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Abstract: In the present study, a polymeric nanocomposite, CoFe2O4@DHBF, was fabricated using
2,4 dihydroxybenzaldehyde and formaldehyde in basic medium with CoFe2O4 nanoparticles.
The fabricated nanocomposite was characterized using FTIR, TGA, XRD, SEM, TEM, and XPS
analyses. The analytical results revealed that the magnetic nanocomposite was fabricated successfully
with high surface area 370.24 m2/g. The fabricated CoFe2O4@DHBF was used as an efficient adsorbent
for the adsorption of U(VI) and Eu(III) ions from contaminated water. pH, initial concentration,
adsorption time, and the temperature of the contaminated water solution affecting the adsorption
ability of the nanocomposites were studied. The batch adsorption results exposed that the adsorption
capacity for the removal of U(VI) and Eu(III) was found to be 237.5 and 225.5 mg/g. The adsorption
kinetics support that both the metal ions follow second order adsorption kinetics. The adsorption
isotherm well fits with the Langmuir adsorption isotherm and the correlation coefficient (R2) values
were found to be 0.9920 and 0.9913 for the adsorption of U(VI) and Eu(III), respectively. It was
noticed that the fabricated nanocomposites show excellent regeneration ability and about 220.1 and
211.3 mg/g adsorption capacity remains with U(VI) and Eu(III) under optimum conditions.

Keywords: 2,4 dihydroxybenzaldehyde; polymer nanocomposite; radioactive; adsorption

1. Introduction

Radioactive substances can be found in the air, water, and soil, polluting the environment.
However, the water source can be contaminated using radionuclides, naturally present in rock and
soil or released from human activities, such as medical radiology or nuclear power plants [1–3].
The long-term exposure of the radionuclides or drinking of contaminated water can cause cancer and
other disorders to the human and animals [4–6]. The World Health Organization (WHO) considers that
30 µg L−1 of Uranium is safe, but a clear no-effect concentration has not been definitively derived yet.
The US Environmental Protection Agency (EPA) has adapted this value. Therefore, the development
of effective approaches or systems to treat the contaminated water represents an urgent demand for
researchers. Several methods, including reverse osmosis, membrane filtration, solvent extraction,
electrodialysis, chemical precipitation, and adsorption, have been used for the removal of toxic ions form
aqueous solution [7–9]. Nevertheless, each technology has advantages and disadvantages especially
regarding efficiency and costs (Supplementary Table S1). Among these methods, adsorption is the most
effective method because of its high efficiency, low cost, and environmentally friendly nature [10–13].
However, for adsorption, an efficient adsorbent plays the main role and several adsorbents such as
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polymer, graphite carbon, clay, metal oxides and nanocomposites have been used for the adsorption of
toxic metal ions or organic pollutants from contaminated water [14–16]. On the other hand, nowadays,
nanotechnology also plays a key role in the adsorption technology and many nanomaterials have
been used for the adsorption of organic and inorganic pollutants form aqueous solution [17–20].
Even so, the poor adsorption capacity and selectivity of these adsorbents reduced their applications
for adsorption of radioactive ions [21,22]. Even though the adsorption capacity and selectively of
the polymers based adsorbent can be tuned with the functional groups such as carboxylic (-COOH),
amines (-NH2/-NH) hydroxyl (-OH) and azomethine (C=N-) etc. [23–26]. Up to now several polymer
nanocomposites including polymer/polymer composite, polymer/carbon composite, polymer/clay
composite, polymer/ metal oxide composite etc. are the advanced materials and used as adsorbent for
the adsorption of several organic and inorganic pollutants from aqueous solution [3,27–31]. However,
these polymer nanocomposites challenge with respect their poor, time consuming and expensive
separation methods and limits their use at large and industrial scale [32–34].Therefore, the fabrication
of magnetic polymer nanocomposite with excellent adsorption efficiency and selectivity is an urgent
demand of the researchers. The utilization of metal oxide magnetic nanoparticles with polymer matrices
provides higher stability, process ability, excellent reusability, and some exciting enhancements caused
by the nanoparticle–polymer interface [35–37]. Considering these facts, herein, we have prepared a
polymer nanocomposite owing to their high adsorption capacity, low cost, magnetism, low toxicity,
and reusability.

