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Abstract: Magnetostriction effect, i.e., deformation under the action of a uniform applied field,
is analyzed to detail for a spherical sample of a magnetoactive elastomer (MAE). A close analogy
with the field-induced elongation of spherical ferrofluid droplets implies that similar characteristic
effects viz. hysteresis stretching and transfiguration into a distinctively nonellipsoidal bodies,
should be inherent to MAE objects as well. The absence until now of such studies seems to be
due to very unfavorable conclusions which follow from the theoretical estimates, all of which
are based on the assumption that a deformed sphere always retains the geometry of ellipsoid
of revolution just changing its aspect ratio under field. Building up an adequate numerical
modelling tool, we show that the ‘ellipsoidal’ approximation is misleading beginning right from
the case of infinitesimal field strengths and strain increments. The results obtained show that the
above-mentioned magnetodeformational effect should distinctively manifest itself in the objects made
of quite ordinary MAEs, e.g., composites on the base of silicone cautchouc filled with micron-size
carbonyl iron powder.

Keywords: magnetic polymers; magnetoactive composites; magnetomechanical hysteresis,
computer simulation

1. Introduction

1.1. Field-Induced Striction in Magnetoactive Elastomers

Magnetoactive elastomer (MAE) by now has become—successfully consolidating a variety of a
number of other definitions—a conventional term to designate a family of soft materials which
comprise weakly-linked polymer matrices filled with ferromagnet/ferrite micron-size particles. Due to
their macroscopically significant shape and force response to applied magnetic fields and, reciprocally,
considerable change of magnetic properties under mechanical loads, MAEs display a diversity of
unique magnetomechanical effects. Recent fascinating examples of MAEs use as active elements
in micron-scale technical device and medical engineering—field-tuned acoustic metamaterials [1],
microfluidic transportation systems [2,3], remotely controlled grippers and microrobots [4–7]—make it
utterly important to fundamentally understand the physics and mechanics underlying the functional
properties of these composites.

One of the essential and well known features inherent to those composite materials is their
magnetostriction, i.e., the effect where a sample changes its shape when subjected to a uniform magnetic
field. It is important to distinguish the magnetostriction of MAEs from its namesake term that is used
in solid-state magnetism since long ago. The point is that in MAEs the origin of the effect is not the
rearrangement of interatomic distances inside the crystal lattice but the process that evolves at a much
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greater scale in order to minimize the magnetostatic energy of a MAE as an assembly of magnetic
particles embedded in an elastic matrix. Due to its entirely different physics, magnetostriction of
MAEs is many orders of magnitude greater than that in magnetic crystals and is easily observed in
macroscopic experiments. In terms of continuum media electrodynamics, the governing tendency that
drives the magnetosctiction of MAEs is a strive to reduce the internal demagnetizing field by way of
reshaping of the deformable sample, in which process substantial portions of the material move with
respect to each other. Provided that spatial structure of the particles inside each macroscopically small
(but containing many micron-size magnets) element remains the same (e.g., homogeneously random)
this type of magnetostriction is perfectly prone to be modelled in the framework of a continuum theory.

Along with the macroscopic striction mechanism, in MAEs there exists another response
mode which implies particle rearrangements (e.g., aggregation) on the local (mesoscopic) scale.
Those structure changes are also governed by the tendency to energy minimization [8,9] and, thus,
may collectively contribute to macroscopic deformation [10,11]. The processes of that kind are
described with the aid of mesoscopic models [12–14]. Given that in standard magnetomechanical
experiments there is no possibility to reliably separate the effects of macroscopic and mesoscopic
strictions, the issue of their interplay in MAEs is still disputable [10–14]. However, in general, one may
be sure that the basics of the magnetostriction effect in MAEs is well established experimentally [15–22]
and to a good extent understood theoretically [21–29]. Note that the above-presented bibliography is
rather incomplete, from a waste array of literature on physics and mechanics of MAEs we have chosen
only the works which have the closest relation to the subject. Namely, in below we focus only on the
‘classical’ MAEs, i.e., the systems filled with magnetically soft (low coercive) particles whose spatial
arrangement in the matrix is homogeneous and random.

The issue that we analyze here, is a large-scale deformation (morphing) of a spherical sample of
MAE induced by magnetostriction. We show that this effect is accompanied by strong shape changes
of the initially spherical sample and, under appropriate (and attainable) conditions, acquires hysteresis
character. To the best of our knowledge, this interesting and potentially useful phenomenon has never
ever been observed experimentally or modelled theoretically with any reasonable accuracy. The major
cause for that, in our view, is a gravely unfavorable forecast, once obtained on the basis of seemingly
reasonable estimates which turn out to be, although correct qualitatively, but completely misleading
quantitatively. In below we, first, present the initial consideration, see Section 2, and then in the
following sections show that in quantitative aspect the predicted result differs from a correct one by
more than an order of magnitude. Our final results prove that the shape hysteresis of a MAE sample
(a sphere is a test body), or at least the pretrasitional regime, might be observed using quite ordinary
MAE composites.

