofabrication, including bio-inks, cell types, crosslinkers and
3D bioprinters in Table 2.

4.1. Bone Tissue

Bone is a hard tissue that supports the tissues and organs in the human body. Minor injuries
of the bone tissue have self-healing capacity; however, major injuries require external stimulus for
regeneration [158]. Until now, many outcomes have been accumulated for bone tissue engineering.
Lee et al. reported a hybrid scaffold composed of PCL and cell-laden alginate [159]. They used PCL
as a supportive framework to improve the mechanical strength of the construct. The results showed
that the encapsulated cells in the alginate hydrogel were homogeneously distributed and exhibited
approximately 84% cell viability, surviving well after 25 days of culture. In another study, Gao et al.
evaluated osteogenic and chondrogenic effects when a mixture of PEGDMA–GelMA was used as the
bio-ink [118]. The printed structure not only showed good cell viability (>80%) but also enhanced
the degree of differentiation when compared with pure PEGDMA. Xavier et al. developed bioactive
hydrogels composed of nanosilicates and GelMA [160]. The results showed that the viscosity of the
composites increased at low shear rates, and the encapsulated preosteoblast cells were well grown
without affecting cell viability relative to only GelMA hydrogel. Lee et al. bioprinted an hASC cell-laden
mesh construct to evaluate the mechanical properties and cell viability using different formulas of hybrid
bio-inks, which consisted of bone-derived methacrylated (Ma)-dECM and alginate [161]. The results
showed that cell viability decreased after printing, owing to the higher viscosity, which occurred
because of the increased concentration of Ma-dECM in the alginate. Furthermore, the addition of an
appropriate concentration of Ma-dECM could promote cell proliferation and osteogenic differentiation.
Zhang et al. provided a simple manufacturing method of hybrid bio-inks (alginate and gelatin) capable
of bioprinting a porous bone-like tissue [162]. Different cell densities were used to observe cell viability
and mineral deposition.

4.2. Cartilage

Cartilage is an avascular tissue that has a limited self-repair capability [163]. For cartilage tissue
engineering, various strategies have been developed by formulating alginate-based hybrid bio-inks.
To improve the resolution of the bioprinted structure, a nanofibrillated cellulose–alginate bio-ink was
developed for cartilage tissue engineering [164]. The composite bio-ink exhibited high shape fidelity
and resolution compared with pure alginate. It also provided high cell viability over seven days
of culture. Kang et al. fabricated a human-scale ear using different types of bio-inks such as PCL,
PF127, gelatin, fibrinogen, HA, and glycerol [165]. After printing the structure, PF-127 was liquefied,
and the final ear construct was cultivated for further tissue maturation. Costantini et al. built a 3D
biomimetic structure with either a mixture composed of GelMA and chondroitin sulfate aminoethyl
methacrylate (CS-EMA) or GelMA, CS-EME and hyaluronic acid methacrylate (HAMA) by applying a
coaxial dispensing technique [166]. To form a stable structure, alginate was used as a temporary agent.
In the fabricated structure, the mixture composed of GelMA and CS-EME was observed to be the best
substitute for cartilage formation. Ruiz-Cantu et al. developed a hybrid structure composed of PCL
and chondrocyte-laden GelMA [167]. To manufacture an ideal structure, the temperature, needle gauge,
crosslinking time, and different concentrations of GelMA were evaluated. Moreover, it was found that
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the addition of PCL to GelMA helped maintain the integrity of the porous structure, compared with
the absence of the PCL groups. Recently, Ni et al. also fabricated hybrid bio-inks consisting of silk
fibrin and hydroxypropyl methylcellulose [168]. Adding hydroxypropyl methylcellulose to the silk
fibrin formed a double network capable of improving its mechanical strength. The results showed that
the mechanical properties of the reported hybrid bio-inks were significantly improved compared with
those of a single network.