The polymeric resin was fabricated using 2,4 dihydroxybenzaldehyde and formaldehyde and its
magnetic nanocomposite was prepared with CoFe2O4 nanoparticles. As-prepared CoFe2O4@ DHBF was
characterized successfully and used for the removal of U(VI) and Eu(III) ions from contaminated water.
The batch adsorption techniques were used, changing the pH, initial concentration, adsorbent dose,
contact time, and temperature of the solution. The adsorption kinetics, isotherm, and thermodynamics
studies were carried out to find out the interaction between the adsorbate and the adsorbents. Moreover,
the adsorption mechanisms were fully elucidated by FT-IR and XPS.

2. Experimental

2.1. Materials

Briefly, 2,4 dihydroxybenzaldehyde, formaldehyde, cobalt(II)chloride hexahydrate, Iron(III)
chloride hexahydrate, NaOH, HCl, ammonia solution, europium(III) chloride hexahydrate were
purchased form Sigma Aldrich (Steinheim, Germany). Meanwhile, uranyl acetate dihydrate was
purchased form BDH chemicals (Poole, UK). All reactants used were of analytical grade. All the
solutions were prepared in deionised water. CoFe2O4 nanoparticles were prepared according to
previously reported method using cobalt(II)chloride and Iron(III) chloride in 1:2 molar ratio using
ammonia solution at room temperature [38,39].

2.2. Fabrication of the Nanocomposite

The magnetic polymer nanocomposite was fabricated using 2,4 dihydroxybenzaldehyde,
formaldehyde under basic condition [40]. In a 200-mL beaker, 2.76 g (0.02 mol) of
2,4 dihydroxybenzaldehyde was dissolved in 10 mL of distilled water and the 6 mL of formaldehyde
was added into the solution and was stirred magnetically at room temperature and the pH of the
solution was changed to 8 using NaOH solution and then heated at 60 ◦C for 30 min. After that, 2 g of
prefabricated CoFe2O4 nanoparticles was added and stirred mechanically at 80 ◦C for 3 h. The resulting
mixture was then re-precipitated using methanol and the magnetic nanocomposite was separated
magnetically. The fabricated CoFe2O4@ DHBF was washed, dried, and stored for further used.
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3. Results and Discussion

3.1. Characterization of the Nanocomposite

The polymers nanocomposite with CoFe2O4 nanoparticles was prepared using
2,4 dihydroxybenzaldehyde and formaldehyde. The fabrication method is explained in Figure 1.
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Figure 1. The synthesis routes for the synthesis of CoFe2O4@DHBF.

The functional group presents in the polymer and in the nanocomposite were determined using
FTIR spectra as shown in Figure 2a. In the case of the dihydroxybenzaldehyde-formaldehyde based
polymer resin (DHBF) several FTIR peaks were noticed at 3324–3520 cm−1 (O-H), 3044 (C-H aromatic),
2949–2845 (C-H sym and asym), 1663 (C=O), 1564 (C=C), and others [41,42]. Meanwhile, in the case of
the magnetic polymer nanocomposite CoFe2O4@ DHBF the C=O band was shifted from 1163 cm−1 to
1649 cm−1 was noticed in the presence of CoFe2O4 nanoparticles and support the interaction between
the magnetic nanoparticles and the polymer matrix via hydrogen bonding. Another two FTIR bands
were observed at 512 and 627 cm−1 and assigned to the Fe-O and Co-O of the spinal cobalt ferrite [43,44].
The TGA was used to investigate the thermal stability and the interaction between the nanoparticles
and the polymer matrix in the nanocomposite (CoFe2O4@ DHBF). The TGA analysis of the polymer
and the nanocomposites is shown in Figure 2b.
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Figure 2. (a) FTIR spectra of DHBF and CoFe2O4@DHBF (b) TGA/DTA curves of DHBF and
CoFe2O4@DHBF.

