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Abstract: To be able to use finite element (FE) simulations in structural component development,
experimental investigations for the characterization of the material properties are required to
subsequently calibrate suitable material cards. In contrast to the commonly used computational
and time-consuming method of parameter identification (PI) by using analytical and numerical
optimizations with internal or commercial software, a more time-efficient method based on machine
learning (ML) is presented. This method is applied to simulate the material behavior of additively
manufactured specimens made of acrylonitrile butadiene styrene (ABS) under uniaxial stress in a
structural simulation. By using feedforward artificial neural networks (FFANN) for the ML-based
direct inverse PI process, various investigations were carried out on the influence of sampling
strategies, data quantity and data preparation on the prediction accuracy of the NN. Furthermore,
the results of hyperparameter (HP) search methods are presented and discussed and their influence
on the prediction quality of the FFANN are critically evaluated. The investigations show that the
NN-based method is applicable to the present use case and results in material parameters that lead to
a lower error between experimental and calculated force-displacement curves than the commonly
used optimization-based method.

Keywords: parameter identification; direct inverse model calibration; machine learning; hyperparameter
optimization; feedforward artificial neural network; modeling strategy; additive manufacturing

1. Introduction

In recent years, the field of additive manufacturing (AM) or 3D printing has become increasingly
important. AM enables products with complex shapes and a high level of functional integration.
This has led to new freedoms in design, which in turn require new design principles [1,2]. An advantage
of additive manufacturing is a significant reduction of time-to-market, since no complex and
cost-intensive tools must be developed and manufactured for the production and subsequent testing
of a part. In contrast, high process- and machine-specific influences on the mechanical properties of the
material represent a challenge for AM [3]. However, in order to design a prototype in the early stages of
development, which is then tested under realistic conditions, suitable materials must first be selected,
and a part dimensioning must be accomplished. Due to the complexity caused by structural load
cases on industrial parts, FE simulations are usually used for this, which require respective material
cards to describe the material-mechanical properties. The calibration of the material models (material
parameter identification) is typically performed by a trial-and-error approach or by a semi-automatic
iterative optimization process and requires a high degree of expert knowledge [4–6]. Furthermore,
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this commonly used process is computational- and time-expensive and thus cost-intensive. Especially
in early phases of the product development process, different construction materials are often compared
or subsequently modified, which requires the use of recalibrated material cards for the numerical
simulation. In the commonly used PI process, the complete iterative calibration process must be
repeated, even if only minor changes are made to the material to be calibrated—e.g., due to a
changed amount of a material additive. This circumstance strongly limits the reduction of the product
development time.

As an alternative and novel method for PI, a machine learning neural network (NN)-based
approach can be used in a direct inverse process to determine the material parameters (physically or just
mathematically-based parameters of the material model) that best fit the experimental data [7]. A major
advantage of this method lies in the reusability of the NN previously trained for a specific material
model to identify parameters for altered materials with similar material properties. This enables both
the efficient calibration of material cards for similar materials as well as for different machines and
process settings. In this way, the development time would be reduced and the accuracy in the design
of parts could be increased. The repeated prediction for different materials certainly requires the
ability of the material model applied to reproduce the material characteristics with sufficient accuracy.
Furthermore, it is also necessary that the input, employed for training, sufficiently covers the range of
characteristics of the material used. The material parameters can then be determined immediately in
a time-saving process and an objective comparison of different materials in early phases of product
development is enabled.

In the literature, different ML techniques are presented [8,9]. In this paper, methods for creating
such an artificial neural network (ANN) (see Section 2.2) and the subsequent PI process for the
application of an additively manufactured ABS under uniaxial tensile load are explained, compared
and critically discussed. The used methods belong to the group of supervised learning. In this field
of ML an algorithm is trained on a group of data, in which each data set contains a label. This label
signifies a particular class or value that the training point belongs to [8]. The input of the training data
set is fed into the input layer of the network and subsequently the states of the output neurons are
compared to those states of the target values. The weights and the thresholds (biases) are changed to
minimize the differences between network outputs and targets for all input patterns in the training
set [9]. In this way, the network learns to predict input features for desired outputs of unseen data.

Contrary to the other methods exemplarily presented in [8], in which ML algorithms were used to
completely replace FE simulations and to directly predict the stress-strain behavior, a different approach
is used in this paper. In this case, a ML-based approach with neural networks is applied to determine
the required material parameters of the chosen material model for the FE simulation as efficiently and
precisely as possible. In the most common material PI procedure, a certain error measure between
the numerical and experimental data set is defined, which for example could be load-displacement
curves, stress-strain curves, eigenfrequencies or eigenvalues. The aim of the parameter identification
procedure is then to minimize this error by modifying of the material parameters [10,11] in an
analytical calculation and/or numerical simulation using different optimization procedures such as
gradient-based methods [4,5,12–14] or genetic algorithms [15,16]. However, the success of optimization
algorithms is often depending on the chosen starting points, which are usually unknown in advance.
In order to find appropriate parameters for complex material models, typically many iterations are
required, which increases calculation costs and often results in finding only local optima. Furthermore,
the complete PI procedure must be started from scratch, if material parameters for (even slightly)
different materials must be identified. Through this identification procedure, a set of parameters
for the numerical model is finally obtained, which is suitable in combination with the appropriate
material model for representing the material behavior in the numerical simulation. For this standard
identification procedure usually user-friendly software tools (e.g., LS-OPT, Valimat) are used. In [17] a
general overview of different methods for PI is given.
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In contrast, the approach to train a FFANN using a squared loss function to predict the material
parameters for the material model directly was first described by Yagawa et al. [18]. In this approach the
training data are generated by the FE simulation respectively the material model itself and consists of
material model parameters and their corresponding responses. Since in this approach a NN (typically
a FFANN) is trained to the reverse input/output relations, this is also called a direct inverse model [19].
Yagawa et al. used this approach to identify parameters of a visco-plastic material model and since
then this approach has been applied to different materials, respectively material models. Huber and
Tsakmakis identified the material parameters for pure kinematic hardening inplasticity laws [20] and
plasticity with non-linear isotropic and kinematic hardening [21] with this approach. Lefik and Schrefler
estimated the parameters of an elasto-plastic model using an ANN for the FEA of a superconducting
cable [22]. Nardin et al. used the approach for the identification of parameters of a constitutive
law for soils and trained the ANN using the results from macro- and micro-mechanical numerical
models [23]. Using a NN, Helm determined the parameters of a self-developed phenomenological
system of constitutive equations to describe the pseudoelastic material behavior of NiTi shape memory
alloys [24]. Chamekh et al. showed that using suitable ANN with this direct inverse approach, material
parameters for describing anisotropies can also be identified by determining the anisotropic HILL law
parameters [25]. Aguir et al. presented the advantage of this NN-based method in the low CPU time
compared to the standard optimization-based method [26]. Therefore, they identified the parameters
for the Hill’48 criterion under the associative normality assumption and the Voce law hardening
parameters of the stainless steel AISI 304 as well as the orthotropic criterion of Hill’48 under the
non-associative normality assumption. In [11] improvements for this direct inverse approach have
been proposed by Unger and Könke using a Bayesian neural network [27] to additionally verify the
accuracy of the identified parameters and their correlation. Morand and Helm investigated in [6]
problems occurring if the PI problem is non-unique and developed an approach using a mixture of
expert model to partition the non-unique problem in subtasks. In [28] different strategies for calibrating
non-linear mechanical models with NN are reviewed. Also, their advantages and disadvantages are
demonstrated using a calibration of four parameters for an affinity hydration model.