4.3. Osteo-Cartilage

To regenerate the osteochondral tissue composed of cartilage and subchondral bone, the two
components should be simultaneously considered; however, fabricating such a heterogeneous structure
has technical problems. In some studies, bone and cartilage were fabricated separately and assembled
when they had matured [169,170]. However, this manual approach required a sophisticated process
and thus lacked repeatability. As such, 3D bioprinting, which allows the use of various cells and
biomaterials within a structure, fits well for osteochondral tissue engineering. Kosik-Kozioł et al.
fabricated a triphasic scaffold consisting of noncalcified cartilage (made of an alginate solution
reinforced with short PLA fibers), calcified cartilage (a hybrid scaffold composed of alginate, GelMA,
and TCP), and subchondral bone (comprising a printed PCL porous structure modified with acetone
and ultrasound) [171]. The triphasic scaffold was separately fabricated using three different types
of bioprinters and subsequently binding their output using fibrin glue. Electrospinning is a typical
conventional method; a combination of 3D bioprinting techniques has been used for the fabrication
of controllable shapes of nano- and microscale constructs. Qiao et al. fabricated a triphasic scaffold
combination of MSC-laden GelMA with the copolymer of PCL and PEG [172]. The copolymer scaffold
was fabricated using the melt electrowriting method, which enhanced the mechanical properties of
GelMA to maintain the entire structure. They found that the composite structure permitted growth
factor loaded MSC, which was successfully differentiated with both cartilage and bone layers through
in vivo tests. Yu et al. developed and characterized a heterogeneous scaffold using a multi-head 3D
cell printing system [173]. The scaffold was achieved using PCL and alginate, allowing the embedment
of a single type of progenitor cells that could be matured into two independent tissues simultaneously.
They also developed a PDMS-based co-culture system to observe and evaluate for differentiation
of osteochondral tissue (Figure 5). Overall, the findings suggested that these systems may find
applications as an in vitro model for multilayered tissue formation.
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4.4. Trachea

The trachea, which has a cartilaginous tubular structure, transports air to the lungs. Various
studies have attempted to regenerate/restore tracheal defects. For example, Park et al. engineered a
tubular structure composed of PCL and alginate [174]. Autologous epithelial cells and chondrocytes
were individually encapsulated in 3% alginate. Specifically, the trachea-mimicking structures included
five independent layers. The first, third and fifth layers were composed of PCL, between which two
bio-ink layers were printed. Afterward, the artificial trachea was transplanted into rabbits, and a
respiratory epithelium was successfully formed (Figure 6). Ke et al. biofabricated a tracheal construct
using PCL and cell-laden bio-inks [175]. The mechanical properties of the engineered tracheal structure
were similar to those of native tissue. Recently, Kim et al. printed a two-layered hollow structure using
electrospun 3D bioprinters [176]. The inner layer was made of nanoscale PCL fibers, and the outer
layer consisted of microscale PCL fibers. After printing, different types of cells were loaded into the
inner and outer layers to form a tracheal graft. Human bronchial epithelial cells were seeded into
the inner layer, and cell-laden Matrigel (induced pluripotent stem cells derived mesenchymal stem
cells/chondrocytes) was seeded on the surface of the outer layer to induce co-cultured cell attachment.
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epithelial formation [174]. (a) 1, 3 and 5% alginate hydrogel being extruded through the ceramic
nozzle; (b) optical image of alginate cube type; (c) optical image of biofabricated artificial trachea
structure; (d) cross-sectional SEM image of bioprinted trachea; (e–g) cell tracker for epithelial cells
(green), chondrocytes (red) and merged image; (h) normal tracheal epithelium; (i) control group;
(j–l) experimental group at 3, 6 and 12 months (scale bar: 50 um); (m) a whole cross-sectional image of
the experimental group at 3 months (scale bar: 1 mm).

4.5. Skin

The skin is composed of the epidermis, dermis, and hypodermis, which protects tissues and
organs as a physical barrier. In the field of skin tissue engineering, several studies have reported
that damaged skin tissue can be replaced by engineered artificial skin substitutes [177]. Skardal et al.
developed a fibrin-collagen bio-ink and applied it for wound healing [78]. Specifically, human amniotic
fluid-derived stem (AFS) cells and MSCs were separately encapsulated in bio-inks. The growth factors
secreted by AFS cells promoted angiogenesis and wound closure. The results revealed that cells
encapsulated within the bio-ink could significantly accelerate wound closure when compared with the
cell-free group (Figure 7). Albanna et al. successfully bioprinted a 3D multicellular structure using
fibroblasts and keratinocytes [178]. Cell localization and proliferation were evaluated for the formation
of skin tissue. The printed construct exhibited rapid wound closure, and the regenerated region was
considerably similar to healthy skin. Admane et al. proved that 3D bioprinted skin fabricated using a
mixture of silk and gelatin was dimensionally stable relative to the collagen-based skin structure [179].
More recently, Hafezi et al. designed an alginate and chitosan–genipin–PEG-based three-layer skin
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tissue [180]. They also optimized the crosslinking ratio of chitosan and genipin to alter printability,
comparable to that of commercial bio-ink. The results of cell viability showed that over 90% of cells
lived after 24 and 48 h.Polymers 2020, 12, x FOR PEER REVIEW 15 of 30 
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Reproduced with permission from [78]. Copyright 2012 John & Wiley Sons.