Initially a slightly weight loss about to 4.21% and 5.24% was noticed for DHBF and for
CoFe2O4@DHBF up to 200 ◦C temperature due to the evaporation of adsorbed humidity and other
solvents. Moreover, between 200 to 375 ◦C about 62.21% and 47.48% weight loss was found and it is
the main degradation stage of the organic moieties for DHBF and for CoFe2O4@ DHBF. The last phase
is the cracking of the polymeric materials and at 500 ◦C about the DHBF decomposed completely while
in the case of CoFe2O4@DHBF about to 13.12% weight loss was notices and the residue weight was
found about to 31.20 at 800 ◦C. These outcomes revealed that the CoFe2O4@ DHBF shows excellent
thermal stability compared to the polymeric resin, DHBF [45–47]. The XRD patterns of CoFe2O4,

and CoFe2O4@DHBF are illustrated in Figure 3a. It was noticed that the XRD peaks for pure CoFe2O4

nanoparticles were found at 2θ values 30.14◦ (220), 35.58◦ (311), 37.24◦ (222), 43.34◦ (400), 53.67◦ (422),
57.08◦ (511), 62.7◦ (440), 71.2◦ (620), 74.2◦ (533), 75.2◦ (622), and 79.2◦ (444) and can be assigned to the
CoFe2O4 spinel structure (JCPDS no. 22-1086) [48,49]. Moreover, in the case of the CoFe2O4@DHBF,
the intensity of the XRD peaks are decreased without changing their position and the amorphous
region peaks also appear. These results support that in the nanocomposites the spinal structure of the
CoFe2O4 is unchanged and embedded it is pure form without any impurity. The X-ray photoelectron
spectroscopy (XPS) explained the elemental composition of the CoFe2O4 and CoFe2O4@ DHBF. The XPS
survey of the CoFe2O4@DHBF displays the existence of the C, O, Co, and Fe elements as showed in
Figure 3b. The deconvoluted spectra of the Co 2p spectra show peaks due to the Co 2p3/2 and Co 2p1/2

at binding energy of 780.76 and 796.65 eV respectively [50,51]. Meanwhile, the satellites peaks, due to
the presence of unpaired 3d electron of the high spin Co2+ and belonging to Co 2p3/2 and Co 2p1/2,
appear at a binding energy of 786.19 and 802.95 eV, as shown in Figure 3c. The XPS spectrum of Fe 2p
is exposed in Figure 3d and displays two peaks at a binding energy 724.04 and 711.21 eV, assigned
to Fe 2p1/2 and Fe 2p3/2 respectively. These results support the presence of Fe3+ in the invers spinel
CoFe2O4. The core-level C1s XPS spectrum is illustrated in Figure 3e and split into four peaks and
appeared at binding energy about 283.94, 285.8, 286.80, and 287.72 eV and were assigned to C-C, C=C,
C-O, and C=O respectively [52]. The O1s spectrum was split into three peaks and the lattice oxygen
appeared at a binding energy of about 529.21, 530.84, and 531.21 eV, Fe-O/Co-O, C-O/C=O, and surface
OH, respectively, as illustrated in Figure 3f [53].
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Figure 3. (a) XRD of CoFe2O4, and CoFe2O4@DHBF (b) a wide XPS spectra for CoFe2O4,
and CoFe2O4@DHBF (c) Co2p, (d) Fe 2p (e) C 1s, (f) O1s.

The surface morphology of the nanoparticles and the nanocomposite was determined using the
SEM and TEM analysis. As illustrated in Figure 4a, the SEM image of the CoFe2O4 shows the spherical
shape with a diameter range of 14–25 nm, the fabricated nanoparticles are aggregated due to their
super magnetic nature. While in the case of the CoFe2O4@ DHBF, the CoFe2O4 nanoparticles are
well dispersed into the polymer matrix and no aggregation was noticed. The shape and size of the
nanoparticles were unchanged in the case of the nanocomposite. The detailed morphology of the
nanocomposite was monitored with a TEM image as shown in Figure 4c and showed similar results
to the SEM results. The crystalline nature and the interaction with the polymer matrix were further
confirmed with HRTEM analysis and illustrated in Figure 4d. The lattice fingers were noticed with
d-spacing of 0.262 and 0.291 nm, which were assigned to the (311) and (220) planes of the CoFe2O4