1.2. MAE Objects and Dense Ferrofluid Droplets: Resemblances and Differences

We treat the problem in the framework of a continuum model since in magnetostriction
experiments on conventional MAEs, a sample (sphere, ellipsoid, cylinder, prism, etc.) always elongates
in the direction of the field thus evidencing that the reduction of demagnetizing field is the leading
effect by far exceeding the mesoscopic contributions. Upon adopting this approach and looking for
analogues, one runs into striking similarities between magnetostriction of MAEs and deformation
patterns of high-density ferrofluid (FF) drops emerging in result of phase separation in poorly stabilized
ferrocolloids. In such droplets the particle concentration is quite large and steric restriction mostly
suppresses the mesoscopic rearrangements. On the other hand, the droplet as itself is easily deformable
and responds to an applied field with large overall deformations. Moreover, in both cases a body that
has elongated under the action of the field, restores its shape when the field is turned off.

For a FF micron-size droplet, a complicated scenario of the field-induced deformation had been
discovered yet in 1980’s [30–33]. Namely, under an increase of the field strength, a spherical droplet,
first, stretches just slightly but then, in a threshold-like manner, undergoes a jump-like elongation
becoming a distinctively anisometric object in the direction of the field. Moreover, whereas before
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and just after the abrupt stretch the droplet shape in general resembles a spheroid, upon further
increase of the field the droplet transforms to a spindle-like body with distinctively tapered tips. It had
been found that: (i ) this sequence of states takes place only for the droplets with sufficiently high
magnetic permeability and (ii) the occurring deformation is of hysteresis type: upon the field decrease,
the droplet shrinks back to a small-eccentricity spheroid at a field strength that is lower than the
threshold necessary to induce its elongation [34–36].

The particular differences between FF droplets and MAE bodies are clear as well. First,
the magnetism of a ferrofluid is due to ferrite (e.g., magnetite) nanoparticles whereas the magnetic
sensitivity of a standard MAE is ensured by the presence of micron size particles of a low-coercive
ferromagnet (carbonyl iron). This implies that the magnetic susceptibility of a typical MAEs is much
greater. Another feature difference is that the integrity of a FF droplet is due to the interface tension
that acts at the border of the droplet with the liquid it is floating in. In case of a MAE, the sample
integrity is granted by its polymerized body whereas surface tension plays minor rôle. Accordingly,
the forces, which restore the initial shape of the object after the field turn-off, have different origin:
surficial for droplets and bulk for MAE species.

The internal mechanics of the objects is substantially different as well: whereas inside a fluid
content of a FF droplet only isotropic intrinsic stresses might exist, the deformation state of a MAE
body is a result of joint action of isotropic (pressure) and shear stresses.

Finally, comparing the prospects of obtaining samples with the size convenient for measurements
or applications, one finds out a definite advantage: the MAE spheres may be manufactured with any
diameter ranging from millimeters to centimeters, meanwhile the size of FF droplets cannot exceed
20 µm, so that their transformations are observed only under microscope. In other words, there is a
strong a priori evidence in favor of occurrence of a scale-invariant hysteresis behavior of MAE samples
in the magnetostriction regime.

2. MAE Sphere under a Uniform Field. Qualitative Analysis

Here we present a a simple comprehensible description of deformation of a MAE sphere,
very similar to that used for MAEs in the first magnetostriction studies. Let a sphere of radius
R be made of a deformable magnetizable incompressible elastic medium. We assume, as it is done in
almost all the theoretical papers on droplets and MAEs, that in the course of field-induced elongation
the sphere transforms into a prolate spheroid with its major axis pointing along the field direction.
Note that, as already mentioned, the ‘spheroid’ hypothesis is not very accurate, it is employed only
because of its convenience for qualitative analysis.

Under a uniform field ~H0, the internal field ~H inside the spheroid is also uniform and coaligned
with ~H0; due to isotropy of the MAE magnetic susceptibility χ, this applies for magnetization ~M as
well. Setting the Oz axis of coordinate framework along this direction, one sees that only z-projections
of all the magnetic vectors are relevant for the problem.

The internal field inside a spheroid in the direction of ~H0 is

H = H0 − 4πNM, (1)

where N is the component of demagnetizing tensor in the direction of the field, it is the smaller the
more elongated the spheroid. For a prolate spheroid with semi-axes a (major) and b (minor) and
fixed volume V = (4π/3)R3, the demagnetizing coefficient N (λ) is a well-known function, see [37],
for example, that monotonically tends to zero with the increase of stretch ratio λ = a/R.