The current work addresses the application of neural network-based PI approaches to an
additively manufactured test specimen using material extrusion made of ABS and the validation of its
suitability. For this purpose, tensile test specimens (DIN EN ISO 527-1) were additively manufactured
and afterwards mechanically tested. In this initial work, the elastic-plastic material model MAT024 [29]
was used in LS-DYNA and mechanisms such as damage and strain rate dependence were initially
neglected. Therefore, it was possible to keep the number of material parameters to be identified
small and yet to reproduce the complex material behavior of the thermoplastic ABS under uniaxial
static tensile load in a structural simulation. Since the investigated ABS exhibits a pronounced
softening, a self-developed custom formulation was used instead of yield curves known from literature
and mainly used for metals, like Hockett–Sherby. This formulation consists of a combination of a
second-degree polynomial and a root function and contains four parameters to be calibrated a, b, c, d:

σ = a ∗ ε2
pl + b ∗ εpl + c + d ∗√εpl . (1)

These four material parameters were determined using both the commonly used iterative
optimization procedure with the software LS-OPT and the NN-based parameter identification
approach. Both approaches were then compared with each other in Section 2, with the latter being
explained in more detail. Furthermore, methods for data generation and modification as well as
different modeling techniques of NN’s are presented, which aim to achieve a higher precision of the
predicted material parameters. The focus of the paper is to quantify and qualitatively evaluate the
relationships in the modeling strategies for NN’s regarding the use case of structural simulation of
additive processed thermoplastics. The aim is to build up NN’s with minimum effort and maximum
prediction quality for PI. The research results are presented and critically evaluated in Section 3.
In addition, different sampling strategies for the generation of necessary training data will be discussed.
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Since the hyperparameters of the NN have a significant influence on the prediction accuracy, different
strategies such as gridsearch, randomsearch and HP optimization—using different optimization
algorithms—were evaluated and compared. In Section 4 the results are finally summarized and an
outlook on further research gaps is given.

2. Materials and Methods

In this section, the two methods for material parameter identification are presented first,
whereas the NN-based method is discussed in more detail. Subsequently, the structure of the
FFANN and the methods used are briefly presented for a better understanding of the latter approach.
Furthermore, the data generation procedure for the training of the NN’s as well as the experimental
characterization of the additively manufactured test specimens are presented.

2.1. Material Parameter Identification

Through the PI process, the required material parameters for the, in most cases, highly non-linear
material models are determined, and thus calibrated material cards are generated. The aim of
the model calibration is to estimate unknown parameters knowing the experimentally obtained
response of a system to the given load conditions. However, this presupposes that the material
model used is basically capable of reproducing the material behavior with sufficient accuracy through
its mathematical formulation. Together with the numerical model, able to correctly simulate the
experiment (EXP), the effective and robust PI method is essential for structural modeling and reliability
assessment. To solve this identification problems there are two main methods, as mentioned before in
Section 1. The most broadly used approach to PI is usually done by an error minimization technique,
where the distance between the parameterized model predictions and the experimental test results
is minimized [17]. However, this error minimization technique often leads to difficult optimization
problems, which are highly non-linear and multi-modal. The second approach, a direct inverse
NN-based procedure, assumes the existence of an inverse relation between outputs and inputs.
The retrieval of desired inputs takes only a few seconds and could be easily executed repeatedly, if such
a relationship is established. Within the several last years, a lot of attention was paid to the so-called
intelligent methods of information processing and among them especially to soft computing methods,
such as ANNs. In the following, both approaches are presented in more detail.

2.1.1. Iterative Optimization Procedure

An iterative optimization procedure for PI is defined as the minimization of an error function
F(x) specified as the difference between the outputs of the model yM and the output of the experiment
yE (measurements in form of stress-strain or force-displacement-curves), i.e.,

minF(x) = min||yE −M(x)||; (2)

yM = M(xM). (3)

In this context, M represents the material model with its constitutive relations, which describes
the stress-strain relationships and x the unknown parameters for the material model. A solution
xM comes with the minimum of this function and if F(xM) > 0, the remaining error is caused by
inaccuracy of a model or by some noise in the measured data [10].

Like mentioned before, Equation (2) is classically solved by gradient-based optimization methods
or genetic algorithms. Disadvantages of this method are:

• The success of optimization algorithms is highly depending on the chosen starting point, which is
usually not known

• Many iterations are needed to find appropriate parameters for complex material models,
which leads to high computational costs
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• A high number of error function evaluations are needed
• Even for small changes in the experimental setup or the examined material the computationally

and time-consuming search must be repeated [6,10]

As mentioned in Section 1, the software LS-OPT was applied to the presented problem in
this paper as an iterative optimization procedure for comparison purposes as well as proof of the
applicability of the custom approach for the description of the yield curve. In order to get the best
possible setting of the searched parameters with LS-OPT, the sequential response surface method was
used. For further information regarding PI problems with LS-OPT, see [30].

Figure 1 shows the optimization process to identify the four material parameters (a, b, c, d) with
LS-OPT as it is displayed in the GUI of this optimization tool.

Figure 1. Parameter identification process to obtain the four material parameters for the custom yield
function of MAT024 with LS-OPT.

The goal of this procedure is to optimize the four material parameters to fit experimental
tensile test data i.e., to minimize the difference between the experimental and the simulation
force-displacement-curves (FDC) in a least square sense. However, the four material parameters
are not an explicit part of the material model (MAT024) in LS-DYNA, instead the yield curve and the
corresponding parameters are used to generate value pairs (stresses vs. plastic strain) in tabular form,
which are then imported into the MAT024-card. In order to integrate this into the LS-OPT optimization
process, a Python script was created which automatically generates the yield curve as a function of the
four material parameters and then exports it as an ASCII file. Inside LS-OPT these four parameters
were then stored as variables, which must be optimized. Furthermore, a FE-model of the tensile
test was created (see Section 2.3) and imported into LS-OPT. To ensure the comparability with the
direct NN-based procedure, the same FE-model with the same discretization was used. Furthermore,
a maximum of 16 iterations with 14 simulation points per iteration and the default value 0.01 for the
design change tolerance as well as the objective function tolerance were used. Mean squared error
(MSE) was used as a method to compare the FDC. The results are presented in Section 3.1.

2.1.2. Direct Neural Network-Based Procedure

The direct inverse neural network-based procedure, assumes there is an inverse model MINV

associated with the model M, which fulfils the following equation:

x = MINV(y) (4)
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for all possible y [10]. The main disadvantage of this approach is the extensive search for the inverse
relationship. In contrast, the main advantage lies in the retrieval of the desired inputs in just a few
seconds. During the training process, all the information generated so far (input—output relationship)
are fed into the NN. Contrary to the iterative optimization-based method with gradients or genetic
algorithms, decisions are always made based on current designs. The application of this direct inverse
approach for the identification of material parameters of a visco-plastic material model was first
described in [18]. The core of this method is the training of a NN to directly estimate the material
parameters for a certain input (e.g., force-displacement curves). Figure 2 shows the workflow of this
method applied to the explained problem of identifying the material parameters of the custom yield
curve formulation for MAT024.
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Figure 2. Workflow of the used direct NN-based parameter identification procedure applied to the
problem of identifying the material parameters of the custom yield curve formulation for MAT024.