spinal structure [54–56]. The existence of pure CoFe2O4 in the polymer nanocomposite was further
supported using selected area electron diffraction (SAED) to show the electron diffraction planes as in
Figure 4d [49,57].
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The N2 adsorption and desorption isotherm was used to determine the porous properties of
the polymer and the nanocomposite. It was noticed that the adsorption of N2 was increased with
increasing the relative pressure up to P/PO < 0.8. As shown in Figure 5a, the N2 adsorption-desorption
shows type IV hysteresis loop and supports the mesoporous nature of the CoFe2O4@DHBF. The BET
results demonstrate that the surface area of the CoFe2O4 nanoparticles and the CoFe2O4@DBF was
found to be 96.54 and 370.24 m2/g respectively. As shown in inserted figure in Figure 5a the pores
size were found to be between 12–18 nm and 24–28 nm an indicate both the polymer and the
CoFe2O4@DHBF has mesoporous nature and suitable for the adsorption of the pollutants from aqueous
solution. The magnetic behaviors of the pure CoFe2O4 nanoparticles and the CoFe2O4@ DHBF were
determined using VSM (vibrating-sample magnetometer) analysis and the results were illustrated
in Figure 5b. It was observed that the magnetization curves were performed S-shaped with the
applied magnetic field and the saturation magnetization (Ms) were found to be 48.50 emu/g and
34.39 emu/g for CoFe2O4 nanoparticles and the CoFe2O4@DHBF respectively. In the case of the
CoFe2O4@DHBF, the magnetization was decreased due the nonmagnetic weight ratio of the polymer,
DHBF. Hence, the CoFe2O4@DHBF contains enough magnetization and could be easily and rapidly
separated from aqueous solution using a magnet in a very short time.
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3.2. Batch Adsorption of the Radioactive Ions

3.2.1. Effect of pH, Initial Concentration, Initial Contact Time

The effect of the pH, initial concentration of U(VI) and Eu(III), the dose of the CoFe2O4@DHBF and
the effect of contact time on the removal was thoroughly studied. The pH of the solution is one of the
important factor for the removal of the metal ions one CoFe2O4@DHBF [58]. It was noticed, when the
pH of the solution was increased from 2 to 7 the percentage adsorption was increased and found to be
95% and 92.2% (with adsorption capacity 237.5 and 225.5 mg/g) with U(VI) and Eu(III) respectively
as display in Figure 6a. Therefore, CoFe2O4@DHBF has excellent adsorption performance for both
the metals, and was far superior most conventional adsorbents listed in Supplementary Table S2.
To understand the effect of the pH for the removal of the metal ions pHpzc was determined because
the adsorbent surface zeta potential significantly influenced the removal of heavy metal. As shown
in Supplementary Figure S1, the pHpzc of the CoFe2O4@DHBF was found to be 5.13. Therefore,
at pH < pHpzc (point of zero charge), the surface charge of the nanocomposite was positive due to
extra protons (H+), thus the struggle with the metal ions to bind with the adsorption sites, resulting in
the active sites of CoFe2O4@DHBF being protonated and the adsorption capacity for the adsorption
of metal ions decreasing due to the presence of extra protons. Moreover, the maximum adsorption
was noticed at pH 7. However, when the pH of the solution was further increased, the adoration
capacity was decreased due to the formation of the insoluble hydroxide of the corresponding metal
ions. The contact time of the adsorbent with the adsorbate affects the adsorption of both the metal
ions on CoFe2O4@DHBF. As shown in Figure 6b, the adsorption of both the metal ions at different
time form 5 min to 200 min were studied. It was noticed that the contact time between both U(VI)
and Eu(III) increased and the adsorption of both the metal ions increased initially within 30 min,
when about 77.9% and 74.0 % of U(VI) and Eu(III) were adsorbed. When the contact time was increased
to 60 min, it reaches equilibrium and about 237.5 and 225.5 mg/g adsorption capacity was noticed
against the U(VI) and Eu(III) respectively. However, increasing the time further only slightly changed
the adsorption capacity. The effects of the initial concentration during the adsorption of the metal
ions on to CoFe2O4@ DHBF was investigated at varying initial concentration from 5–300 mg/L and
the results were illustrated in Figure 6c. It was noticed that, when the initial concentration of both
the U(VI) and Eu(III) ions was increased, the adsorption percentage of was decreased, while the
adsorption capacity of the CoFe2O4@ DHBF was increased with the initial concentration [59]. Resulting,
the initial concentration of 100 mg/L show the highest percentage adsorption and were found to be
237.5 and 225.5 mg/g with U(VI) and Eu(III) respectively within 60 min. Additionally, for the industrial
application, the adsorption of both the metal ions at their lower concentration in the range (0.05 to
2 mg/L) were also observed and the results are illustrated in Supplementary Figure S2. The results
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revealed that the adsorption percentage of both metal ions was increased with decreasing concentration
in both the case distilled water and in synthetic wastewater. Moreover, these results revealed that the
adsorption of metal ions slightly decreased in the case of the synthetic wastewater sample due to the
presence of co-existence ions.
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Figure 6. Effect of (a) pH (b) time (c) initial concentration and (d) temperature on the adsorption
of U(VI) and Eu(III) onto CoFe2O4@DHBF (dose = 0.01 g, 25 mL, pH = 7, concentration 100 mg/L,
time 60 min at room temperature).