4.6. Neural Tissue

Neural tissue is similar to the abovementioned vascular networks. One study demonstrated
that a novel 3D neural minitissue could be designed using a neural stem cell (NSC)-encapsulated
bio-ink comprising alginate, agarose, and carboxymethyl-chitosan [92]. The results indicated that
a uniform distribution of cellular constructs with high cell viability could be engineered using 3D
bioprinting. Because NCSs can be differentiated into neurons and neuroglia, the neurons showed
bicuculline-induced increased calcium response. In another study by England et al., Schwann cells
encapsulated in a fibrin-HA-based bio-ink, which was printed in crosslinking solutions comprising PVA
and thrombin, allowed the successful regeneration of nerve tissue [87]. The cells in the bio-ink remained
viable and proliferated, and the fabricated fibrin fibers were longitudinally aligned. More recently,
Liu et al. bioprinted a bi-layered nerve conduit with BMSCs and demonstrated that the structure has a
great potential for the regeneration of peripheral nerve tissues [181]. The bi-layered nerve conduit
comprised a GelMA-based inner layer for embedding BMSCs and a GelMA/PEGDA-based outer
layer. The inner layer provided a cell growth environment for BMSCs, and the outer layer supported
mechanical strength for the entire tubular structure. Next, PC12 cells were seeded into the inner layer,
and it was found that attachment cells and the proliferation rate of PC12 cells were significantly higher
than those for the absence of a BMSCs bi-layered nerve conduit. Li et al. formulated hybrid bio-inks
consisting of alginate and Matrigel encapsulated with ectomesenchymal stem cells, which were used
for neuron differentiation [182]. The results showed that cells induced growth and differentiation in
bioengineered hybrid bio-inks. Wu et al. bioprinted a gelatin–alginate-based 3D construct to evaluate
biocompatibility for in vitro/in vivo tests [183]. The results showed that over 90% of the Schwann cells
survived after 24 h, and this was maintained over seven days of culture. Moreover, the secretion of
a variety of neurotrophic factors by the Schwann cells, which were loaded into the 3D bioprinted
construct, was significantly higher than that in the 2D culture.
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4.7. Blood Vessel

Artificial blood vessels play an important role in connecting metabolically demanding organs,
enabling the supply of nutrients while removing waste [184]. Jia et al. used alginate-based GelMA-4-arm
poly(ethylene glycol)-tetra-acrylate (PEGTA) bio-ink for vascular tissue engineering [185]. The addition
of PEGTA allowed tuning of the mechanical and rheological properties of the hollow construct.
Gao et al. developed a bio-blood-vessel using a hybrid bio-ink containing alginate and vascular-derived
dECM [186]. Endothelial progenitor cells (EPCs) and atorvastatin-loaded poly(lactic-co-glycolic)
microspheres (APMS) were encapsulated in a bio-ink for the treatment of ischemic disease. A coaxially
printed tubular structure was fabricated using the hybrid bio-ink and was allowed to evaluate its
characteristics before implantation. In an in vivo test, neovascularization and significant regeneration
were observed in the ischemic limbs of nude mice. Freeman et al. biofabricated small-diameter
vascular constructs using a mixture of gelatin and fibrinogen [187] (Figure 8). In the hybrid bio-ink,
gelatin was used to hold the printed fibrin during the printing process. They also observed that the
collagen deposition, mechanical strength, and circumferential and axial elastic moduli increased after
two months of culture. In Figure 8g, the addition of more cells into composites of gelatin-fibrinogen
bio-ink impaired the gelation after heating treatment of the gelatin. Consequently, high cell density
showed a more liquefied bio-ink in the work of Freeman et al. Recently, Jang et al. biofabricated a
vascular scaffold (inner diameter: 4 mm, outer diameter: 5 mm, length: 40 mm) using two different
bio-inks: alginate and PCL [188]. The artificial blood vessels included three independent layers.
The first and third layers were composed of PCL, and 3% alginate was located between these two layers.
Afterward, the bioprinted scaffold was transplanted into canines. Owing to the use of autologous
MSCs, the cell-laden artificial structure was confirmed to have obtained better endothelialization with
little inflammation.
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Table 2. Recent works on composite bio-inks related to 3D printing.

Applications Bio-Inks Cell Types Cell Density
(Cells/mL) Cross-Linkers Types of 3D Bioprinters Ref.