The shown workflow was implemented in a self-developed Python (V.3.7) environment.
The libraries Tensorflow (V.2.1.0) and Keras (V.2.3.1) were used to create the NN’s and implemented into
the workflow. The calculations based on NN’s were executed on a GPU.

In this PI procedure the necessary training data are generated by the material model itself
and consist of material model parameters and their corresponding responses. In a first step the
material model is analyzed, and suitable parameter ranges are defined to cover the material behavior.
With suitable sampling methods the material parameter combinations are generated. To achieve the
maximum possible prediction quality of the trained NN, it is necessary that the training data used
are representative. The input data must cover the input space sufficiently and should not contain too
many examples of one type at the expense of another. A variety of different sampling methods with
advantages and disadvantages exist. As an example, the Full Factorial Approach (FFA), Monte Carlo
Methods, Hammersly Methods are mentioned, which will not be discussed in detail. In this paper three
different DOE methods were used: FFA, Latin Hypercube Sampling (LHS) [31] and LHS with genetic space
filling (LHSG) [32]. Furthermore, their influence on the resulting prediction quality of the FFANN for
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the present problem were investigated (see Section 3.2.1). The Python library PyDOE was used for
the LHS and the library Nodeworks, developed by the US Department of Energy’s National Energy
Technology Laboratory (NETL) for the LHSG (with a user specific number of 100 iterations).

Subsequently, the sampled material parameter sets are normalized, since the algorithms used for
training the NN achieve better results with values between 0 and 1. The influence of the number of used
input data is examined in Section 3.2.2. As already described in Section 2.1.1, the custom formulation
for the yield function and the material parameter sets are used to determine value pairs (stresses vs.
platic strain) in form of a table, which are then imported into the material card. With the help of
the FE-model, described in Section 2.3, a high number of simulations with the respective material
cards were executed. The automatically evaluated simulation results (FDC) with the corresponding
material parameters formed the data basis for the training of the NN. The same abscissa positions
(displacements) were evaluated for all data sets, to ensure the comparability of the data. Therefore, the
distance between the evaluated points was reduced in the area with a tendency to higher curvature
and in total 35 data points were used for evaluation and as input data set. Each input data set was
labeled with the four parameters used for its calculation. Since results from FE simulations do not have
random errors, the resulting data (e.g., force-displacement curves) are clean and noiseless. To make
the NN robust to measurement errors, which always occurs in real experiments, a Gaussian noise with
zero mean and variance s2 is added to the resulting force data:

Fnoise = F(1 + N(µ = 0, s2 = 0.1)). (5)

To better evaluate the performance of the NN and to detect possible overfitting, a train/validation
data split is performed and additionally cross-validation (see Section 2.2) is used. Afterwards, a NN
is set up and trained with the generated data by reversing the role of inputs and outputs. Since the
prediction accuracy of a NN depends significantly on the HPs (e.g., number of neurons, activation
function) chosen to create this model, an optimization of these HPs was performed in the following
(see Section 2.2). In order to evaluate not only the deviation between given parameters and predicted
parameters but also the more relevant difference between the resulting simulated FDC, these curves
were calculated for each of the material parameter sets. For comparison, the same 35 evaluation points
were used as before. After training the NN, it was applied to the experimentally determined input data
(35 force values) to identify the corresponding set of material parameters. Again, the experimental test
was simulated using the predicted material parameters respectively the generated material card and
then the experimental and calculated FDC curves were compared. In the subsequent section, NN’s
and the corresponding methods used in this paper are discussed in more detail.

2.2. Artificial Neural Networks

ANN (see Figure 3) are particularly effective in solving such problems where the correlations
between the dependent and independent data are well known, but the detailed description with
commonly used mathematical methods is too complex or even impossible [33,34]. In most cases,
ANN are adaptive systems that adjust their structure based on external or internal information that
flow through the network during the learning (training) phase [35]. During this learning process,
the input data is mapped to the output data and the function used to do this is automatically adjusted
repeatedly until a sufficiently accurate function is found to describe the input/output relationship.
The trained ANN, in which the information gained from the learning process is available in the form of
set weights and biases, can then be used to predict unknown relationships between input and output
data [36]. In the present case, the ANN is a so-called feedforward artificial neural network. It consists
of neurons organized into layers, where outputs from one layer are used as inputs into the following
layer (see Figure 3).
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Figure 3. Schematic structure of a feedforward artificial neural network.

The input layer (IL) is responsible for receiving information from the external environment.
The hidden layer(s) are composed of neurons, which are responsible for extracting patterns associated
with the process or system being analyzed. The output layer (OL) is also composed of neurons and
thus is responsible for producing and presenting the final network outputs, which result from the
processing performed by the neurons in the previous layers [35–37].

In analogy to the biological equivalent, activation functions in ANN’s represent the activation
of a neuron. This activation function provides the input for each neuron by mapping the sum of the
outputs of the previous layer accordingly. There are different formulations for the activation functions.
One of the most frequently used is the sigmoid function:

S(x) =
1

1 + e−x . (6)

The respective activation functions of the different layers have significant influence on the accuracy
of the resulting prediction of the NN and thus represent a hyperparameter. HPs are settings that can be
used to control or adjust the behavior of ML algorithms and are not adapted by the learning algorithm
itself [38]. It has been shown that these parameters can have a significant effect on the prediction
performance of an ML model [39]. The weights and the biases are the parameters of an FFANN to be
determined during the training process. Further information can be found in [9,35–37,40].

There are only a few precise recommendations for the choice of ANN’s architecture in the
literature, since this depends strongly on the present application case, which is rarely transferable.
Generally, it was shown in [41,42] that ANN’s with any of a wide variety of large number of continuous
non-linear HL activation functions and one HL with an arbitrary number of units is sufficient for the
universal approximation property. Nevertheless, in this paper FFANN with 2 HL’s is also considered
to investigate the influence. For more detailed information regarding the structure and architecture of
ANN, please refer to [9,35–38,40].

Often, the general influences of HPs on model performance are known, but it is very complex
to find the best set of interacting HPs. There are only a few recommendations or rules of thumb for
the choice of ANN’s architecture and configuring their hyperparameters. To overcome this problem,
there are approaches to objectively search different values for model HPs and choose a single set that
results in a model, which achieves the best performance on a given dataset. These approaches are called
HP tuning or HP optimization and a variety of different applicable libraries (e.g., scikit-learn, Hyperas)
with different algorithms exist. For more detailed information on these, please refer to [28,38,43].