Initially, the adsorption capacity was increased with the initial concentration. This is because
the contact between metal ions and the adsorptive sites of CoFe2O4@DHBF was increased. However,
at high initial concentration, the availability of the adsorptive sites of CoFe2O4@DHBF were regularly
decreased and the saturation took place, resulting in a decreased adsorption capacity with both the
metal ions. Moreover, the effects of temperature for the adsorption of both the metal ions were also
investigated and the results are displayed in Figure 6d. The adsorption results revealed that the
adsorption of both the metal ions was decreased with increasing the temperature of the aqueous
solution. Therefore, room temperature is suitable for the adsorption of both the metal ions and was
used as an optimum temperature.

3.2.2. Adsorption Isotherms

To determine the interaction and the adsorption mechanism for the adsorption of U(VI) and Eu(III)
onto CoFe2O4@DHBF, absorption isotherm including Langmuir, Freundlich and Temkin models have
been used (the details of adsorption isotherms are given in the Supplementary Materials) [60–62].
The nonlinear fittings for these models are displayed in Figure 7, and the results are summarized in
Table 1. The results revealed that the experimental data are well fitted with the Langmuir isotherm
model and the correlation coefficient (R2) values were found to be 0.9920 and 0.9913 for the adsorption
of U(VI) and Eu(III), respectively. The calculated adsorption capacity was found to be 330.63 mg/g and
310.70 mg/g with U(VI) and Eu(III) respectively, which were closed to the experimental values at room
temperature (298 K). Additionally, the effects of temperature on the adsorption isotherm were also
evaluated and the results revealed that, at the increased temperature, the adsorption of both the metal
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ions was decreased. These outcomes support the fact that adsorption followed the Langmuir isotherm
and homogenous monolayers adsorption due to the chemisorption between both the metal ions.
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Figure 7. Non-linear fitting for the adsorption of U(VI) and Eu(III) (a,b) Langmuir (c,d) Freundlich
(e,f) Temkin isotherm (dose = 0.01 g, 25 mL, pH = 7, time 60 min at room temperature).

Table 1. Adsorption isotherm parameters for the adsorption of U(VI) and Eu(III) on CoFe2O4@DHBF
(dose = 0.01 g, 25 mL, pH = 7, time 60 min at room temperature).