Bone

PCL/alginate MC3T3-E1 2.3–2.8 × 105 CaCl2 Extrusion [159]
PEG/GelMA hMSCs 6 × 106 UV Inkjet [118]

GelMA/nanosilicates MC3T3-E1 2 × 105 UV Extrusion [160]
(Ma)-dECM/alginate hASC 5 × 106 CaCl2/UV Extrusion [161]

Cartilage

alginate/nano fibrillated cellulose Nasoseptal chondrocytes 15 × 106 CaCl2 Microvalve [164]
alginate/GelMA/CS-ASMA/HAMA BM-MSCs >107 CaCl2/UV Extrusion [166]

PCL/GelMA Chondrocytes 107 UV Extrusion [167]
silk fibroin/ hydroxypropyl

methylcellulose BM-MSCs 107 UV Extrusion [168]

Osteo-cartilage PCL/alginate Progenitor cells 5 × 106 CaCl2 Extrusion [173]

Tracheal
PCL/alginate Epithelial

cells/chondrocytes 1 × 106 CaCl2 Extrusion [174]

PCL/HA/gelatin/Heprasil/Gelin-S mix MSCs 1.5 × 107 Acrylate, alkyne, UV Extrusion [175]

Skin
collagen/fibrinogen AFS/MSCs 1.66 × 107 Thrombin Droplet [78]
fibrinogen/collagen Fibroblasts/ keratinocytes 3.75 × 106/7.5 × 106 Thrombin Inkjet [178]

Silk/Gelatin fibroblasts/ keratinocytes 2 × 106/5 × 106 Tyrosinase Extrusion [179]

Nerve

alginate/agarose/carboxymethyl-chitosan Neural stem cell 1 × 107 CaCl2 Extrusion [92]
fibrinogen/HA Schwann cells 2 × 105 Thrombin Extrusion [87]

GelMA/PEGDA BMSC 1 × 106 UV Extrusion [181]
alginate/Matrigel EMSCs 1 × 105 CaCl2 Extrusion [182]
gelatin-alginate Schwann cells 2 × 106 CaCl2 Extrusion [183]

Blood vessel

alginate/GelMA/PEGTA HUVEC/MSC 3 × 106 CaCl2/UV Extrusion [185]
alginate/dECM EPCs 1 × 107 CaCl2/temperature Extrusion [186]

gelatin/fibrinogen Human dermal fibroblast 1 or 3 × 106 Thrombin/temperature Extrusion [187]
PCL/alginate MSC 1×106 CaCl2 Extrusion [188]

Liver

PCL/dECM HepG2/MSC 5 × 106 Temperature Extrusion [189]
alginate/cellulose nanocrystals Fibroblasts/hepatoma cells 1 × 106 CaCl2 Extrusion [190]

gelatin/alginate HepaRG 1 × 106 CaCl2 Extrusion [191]
GelMA/dECM hepatocytes 2.5–3.0 × 106 UV Digital light [192]
PF127/alginate HepG2/C3A 2 × 106 CaCl2 Extrusion [193]
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Figure 8. Development of a tubular structure using a rotary 3D bioprinting system. (a) A rotary 3D
bioprinting system and (b-f) biofabrication process of a tubular construct in a whole research strategy;
(g) optical image and (h) SEM images at the cell density of 1 × 106 and 3 × 106 cells/mL; circumferential
(i) elastic modulus; (j) ultimate tensile strength (UTS); (k) anisotropy index; (l) compliance; (m) burst
pressure of vascular constructs. Reproduced with permission from [187]. Copyright 2019 Elsevier.

4.8. Liver

The liver is dominated by hepatocytes and plays a key role in numerous metabolic activities.
Lee et al. developed a hybrid construct consisting of a PCL and liver-specific dECM bio-ink [189].
Similarly, PCL was prepared as mechanical support to compensate for the weak mechanical properties
of the dECM bio-ink. The dECM bio-ink was compared with a collagen type I bio-ink by focusing on the
stem cell differentiation potency and human hepatocellular carcinoma (HepG2) cell function. Moreover,
rich live cells were distributed homogeneously, and no red dots were observed in liver-specific dECM
bio-ink (Figure 9). Wu et al. also bioprinted a liver-mimetic construct with a mixture of alginate
and cellulose nanocrystals (CNCs) [190]. They demonstrated that a nozzle with an inner diameter of
100 µm could be utilized without clogging. Yang et al. bioprinted 3D liver functional tissues using
HepaRG cells that combined gelatin and alginate composite bio-inks [191]. After verification of the 3D
liver-like functional activity using the 3D bioprinted hepatoganoids, the construct was implanted into
mice, and it was observed that the mice prolonged their survival in the experimental groups. Mao et al.
bioengineered an inner gear-like construct using hybrid bio-inks consisting of GelMA and liver-derived
dECM [192]. A liver-like structure was fabricated using a digital light processing bioprinter. The results
showed that the cell viability, level of liver functional activities of albumin and blood urea nitrogen,
and porosity were significantly higher than those in the absence of dECM. Gori et al. biofabricated
a porous structure using composite bio-inks composed of PF127 and alginate [193]. They found
printed 3D structures had better liver functional metabolism activity when comparing with the 2D cell
adherent method.
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permission from [189]. Copyright (2017) American Chemical Society.