An hyperparameter search procedure involves the definition of a search space, which represents
a volume to be searched, where each dimension represents a HP and the scale of the dimension are the
values that the HP may take on (e.g., real-valued, integer-valued, categorical) [38,44].
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In this paper, gridsearch (using scikit-learn), randomsearch (using scikit-learn) and HP optimization
(using Keras Tuner and Hyperas) are applied to determine optimal HP sets. Gridsearch is the most
basic strategy for the automated selection of HPs. Therefore, a search space is defined as a grid of HP
values and each position in the grid is evaluated. An alternative to grid search is the random search
algorithm, where a search space as a bounded domain of HP values and randomly sample points with
the possibility of a specified distribution in that domain is defined. However, the search for appropriate
HPs can be formulated as an optimization problem. In this case, the decision variables are the HPs and
the cost to be optimized is the validation set error that results from training using these parameters.
In this paper, the two libraries Keras Tuner (V.1.0.1) [45] with a Hyperband as well as a Bayesian
optimization algorithm and Hyperas (V.0.4.1) with a TPE algorithm are used. The Bayesian optimization
provides a principled technique based on Bayes Theorem to direct a search of a global optimization
problem that is efficient and effective. Therefore, a probabilistic model of the objective function is built,
called the surrogate function, and then it is searched efficiently with an acquisition function before
candidate samples are chosen for evaluation on the real objective function [44]. In contrast, Hyperband
is a bandit-based strategy for HP optimization that iteratively allocates resources to a set of random
configurations [46]. The Tree-of-Parzen-Estimators (TPE) is a sequential model-based optimization
(SMBO) approach, which construct models to approximate the performance of HPs based on historical
measurements, and then subsequently chooses new HPs to test, based on this model [47]. For more
detailed information on the used optimization algorithms refer to [38,44–48].

The hyperparameters investigated in this paper are listed in the Appendix A in Table A3 for
a defined default NN. Besides the possibility to use different combinations of these HPs, it is also
possible to use different sets of hyperparameters (e.g., different activation functions for the used
layers), which further increases the number of possible HP combinations [35,36,38,49,50]. It should
be mentioned that there are other important HPs, such as the learning rate or the momentum.
Their consideration would go beyond the scope of this work, but they should be considered in
further studies.

Since in this present case the output is a continuous quantity and not a label of discrete classes,
it can be considered to be regression problem. The goal of the training process is to find a model MINV

that matches the examples at best. The cost function quantifies the error between the predicted output
and the labeled output and presents it in form of a single real number. A commonly used function,
which is also applied in this case is the mean squared error (MSE), which tries to minimize the average
error between all ANN’s outputs and all labeled outputs over all data sets. The minimization of this
cost function using a gradient descent (GD) optimization for the FFANN is called backpropagation
algorithm. Using the backpropagation algorithm, the synaptic weights and biases are automatically
adjusted in several iterations, successively reducing the error produced by the ANN. There are different
minimization algorithms, but in this paper we limited ourselves to the use of the backpropagation
algorithm with GD optimization. Furthermore, there are different GD optimization algorithms,
whereby some of them are tested in this paper (see Section 3.2.6) [34–36,43].

To better evaluate the performance of ML models, e.g., regarding unseen data, the existing
data is divided into training and validation data sets. To estimate the performance even better,
the cross-validation method is often used, especially when there is a limited amount of data available.
The (k-fold-)cross-validation procedure has a single parameter called k that refers to the number of
non-overlapping groups that a given data sample is to be split into. A total of k models are fit and
evaluated on a hold-out validation sets and the mean performance is reported. Further information
can be found in [35,38].

2.3. Data Generation by Numerical Simulations

As explained in Section 2.1.2, the data required for the training of the NN are generated
by numerical simulations. The final prediction with the trained NN is performed using the
force data of the experimentally tested specimens. For both material PI methods, FE simulations
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were carried out using a finite (shell-)element discretization and the material model MAT024
(MAT_PIECEWISE_LINEAR_PLASTICITY) with the custom formulation for the yield function 1.
Apart from the four material parameters, which were to be identified by the method applied,
the following material parameters were used: E = 2127.3 MPa, ν = 0.35, ρ = 1040 kg

mm3 , f ail = 1 ∗ 1021

(plastic strain to failure—default value). Strain rate dependence, anisotropy, failure and other
phenomena were not considered. In order to reduce the time required for the simulations, the geometry
of the tensile specimen is discretized with only 8 elements (see Figure 4). To ensure this procedure,
additional FE simulations with a higher number of elements were carried out, which provided
comparable results. For performance reasons, all tensile tests were calculated in a single simulation
run, since for these small FE-models the initialization time for LS-DYNA is larger than the computing
time. The input file for the solver was created automatically by custom scripts using includes.

Figure 4. FE discretization of the tensile specimen.

The simulation was performed displacement controlled and the resulting outputs (force/time and
displacement/time) were written to secforc text files and nodout text files, respectively. As described in
Section 2.1.2, 35 points at the same abscissa position with higher distribution density to the non-linear
part of the curve were automatically evaluated with the help of created Python scripts.

2.4. Additive Manufacturing and Mechanical Characterization of Test Specimens—Experimental Set-Up

Mechanical characterization of the additively manufactured specimens was conducted according
to DIN EN ISO 527, using test specimen type 1A. For manufacturing of the specimens, the pro-consumer
machine X400 by German RepRap GmbH (Feldkirchen, Germany) and ABS from Innofil3D B.V. (Emmen,
The Netherlands) was selected. Before printing, the ABS were dried at 60 ◦C for 4 h. The environmental
conditions was constant with an ambient temperature of about 22 ◦C and a relative humidity of 40–45%.
Table 1 shows the used process parameters for material extrusion process. All five test specimens were
manufactured in a single build process.

Table 1. Used process parameters for the manufacturing of the test specimens.

Material Color Extrusion
Speed

Build Platform
Temperature

Nozzle
Temperature

Layer
Thickness

Raster
Angle

Perimeter
Shells

ABS black 40 mm/s 100 ◦C 245 ◦C 0.2 mm ±45 ◦C 2

The experimental testing was done by the universal testing system Instron 5966 (Instron R©GmbH,
Darmstadt, Germany) with a 10 kN load cell and using an extensometer for strain measurement.
The testing speed was set to 1 mm per minute. Figure 5 shows the stress-strain curves of the
additively manufactured test specimens. Both Young’s modulus (2055.33 MPa) and maximum tensile
stress (30.70 MPa) exhibit rather low standard deviations 155.94 MPa and 0.64 MPa, respectively,
while elongation at break shows lager scattering. Thus, the experimental data are well applicable for
the investigations in this paper, since the elongation at break will not be considered at first. Higher
strains would lead to difficulties in the numerical simulation, especially in combination with the
custom yield curve. Since this is not the focus of the investigation and the custom formulation of
the yield curve only serves to describe the existing material behavior without damage and other
effects, the experimental results of test specimen 5 were selected as data basis for further investigations.
This sample shows the representative material behavior, but has a lower elongation at break than most
other samples.
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Figure 5. Experimental results.

3. Results and Discussion

3.1. Iterative Optimization Results

Out of the maximum 16 possible iterations, 9 iterations with 14 sample simulations each were
needed to find suitable material parameters. Figure 6 shows exemplarily the results from LS-OPT at
iteration 1 and iteration 4. Table 2 shows the determined material parameters and the MSE resulting
from the comparison to the experimental force-displacement curve.

Table 2. Identified material parameters using LS-OPT for the simulation of the experimental specimen
and the corresponding FDC MSE.