Metal Ions Isotherm Models Parameters
Temperature (◦C)

25 35 45

U(VI)

Langmuir model
qm (mg·g−1) 330.63 319.01 3.5.81
KL (L·mg−1) 0.3940 0.3879 0.3730

R2 0.9920 0.9929 0.9952

Freundlich model
Kf (mg1−1/n

·L1/n
·g−1) 94.24 90.03 89.46

n 3.80 3.77 3.71
R2 0.8670 0.8669 0.8750

Temkinmodel
Kt (L/g) 8.31 8.10 7.76

Bt 48.27 46.71 44.95
R2 0.9579 0.9487 0.9643
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Table 1. Cont.

Metal Ions Isotherm Models Parameters
Temperature (◦C)

25 35 45

Eu (III)

Langmuir model
qm (mg·g−1) 310.70 293.72 276.40
KL (L·mg−1) 0.2152 0.2132 0.2113

R2 0.9913 0.9912 0.9901

Freundlich model
Kf (mg1−1/n

·L1/n
·g−1) 77.76 73.19 68.34

n 3.53 3.52 3.50
R2 0.8969 0.9010 0.8967

Temkinmodel
Kt (L/g) 6.34 6.32 6.19

Bt 44.54 42.06 39.67
R2 0.9478 0.9472 0.9439

To determine the adsorption rate and adsorption rate constant the adsorption kinetics during
the adsorption of U(VI) and Eu(III) on to CoFe2O4@DHBF was determine using pseudo-first order,
pseudo-second order, and interparticle diffusion method and the experimental data was fitted with
non-liner model [19,63,64]. The resulting adsorption kinetics parameters were summarized into
Table 2. As shown in Figure 8a,b, the pseudo-second order model is well fitted and correlates with
the experimental results, the correlation coefficient (R2) value was found to be close to 1 (0.9907).
Meanwhile, in the case of pseudo-first order and interparticle diffusion, the values of R2 were found to
be 0.9510 and 0.9514, respectively, during the adsorption of U(VI). The maximum adsorption capacity
(qe) was determine using pseudo-second order model and found to be 263.89 mg/g and 253.31 mg/g
with U(VI) and Eu(III), these values are close to the experimental values. These outcomes support
that the adsorption of both the metal ions were follow the pseudo-second order kinetics model and
the adsorption capacity of both the metal ions remain constant with time after equilibrium and the
available active sites for adsorption depends on the concentration of the metal ions at equilibrium.
The adsorption of both the metal ions was chemisorption and the interaction between both the metal
ions and the CoFe2O4@DHBF via coordination of electrons and the covenant.

Table 2. Adsorption kinetic parameters for the adsorption of U(VI) and Eu(III) on CoFe2O4@DHBF.

Metal Ions Kinetic Models Parameters

U(VI)

PFO model
qe (mg·g−1) 241.16
k1 (min−1) 0.067

R2 0.9510

PSO model
qe (mg·g−1) 263.89

k2 (g·mg−1
·min−1) 3.61 × 10−4

R2 0.9907

Intra-particle diffusion
C 106.15

Kdif (mg g−1 min−1/2) 11.77
R2 0.9514

Eu(III)

PFO model
qe (mg·g−1) 230.31
k1 (min−1) 0.060

R2 0.9524

PSO model
qe (mg·g−1) 253.31

k2 (g·mg−1
·min−1) 3.30 × 10−4

R2 0.9912

Intra-particle diffusion
C 93.58

Kdif (mg g−1 min−1/2) 11.78
R2 0.8795
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Figure 8. (a) Adsorption kinetics for the adsorption of U(VI) (b) adsorption kinetics for the adsorption
of Eu(III) (dose = 0.01 g, 25 mL, pH = 7, concentration 100 mg/L, at room temperature).

The thermodynamics parameters, including change in enthalpy (∆H), change in entropy (∆S),
and the Gibbs free energy (∆G), during the adsorption of U(VI) and Eu(III) were determined using the
van’t Hoff equation and the details are given in supplementary information [65,66]. The results are
illustrated in Figure 9a, and they reveal that the adsorption of both the metal ions proceeds via an
exothermic reaction and the negative value of the ∆G supports the spontaneous reaction. The values
of ∆G increased with the temperature of the solution and the results are summarized in Table 3.
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Figure 9. (a) adsorption thermodynamic of U(VI) and Eu(III) over CoFe2O4@DHBF (b) regeneration
behavior of CoFe2O4@DHBF (dose = 0.01 g, 25 mL, pH = 7, concentration 100 mg/L, time 60).