4.9. Other Applications

Undoubtedly, 3D bioprinting can be used to develop a biological substitute that mimics the
structural/physiological functions found in native tissues or organs. Beyond tissue regeneration,
more recently, this technology has also been utilized for engineering in vitro tissue models and
organ-on-chips. Homan et al. bioprinted perusable chips using human renal proximal tubules [194].
A silicone gasket was printed on a glass slide, and to form a tubular architecture; pluronic was used as
the fugitive ink. A mixture of gelatin and fibrinogen was used as the ECM material, and thrombin was
used as a crosslinker. The chips could relatively promote epithelium-like tissue formation compared
with 2D controls. 3D bioprinting has also been applied for cancer modeling for drug screening.
Dai et al. developed a 3D bioprinted brain tumor model, and the results of drug sensitivity tests
demonstrated that the model exhibited enhanced endurance to temozolomide when compared with
that of 2D monolayer cultivation [195].

5. Limitations and Future Perspectives

Considerable advances have been achieved in the field of 3D bioprinting with a large number
of outcomes in terms of tissue engineering. However, this field is still in the early stages of
development [37]. Therefore, a multidisciplinary collaboration will be an extremely important
next step toward advanced tissue engineering. From the technological viewpoint, a higher printing
speed for replicating clinically relevant sizes may be required.

The selection of bio-ink is another key factor for successful 3D bioprinting. Bio-inks should
meet several rudimentary requirements, such as mechanical, rheological, and biological performances.
Moreover, to maintain the entire structure over a long period of time, the printed structure requires
appropriate stiffness; however, a very high stiffness can potentially impair cell viability [196].
Although many bio-inks have already been formulated and used in the field, efforts to manufacture
new bio-inks should be continuously made to overcome the existing limitations. In particular,
researchers developing new bio-inks should focus on balancing bioprintability and biofunctionality.

Apart from bio-inks, the cell source is another important point for successful tissue engineering.
As such, a new method needs to be devised to accelerate cell expansion time without cell damage and
mutations [20].
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The development of microvasculature is important for maintaining the high cell viability of
printed constructs over a long period of time. However, the fabrication of a similar native vascular
network using current 3D bioprinting is limited because the size of the bioprinted tissues is larger than
tens of micrometers.

Recently, 4D bioprinting technology has emerged as a powerful platform, which combines the
“time value” with 3D bioprinting techniques. A 4D bioprinter can be constructed using a structure
under different stimuli over time. The technique has the potential to engineer a more complex
construct using stimuli-response biomaterials that can change the shape of the construct over time [197].
Therefore, shape memory polymers—called smart materials—have garnered attention in this field
because they enable 4D bioprinting. Smart materials can recover their original shape via various
external stimuli, including light, temperature, pH, and moisture [30]. Owing to the shape-changing
ability that depends on time, printed structures using smart materials have been widely applied in
biomedical areas [198–200]. Conclusively, 4D bioprinting may provide more favorable environments
than conventional 3D bioprinting methods.

6. Summary and Conclusions

Obviously, 3D bioprinting has resulted in tremendous outcomes in tissue engineering. In this
review, we first described representative bioprinters. Seven types of 3D bioprinting techniques were
detailed, along with their advantages and disadvantages. Furthermore, various conventional bio-inks,
including natural and synthetic polymers, dECM, and cell spheroids, were discussed. To improve
the printability and cell viability, various combinations of bio-inks were applied for 3D bioprinting
applications. We reported that the optimization of these bio-inks with proper 3D bioprinters would
improve the probability of successful transplantation and regeneration of tissues/organs. Overall,
we expect that this review will provide potential readers with beneficial and fundamental information
on bioprinting technology and bio-inks for advanced tissue engineering in the future.
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