Parameter
a

Parameter
b

Parameter
c

Parameter
d

MSE
FDC

52,514 −4056.63 11.231 539.29 163.14 N2

The force-displacement curve obtained with the identified material parameters is shown in
Section 3.3. and is compared with the results from the NN-based method.
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Figure 6. FDC from the parameter identification process with LS-OPT at (a) iteration 1 and (b) iteration
4 (SECFORC1—LS-DYNA output for the force and NODOUT1—for displacement).

3.2. FFANN Results

A systematic experimental scheme was developed (see Appendix A Table A1) for the quantitative
and qualitative evaluation of different boundary conditions/settings—e.g., amount of training data
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and NN hyperparameters—based on the prediction accuracy of the NN direct inverse identification
method. In this scheme, the boundary conditions to be investigated were systematically varied in
so-called Runs and thus their influence on the prediction accuracy was evaluated. Among others,
the material parameter range used for the training of the NN was varied. The ranges used can
be found in the Appendix A in Table A2. A default set (see Appendix A Table A3) was used to
ensure comparability. The settings resulting from the HP optimization are listed in the Appendix A
in Table A7.

For evaluation purposes, both the MSE between labeled and predicted material parameters (a, b,
c, d) of the validation set and the MSE between the resulting FDC are listed in Table A1. Additionally,
using the experimental data as input, material parameters were predicted by the NN and subsequently
respective FDC were calculated by numerical simulations. The MSE between experimental and
calculated FDC is also shown in this table.

In the following, from Sections 3.2.1–3.2.6. the results of the corresponding boundary
conditions/settings are presented and evaluated. In Section 3.3. the resulting FDC of selected Runs are
presented and compared with the FDC of the iterative optimization approach (with LS-OPT) as well as
the experimental curve.

3.2.1. Sampling Strategies

Figure 7a shows that in general LHS leads to better (lower) results for both the MSE of parameters
and the FDC of the validation data set than FFA (in all bar charts a 95% confidence interval is shown).
This was to be expected, since using the same number of samples, LHS provides a wider distribution
and thus more information about the investigated parameter space than FFA. However, it should be
mentioned that this observation did not occur in preliminary studies (not presented here). In these
fewer neurons were used, and fewer epochs were trained. This suggests that the additional information
provided by LHS about the input/output relationship also requires a higher complexity of the NN
as well as longer training to be detectable. This once again illustrates the need to investigate the
correlations to achieve greater prediction accuracy.
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Figure 7. Sampling strategy and quantity of input data—comparison of MSE of material parameter
and FDC from (a) validation data and (b) experimental data.

However, Figure 7b shows that the better performance of the LHC in contrast to the FFA is not
represented in the FDC of the experimental data set. Furthermore, as expected, the results of the
investigation show that with a lower number of sampling points, the importance of a better distribution
of the sample points increases. Due to high computational costs, LHSG was only used for a smaller
number of sampling points. Contrary to LHS, LHSG showed a tendency to provide better results also
for the FDC MSE for the experimental data set, but this should be investigated in further studies.
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Figure 8 shows the two learning curves for Run_1 (FFA) and Run_2 (LHS). Both sampling strategies
show a similar behavior. The learning curves of the training data have a lower variance for both Runs.
In contrast, the learning curves of the validation data show a lower MSE on average (this is explained
in more detail in Section 3.2.4).
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Figure 8. Learning curves from (a) Run_1 and (b) Run_2.

3.2.2. Quantity of Input Data

Figure 7a,b show that for a training set size of 10,000 and 4096 parameter sets there are no
significant differences in the MSE examined. This applies to both the MSE of the validation data and
the MSE of the experimental data. Only from a used train set size of 2401 the MSE of the parameters
using the FFA increases as expected. If the train set size is further reduced, the MSE of the validation
data and the experimental data increases significantly for all sampling strategies used. This is more
evident for the FFA used than for LHS and LHSG (Run_10 with FFA not shown). For the investigated
use case it can therefore be stated that the training set size of approx. 4000 parameter sets is sufficient
and that the prediction performance of the default NN cannot be further significantly increased by a
higher number of samples.

3.2.3. Input Data Range

Another boundary condition that was investigated is the material parameter range, on which
the NN was trained (see Appendix A Table A2). The initial range (referred to as range 1) of the four
given material parameters were reduced by 10, 30 and 50% (referred to as range 2, 3 and 4) to quantify
the influence. To test how well the NN can determine parameters that lay outside the training range
and how this is being reflected in the FDC, the NN was trained at range 1 and validated at range 1, 2,
3 and 4. The results are shown in Figure 9, with Run_2 (training range 1 and validation on range 2)
for comparison. The prediction accuracy varies only slightly for both the validation data set and the
experimental data set if the same training range and either validation range 1 or range 2 are used
for both Runs. However, if the training range is reduced and the validation range is maintained,
the MSE of the parameters and the FDC will, as expected, increase significantly. One outlier is Run_18,
which shows a very low MSE of the FDC of the experimental data set. It is assumed that the weights
and biases were randomly optimized during training in such a way that these specific experimental
data can be described particularly well with the calculated FDC. However, it is shown that the choice
of the parameter range is essential for the sampling and the subsequent training and should be chosen
in such a way that the behavior of the material to be simulated can be described with parameters
within the training range.



Polymers 2020, 12, 2949 14 of 28

R
un

2

R
un

15

R
un

16

R
un

17

R
un

18
0

50

100

150

200

250

300

350

400
M

S
E

 F
D

C
 (N

2 )
MSE of

Parameter

Force-Displacement Curve (FDC)

0.0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

M
S

E
 P

ar
am

et
er

 (-
)

R
un

2

R
un

15

R
un

16

R
un

17

R
un

18

LS-
O
PT

0

50

100

150

200

250

300

350

400

M
S

E
 F

D
C

 (N
2
)

(a) (b)

Figure 9. Input data ranges comparison of MSE of material parameter and FDC from (a) validation
data and (b) experimental data.

3.2.4. Validation Set Sizes

In addition to the parameter range, the training/validation data ratio was investigated
(see Figure 10). For this purpose, the validation set size was incrementally increased from 2401
sets to 10,000 sets (50%/50% training/validation ratio). For the MSE of the parameters and the FDC
no significant difference can be seen. However, the variance of the MSE of the parameters of the
validation set decreases significantly with increasing size of the validation set. It is assumed that the
NN prediction performance can be better evaluated with a more even training/validation ratio.
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Figure 10. Comparison of MSE of material parameter and FDC from (a) validation data and
(b) experimental data with different validation set sizes.

The comparison of the learning curves Figure 11a,d shows that the prediction performance of the
NN on the validation set at Run_20 corresponds much more to the prediction performance of the NN
on the training set than at Run_2. The validation set is therefore more representative and therefore
better suited for evaluation. The learning curves of Run_15 and Run_17 (Figure 11b,c) show that this
can also be achieved by varying the training and validation range. If the validation range is located
outside the training range, it is rather inappropriate for evaluating the performance of the NN. Thus,
the studies indicate that a training/validation ratio of approx. 66%/33%–50%/50% should be chosen
for the highest possible prediction accuracy and evaluability of the NN performance.
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Figure 11. Learning curves for different variations of parameter ranges and training set/validation set
ratio; (a) Run_2, (b) Run_15, (c) Run_17 and (d) Run_20.