Table 3. Thermodynamic parameters for the adsorption of U(VI) and Eu(III) on CoFe2O4@DHBF.

Temperature
(K)

U(VI) Eu(III)

Entropy
(∆S)

Enthalpy
(∆H)

Gibbs Free
Energy (∆G)

Entropy
(∆S)

Enthalpy
(∆H)

Gibbs Free
Energy (∆G)

298 −0.0605 −25.87 −7.82 −0.107 −41.79 −9.64
303 −0.0605 −25.87 −7.51 −0.107 −41.79 −9.10
308 −0.0605 −25.87 −7.21 −0.107 −41.79 −8.56
313 −0.0605 −25.87 −6.91 −0.107 −41.79 −8.02
318 −0.0605 −25.87 −6.60 −0.107 −41.79 −7.48
323 −0.0605 −25.87 −6.30 −0.107 −41.79 −6.94

3.3. Reusability and Regeneration Ability

The reusability and regeneration of the CoFe2O4@DHBF was carried out with six cycles and the
results are illustrated in Figure 9b. It was noticed that the fabricated nanocomposites show excellent
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regeneration ability and about to 220.1 and 211.3 mg/g adsorption capacity remains with U(VI) and
Eu(III) under optimum conditions (pH = 7, room temperature, initial concentration 100 mg/L, dose of
adsorbent 0.01 g, volume 25 mL) [67,68]. The slow decrease in the adsorption capacity with each
cycle of regeneration may be due to the loss of the adsorbent during the regeneration because no
change in the adsorption site was noticed and supported by the XPS spectra after 3 cycles as shown
in Supplementary Figure S3. These outcomes revealed that the CoFe2O4@DHBF exhibits promising
regeneration ability for the adsorption of both the metal ions and in future can be used as a potential
adsorbent for the adsorption of toxic pollutants form aqueous solution on an industrial scale.

4. Conclusions

Herein, we have fabricated novel nanocomposite and characterized successfully. As-prepared
nanocomposite was utilized as capable adsorbent for the removal of U(VI) and Eu(III) form contaminated
water. The batch adsorption results exposed that the adsorption capacity for the removal of U(VI)
and Eu(III) was found to be 237.5 and 225.5 mg/g, respectively, at room temperature. The optimum
condition of the adsorption of both metal ions were pH = 7, initial concentration 100 mg/L, contact time
60 min, and room temperature. The interaction between the metal ions and the CoFe2O4@DHBF was
determine using the adsorption isotherm and adsorption kinetics. The adsorption of both the metals
followed the pseudo-second order reaction model and Langmuir adsorption isotherm. The correlation
coefficient (R2) values of the Langmuir isotherm were found to be 0.9920 and 0.9913 for the adsorption
of U(VI) and Eu(III), respectively. Additionally, the reusability results exhibit promising regeneration
ability for the adsorption of both the metal ions and in future can be used as a potential adsorbent for
the adsorption of toxic pollutants form aqueous solution on industrial scale.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/12/2940/s1,
Table S1: A comparison of removal technologies for the removal of radioactive metal ions, Figure S1: Zeta potential
of synthesized CoFe2O4@DHBF, Figure S2: (a) Effect of initial concentration for the adsorption of U(VI) and Eu(III)
onto CoFe2O4@DHBF (in distilled water) (b) Effect of initial concentration for the adsorption of U(VI) and Eu(III)
onto CoFe2O4@DHBF (in synthetic wastewater) (0.01 g adsorbent, 25 mL, optimum pH = 7, optimum time 60 min
at room temperature), Table S2: Comparison of adsorption capacities of Eu(III) and U(VI) by various adsorbents,
Figure S3: XPS spectra after adsorption of U(VI) and Eu(III) and after desorption 3 cycles.
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