3.2.5. Data Modification with Gaussian Noise

As mentioned above, the influence of the application of a gaussian noise on the force values of
the training data was investigated. The aim was to increase the prediction accuracy of the NN or to
increase its ability to generalize (performance on unknown error-caused data). Therefore, the results
were examined with and without noise for the three different sampling strategies (see Figure 12).
Exclusively for the MSE of the parameters and the FDC of the validation set a small improvement
was observed. Contrary to expectations, all other results of both the MSE of the validation set and the
experimental set remained unchanged or even became worse. This should be investigated in further
work and possibly other standard deviations for the gaussian noise should be used.
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Figure 12. Comparison of MSE of material parameter and FDC from (a) validation data and
(b) experimental data with noisy training data.

3.2.6. Hyperparameters

To evaluate the influence of different HPs on the present application and to compare the
search methods, trainings with different HP settings were conducted under constant boundary
conditions/settings. The MSE of the parameters of the training sets was then evaluated.

Gridsearch

For the gridsearch method, in each case one hyperparameter was varied in different steps
(see Appendix A Table A4)—vertical run and a cross-validation with three folds was used. The HPs
not varied per run correspond to the default set (see Appendix A Table A3). All other boundary
conditions/settings correspond to Run_2 (see Appendix A Table A1). The gridsearch results are
listed in the Appendix A in Table A5, where the worst/best result of a HP are highlighted red/green,
respectively. The kernel initializer, the activation function, the dropout value and the selected GD
optimizer showed a particularly high influence on the performance of the NN.

Figures 13–15 and A1 show a selection of learning curves for varying HP settings. Figure 13b
illustrates the low performance of the kernel initializer Zero compared to HE Normal.
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Figure 13. Learning curves with kernel initializer 1 (a) HE Normal and (b) Zero.
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Figure 14 shows that although the variance of the learning curve can be greatly reduced by
using the activation function SoftMax, the prediction accuracy is significantly lower compared to
Hard Sigmoid.
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Figure 14. Learning curves with activation (a) Softmax and (b) Hard Sigmoid.

Figure 15b shows that when using a higher dropout value (0.40) the prediction accuracy of the
NN decreases and from approx. training epoch 190 the variance increases in steps.

Figure A1 in the Appendix A shows the learning curves of selected GD optimizers. It can be seen
that the progression of the NN training differs significantly for different GD optimizers. The learning
curve of the validation set with Rmsprop (Figure A1b) shows a very high variance compared to SGD,
Adagrad and Adadelta (c, d, e), whereas with these the prediction accuracy is significantly worse. Adamax
showed the best performance (Figure A1e).
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Figure 15. Learning curves with dropout (a) 0.00 and (b) 0.40.

Randomsearch

As previously explained in Section 2.2 there are cross effects between the individual HPs,
which can have a significant influence on the performance of the NN. In order to better evaluate
the HP settings of the NN regarding the present use case, a random search with 100 variants on the
same search range as the grid search (see Appendix A Table A4) and with 3-fold cross-validation
was carried out. However, a random variant was chosen for each HP. The best and worst five results
including the randomly selected HP are listed in the Appendix A in Table A6. Similar to the results of
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the gridsearch the NN achieved very good results with the GD optimizer Adamax, whereas the results
with Adadelta were rather worse. However, the best results of the gridsearch could not be achieved
by randomsearch. This is probably due to the small number of 100 variants examined, which should
be increased for future investigations. In this case, cross effects should continue to be investigated
systematically with the help of a statistical sensitivity analysis.

Hyperparameter Optimization

Using different HP optimization algorithms of the libraries Keras Tuner and Hyperas HP settings
were determined based on the boundary conditions/settings of Run_1 and Run_2. Contrary to the
approach with gridsearch and randomsearch, the use of a second HL was additionally made possible,
which in turn also represents a HP. As HP search range identical settings as for the search variants
(Appendix A Table A4) were used, but with the following differences:

• Epochs per default 250
• Neurons from 50 to 500 in steps of 25
• GD optimizers without SGD

The default settings as well as the NN settings determined for the Runs with varying NN are
listed in the Appendix A in Table A7. Figure 16 shows the results of the Runs with the optimized
NN hyperparameters and for comparison purposes Run_1 and Run_2. It can be seen that all HP
optimizations lead to NN settings, which result in a significantly better MSE of the parameters and
the FDC of the validation set. Especially the MSE of the FDC of the validation set could be reduced
significantly. The Bayesian optimization with the Keras Tuner library using the LHS shows the best
results. When looking at the MSE of the FDC of the experimental data set (Figure 16b), it is noticeable
that the NN of the HP optimization achieves consistently good results compared to the LS-OPT
solution, but the significant reduction of the MSE of the validation set is not reflected. This cannot
be explained at this point in time and needs further investigation, as the main goal is to maximize
the performance of the NN for experimental data sets. The data of the validation set may not be
representative enough or the material model with the selected yield curve may not be sufficiently
suitable to increase the performance with respect to the experimental data set.
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Figure 16. Comparison of MSE of FDC from (a) validation data and (b) experimental data for different
NN from HP optimization.

3.3. Comparison of Iterative and Direct Inverse Procedures

Figure 17a–c show selected FDC resulting from FE simulations with the identified parameters
using NN and LS-OPT. For comparison purposes, the experimentally determined FDC is shown.
The custom formulation of the yield curve in combination with the chosen material model MAT024
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leads in some cases to an unexplainable further peak of the FDC after reaching the maximum force.
The table of the plastic strains and associated stresses, which was generated with the help of the custom
yield curve approach, does not show this peak. The reason could not be finally clarified. However,
it should be mentioned again that this peak results from the FE simulation and is not a specific
weakness of the applied NN-based method. Nevertheless, it is possible to evaluate the NN-based PI
method and to verify its applicability as well as to compare the two parameter identification methods.
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Figure 17. Comparison of calculated FDC with parameters from iterative and NN-based process for
(a) Run_5, (b) Run_10, (c) Run_31 and (d) for one randomly chosen labeled and the corresponding
predicted parameter set of Run_26.

Figure 17a,b additionally shows the FDCs determined with the first and last training parameter
set and illustrating the parameter range. Figure 17a shows that the FDC of both methods produce very
similar results, although the NN-based method achieves slightly better results for the simulation
of the experimental tensile test. Figure 17b displays the FDC at high MSE of the determined
parameters. Figure 17c shows the resulting FDC from the NN parameter prediction with previous HP
optimization. This also leads to good results and does not exhibit the second peak after the maximum
force. Figure 17d shows an example of the FDC calculated with predefined (used for NN training)
and predicted parameter, which results in very good agreement. Summarizing, it can be said that
the NN-based method is suitable for identifying material parameters for the present application.
When using suitable boundary conditions/settings as well as HPs for the NN, even better results
could be determined by the NN-based method compared to the commonly used iterative optimization
method (compare Tables 2 and A1). In the reduced results in Table 3 it can be seen that neither the
Runs with the lowest MSE of the parameters nor the FDC lead to the lowest MSE of the FDC of the
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experimental data set. This indicates that the increase in prediction accuracy through optimization is
not directly reflected in the experimental data set.

Table 3. Reduced settings and results of NN-based material parameter identification Runs.

Run Mean MSE Parameter Val. Set (−) Mean MSE FDC Val. Set (N2) MSE FDC Exp. (N2)

5 0.0469 32.9 122.4
25 0.0241 6.4 150.1
26 0.0257 6.4 142.9

It is conceivable that the training and test set may not be sufficiently representative to provide
the best possible results for the experimental data set, or the NN trained for MAT024 is not able
to generalize sufficiently well. As this phenomenon has not yet been fully clarified, it should be
investigated further. This is of major relevance as the overall goal is to configure and train the NN to
perform best on unknown experimental data.

4. Conclusions and Outlook

In this paper, a method was presented to identify material parameters of the yield curve using a
FFANN for the numerical simulation of additively manufactured test specimen under uniaxial tensile
load. The labeled data required for the training of the FFANN were generated by numerical simulations
with LS-DYNA and using MAT024. In order to describe the elastic-plastic material behavior of the
ABS without having to consider more complex mechanisms such as damage, for which a PI would be
required as well, a custom formulation for the yield curve consisting of a second-order polynomial
and a root function was created.

The resulting material parameters as well as the results of the following structural simulation
of the iterative optimization-based and the direct inverse NN-based method for PI were compared.
The results prove the suitability of the NN for the identification of the yield curve parameter of the
investigated ABS. Using suitable boundary conditions and settings, the NN-based method achieved
better results than the commonly used iterative optimization method. The results confirm the authors
assumption that such feedforward neural networks could be used in the future to perform parameter
identifications of the complex property spectrum for complete material models of thermoplastics.
This would have the advantage that the necessary experimental investigations for the PI of a material
could be reduced to a minimum, because the FFANN can be trained with the help of data from
numerical simulations. An even greater advantage is the reusability of the trained FFANN for similar
materials as well as the corresponding PI within seconds. Thus, product development times could
be reduced.

In contrast, if the material behavior differs only slightly from the conventional used iterative
optimization approach, computationally intensive numerical simulations would be required.
A prerequisite for the repeated use of a trained FFANN, however, would be that the specific material
behavior of the material to be characterized is represented within the input data used for the training.
As the PI process only requires expert knowledge for the creation of the FFANN, but not for the
actual identification process, the results would be objectively comparable. Thus, especially in early
development phases, the influences of different materials (with similar material characteristics) on
the structural-mechanical properties of developed components could be evaluated and compared.
Conceivable would be a polymer that shows similar material-mechanical behavior, e.g., ±30%
maximum tensile strength or a different contour of the non-linear stress-strain curve.

Essential for the accuracy of the predicted parameters and thus the success of the method is the
choice and processing of the training data of the FFANN as well as the choice of the hyperparameters,
as presented in this paper. The investigations should facilitate and reduce the choice of boundary
conditions and settings for future work in this field of work. Furthermore, different methods for the
selection and optimization of the HPs of the FFANN were shown and compared. The highest increase
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of the prediction accuracy of the validation set could be achieved by HP optimization with the library
Keras Tuner and the Bayesian optimization algorithm. However, this increase in prediction accuracy
was not directly reflected in a higher accuracy of the MSE of the experimental data set, which should
be investigated in future work. Furthermore, a reduction of the MSE of the parameters was usually,
but not always accompanied by a reduction of the MSE of the FDC, which should also be examined in
further studies.

In addition, it is planned to extend the spectrum of properties of thermoplastics to be investigated
in subsequent work to finally achieve an FFANN with which parameters for more complex material
models can be determined and thus to be able to represent the extensive material behavior of
thermoplastics. Thus, it would have to be evaluated whether and with which accuracy parameters for
strain rate dependence, damage, failure or other material characteristics can be determined in addition
to the material parameters for the yield curve. For this purpose it requires investigations whether and
how different NN’s for the material characteristics must interact with each other.
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Appendix A

Table A1. Settings and results of NN-based material parameter identification Runs.

Run Sampling
Strategy

Train
Set
Size

Val.
Set

Size

Train
Range

Val.
Range NN Noisy

Data

Mean MSE
Parameter

Val. Set (−)

Mean MSE
FDC Val.
Set (N2)

MSE
FDC

Exp. (N2)

1 FFA 10, 000 2401 1 2 Default No 0.0382 46.2 129.0
2 LHS 10, 000 2401 1 2 Default No 0.0215 27.7 140.7
3 FFA 4096 1296 1 2 Default No 0.0354 25.5 126.1
4 LHS 4096 1296 1 2 Default No 0.0288 31.4 125.5
5 FFA 2401 625 1 2 Default No 0.0469 32.9 122.4
6 LHS 2401 625 1 2 Default No 0.0332 31.4 144.4
7 FFA 625 256 1 2 Default No 0.0609 45.3 138.6
8 LHS 625 256 1 2 Default No 0.0445 44.1 168.3
9 LHSG 625 256 1 2 Default No 0.0417 47.3 157.1

10 FFA 256 81 1 2 Default No 0.0972 626.7 780.5
11 LHS 256 81 1 2 Default No 0.0489 91.4 199.5
12 LHSG 256 81 1 2 Default No 0.0512 68.2 162.8
13 LHS 150 50 1 2 Default No 0.0521 90.1 169.1
14 LHSG 150 50 1 2 Default No 0.0491 85.7 154.4
15 LHS 10, 000 2401 1 1 Default No 0.0271 21.3 134.8
16 LHS 10, 000 2401 2 1 Default No 0.0357 52.7 198.0
17 LHS 10, 000 2401 3 1 Default No 0.0782 248.9 320.6
18 LHS 10, 000 2401 4 1 Default No 0.2009 355.5 128.2
19 LHS 10, 000 5000 1 1 Default No 0.0304 26.0 178.2
20 LHS 10, 000 10, 000 1 1 Default No 0.0289 25.3 127.9
21 FFA 10, 000 2401 1 2 Default Yes 0.0317 19.7 224.4
22 LHS 10, 000 2401 1 2 Default Yes 0.0227 26.3 149.7
23 LHS 625 256 1 2 Default Yes 0.0463 121.6 251.9
24 FFA 10, 000 2401 1 2 HPO1 No 0.0254 7.5 149.3
25 FFA 10, 000 2401 1 2 HPO2 No 0.0241 6.4 150.1
26 FFA 10, 000 2401 1 2 HPO3 No 0.0257 6.4 142.9
27 FFA 10, 000 2401 1 2 HPO4 No 0.0390 28.5 142.9
28 LHS 10, 000 2401 1 2 HPO5 No 0.0185 14.8 155.5
29 LHS 10, 000 2401 1 2 HPO6 No 0.0204 13.5 155.3
30 LHS 10, 000 2401 1 2 HPO7 No 0.0188 6.6 140.2
31 LHS 10, 000 2401 1 2 HPO8 No 0.0194 8.4 150.3

Table A2. Defined material parameter ranges.

Parameter Range aMin aMax bMin bMax cMin cMax dMin dMax

1 50, 000 54, 000 −4060 −3980 10.500 12.800 510.00 555.00
2 50, 200 53, 800 −4056 −3984 10.615 12.685 512.25 552.75
3 50, 600 53, 400 −4048 −3992 10.845 12.455 516.75 548.25
4 51, 000 53, 000 −4040 −4000 11.075 12.225 521.25 543.75
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Table A3. Default neural net setting.

(Hyper-)Parameter Setting

Batch Size 12
Epochs 250
Neurons (Input Layer) 35
Hidden Layers 1
Neurons 250
Kernel Initializer (HL) Normal
Activation (HL) Relu
Dropout (HL) 0.05
Neurons (Output Layer) 4
Kernel Initializer (OL) Normal
Activation (OL) 4
Neurons (Output Layer) Linear
Gradient Descent Optimizer Adam

Table A4. Gridsearch/Randomsearch search range (* = default parameter).

N Batch
Size Epochs Neurons

(HL)

Kernel
Initializer

(HL)

Activation
(HL)

Dropout
(HL)

Kernel
Initializer

(OL)
Optimizer

1 3 75 25 Normal * Softmax 0.00 Normal * Adam *
2 6 100 50 Uniform Softplus 0.05 * Uniform Rmsprop
3 9 125 75 Glorot Uniform Softsign 0.10 Glorot Uniform SGD
4 12 * 150 100 Lecun Uniform Relu * 0.15 Lecun Uniform Adagrad
5 15 175 125 Zero Tanh 0.20 Zero Adadelta
6 18 200 150 Glorot Normal Sigmoid 0.25 Glorot Normal Adamax
7 21 225 175 He Normal Hard Sigmoid 0.30 He Normal Nadam
8 24 250 * 200 He Uniform Linear 0.35 He Uniform −
9 27 − 225 − Selu 0.40 − −
10 30 − 250 * − Elu 0.45 − −
11 33 − 275 − Exponential 0.50 − −
12 36 − 300 − − − − −
13 39 − 325 − − − − −
14 − − 350 − − − − −
15 − − 375 − − − − −
16 − − 400 − − − − −
17 − − 425 − − − − −
18 − − 450 − − − − −
19 − − 475 − − − − −
20 − − 500 − − − − −
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Table A5. Gridsearch training results—training MSE of material parameters.

N Batch
Size Epochs Neurons

(HL)

Kernel
Initializer

(HL)

Activation
(HL)

Dropout
(HL)

Kernel
Initializer

(OL)

GD
Optimizer

1 0.0380 0.0402 0.0323 0.0304 0.0406 0.0253 0.0322 0.0329
2 0.0328 0.0393 0.0320 0.0310 0.0375 0.0321 0.0324 0.0364
3 0.0343 0.0379 0.0329 0.0324 0.0301 0.0338 0.0312 0.0447
4 0.0308 0.0350 0.0341 0.0333 0.0314 0.0426 0.0332 0.0616
5 0.0317 0.0303 0.0291 0.0834 0.0389 0.0438 0.0318 0.0708
6 0.0288 0.0327 0.0312 0.0301 0.0379 0.0487 0.0354 0.0265
7 0.0302 0.0309 0.0309 0.0277 0.0259 0.0490 0.0328 0.0281
8 0.0279 0.0324 0.0296 0.0287 0.0314 0.0562 0.0306 −
9 0.0285 − 0.0319 − 0.0289 0.0579 − −
10 0.0273 − 0.0312 − 0.0320 0.0564 − −
11 0.0330 − 0.0316 − 0.0394 0.0582 − −
12 0.0278 − 0.0302 − − − − −
13 0.0281 − 0.0295 − − − − −
14 − − 0.0340 − − − − −
15 − − 0.0295 − − − − −
16 − − 0.0302 − − − − −
17 − − 0.0310 − − − − −
18 − − 0.0335 − − − − −
19 − − 0.0301 − − − − −
20 − − 0.0296 − − − − −

Table A6. Five best and worst randomsearch training results and respective hyperparameters.

Batch
Size Epochs Neurons

(HL)

Kernel
Initializer

(HL)

Activation
(HL)

Dropout
(HL)

Kernel
Initializer

(OL)

GD
Optimizer

Mean MSE
Parameter

Train Set (−)

36 250 325
He

Normal Selu 0.05
Glorot

Normal Nadam 0.0317

21 125 300
He

Normal Softsign 0.25
Glorot

Uniform Adamax 0.0321

30 150 400
He

Uniform Tanh 0.15
He

Uniform Adamax 0.0322

18 75 450
He

Normal Selu 0.40
Glorot

Normal Adamax 0.0324

24 250 450 Uniform Softsign 0.35
He

Normal Nadam 0.0329

21 100 250 Zero Softmax 0.45
Lecun

Uniform Adadelta 0.0834

39 150 25
Lecun

Uniform Exponential 0.45 Normal Adadelta 0.0844

15 150 75
Lecun

Uniform Softmax 0.05
Lecun

Uniform Adadelta 0.0920

33 250 450
Glorot

Uniform Softsign 0.05
Glorot

Normal Nadam 0.1009

15 150 350 Zero Relu 0.10 Normal Adadelta 0.1536
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Figure A1. Learning curves with optimizer (a) Adam and (b) Rmsprop, (c) SGD, (d) Adagrad, (e) Adadelta
and (f) Adamax.
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Table A7. Neural net settings from hyperparameteroptimization (* = default settings).

(Hyper-)
Parameter HPO1 HPO2 HPO3 HPO4 HPO5 HPO6 HPO7 HPO8

Batch Size 27 12 39 3 27 12 27 30
Epochs * 250 250 250 250 250 250 250 250
Neurons

(IL) * 35 35 35 35 35 35 35 35

Number
(Hidden)
(Layer)

2 2 1 2 2 2 1 1

Neurons
(HL1) 350 50 400 250 350 50 200 450

Kernel
Initializer

(HL1)

He
Uniform

He
Uniform

Lecun
Uniform

He
Uniform

He
Uniform

He
Uniform

He
Uniform

Lecun
Uniform

Activation
(HL1)

Hard
Sigmoid

Hard
Sigmoid

Hard
Sigmoid Softsign

Hard
Sigmoid

Hard
Sigmoid

Hard
Sigmoid Selu

Dropout
(HL1) 0.1 0.0 0.0 0.35 0.1 0.0 0.0 0.05

Neurons
(HL2) 250 300 − 350 250 300 − −

Kernel
Initializer

(HL2) *
normal normal normal normal normal normal normal normal

Activation
(HL2) * linear linear linear linear linear linear linear linear

Dropout
(HL2) * 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Neurons
(OL) * 4 4 4 4 4 4 4 4

Kernel
Initializer

(OL)

He
Uniform Normal

He
Uniform

He
Normal

He
Uniform Normal

Glorot
Uniform Zero

Activation
(OL) * linear linear linear linear linear linear linear linear

GD
Optimizer Adamax Adam Adam Adagrad Adamax Adam Adam Adamax

HP
Optimization

Library

Keras
Tuner

Keras
Tuner

Keras
Tuner Hyperas

Keras
Tuner

Keras
Tuner

Keras
Tuner Hyperas

HP
Optimizer

Random-
search

Hyper-
band Bayesian

Bayesian
TPE

Random-
search

Hyper-
band Bayesian

Bayesian
TPE

Max
Trials * 100 100 100 100 100 100 100 100

Exekution
per

Trial *
2 2 2 2 2 2 2 2
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