Then the magnetic energy of the model MAE body derived from the general expression [37] is

Emag = EmagV, Emag = −
∫ H0

0
M
(

H,N (λ)
)
dH0, (2)

where Emag is the magnetic energy density.
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The assumption of spheroidal shape of the deformed sphere entails that the acquired deformation
is homogeneous. Then, describing the excess of the elastic energy under strain λ by the two-parameter
Peng–Landel model [38] one gets

Eel = EelV, Eel =
1
2 G
(

J−2/3
(

λ2 +
2
λ

)
− 3
)
+ 1

2 K(J − 1)2 ⇒
J = 1

1
2 G
(

λ2 +
2
λ
− 3
)

; (3)

here Eel is the elastic energy density, J the determinant of deformation gradient tensor , whereas G
and K are the shear and bulk moduli, respectively. For an incompressible material (J = 1) the elastic
potential transforms to the neo-Hookean one, as indicated by the last part of Equation (3). At small
perturbations (λ− 1)� 1 Formula (3) reduces to a simple Hooke law.

Uniting expressions (2) and (3), one arrives at the magnetoelastic energy density Em+e = Emag + Eel
of a model MAE body under field H0. Equilibrium configurations of the spheroid are determined
from minimization of function Eme with respect to λ at a given H0. Differentiation with allowance for
Equation (1), yields the energy extremum equation ∂Em+e/∂λ = 0 in the form

Gλ
(

1− λ−3
)
+ πM2 ∂N

∂λ
= 0. (4)

We consider Equation (4) for a linear magnetization law M = χH, where magnetic susceptibility
χ is constant all over the sample. Even under those facilitating assumptions, an explicit analytic form
is available not for the magnetodeformational curve λ(H0) but for the inverse function that is

H0(λ) =

[
1
χ
+ 4πN (λ)

]√
−Gλ(1− 1/λ3)

π ∂N (λ)/∂λ
or

H0√
G

=

[
1
χ
+ 4πN (λ)

]√
− λ(1− 1/λ3)

π ∂N (λ)/∂λ
(5)

where the last expression is nondimensional.
Figure 1 shows magnetodeformational curves—the increment of nondimensional stretch ratio

λ − 1 as a function of nondimensional external field H0—rendered by Equation (5). As it is seen,
at sufficiently high χ the curves, instead of being single-valued, become S-shaped, so that one and the
same field strength (imagine a vertical line at H0 slightly above 2) may correspond to either of two stable
MAE spheroids, whose stretch ratios are notably different. Therefore, this schematic consideration
predicts that a MAE sphere, provided its material parameters are appropriate, responds to applied
uniform field in a hysteresis way: at increasing field, first, becomes a slightly elongated spheroid but
further on enhances its anisometricity (eccentricity) in a jump-like way.

0 1 2 3 4 5 6 7 8
0

2

4

6

1

H0

1

2

3
4

5

Figure 1. Magnetodeformational curves for a sphere made of a linearly magnetizable MAE with
neo-Hookean stress-strain law. The curves (right to left) correspond to the values of magnetic
susceptibility χ [in CGS units]: 0.5 (1), 1.0 (2), 6.0 (3), 20 (4) and 40 (5); the external field strength
is scaled as H0 = H0/

√
G.
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From the curves of Figure 1 it follows that the curves acquire the S-shaped profile as soon as χ

exceeds the value delivered by the root χ∗ of equation

dH0(χ, λ)/dλ = 0. (6)

Solution of Equation (6) yields χ∗ ' 25 [in CGS units], so that the corresponding SI susceptibility
is an order of magnitude higher. Given the magnetic parameters of real MAEs, one concludes that
neither composite of that kind can even approach the requirement. In this connection, we point out
Ref. [39] where the same, as above, problem was solved for the Mooney-Rivlin elastic potential of
the matrix, and had rendered very much similar results. In particular, the authors have obtained
analytically the threshold value of magnetic susceptibility of a MAE as χ∗ ' 23 [CGS units] that is
virtually the same as χ∗ ' 25 that we have evaluated numerically.

It is important to remark that the ‘spheroidal’ hypothesis worked very well for FF droplets in
qualitative as well as in quantitative aspect [32,33]. This implicitly makes it to seem well reliable
with respect to MAE spheres, and that—in view of the above-obtained estimates—entirely excludes a
chance to observe a hysteresis stretching of a MAE sphere.

The reason that makes one to doubt good applicability of ‘spheroid’ approximation in the MAE
case turns up when one recalls the fundamental difference in mechanical stress distributions in fluid
and elastic objects. Namely, this is the presence of shear stresses in elastic bodies; in formal terms—the
non-diagonality of the internal stress tensor. The crucial rôle of the latter had been demonstrated in
2005 by Raikher and Stolbov [24] who had found that neither magnetic nor mechanical stress fields
may be considered to be uniform yet under infinitesimal nonsphericity of an initially spherical MAE
body. Although those shape deviations are hardly discernible in visually presentations, the energy
gain due to spatial non-uniformities of both fields ranges tens of percent. With allowance for that,
and taking into account that a sphere with χ in the ‘pretransitional’ range (χ ∼ χ∗) displays a very steep
growth of λ with H0 (see curves 4 and 5 in Figure 1), one can justly surmise that the non-ellipticity,
once appeared, would drastically enhance in the high-field regime. In particular, this implies that
the initially rounded ends of the former sphere would taper and resemble rather cones than smooth
convexes. To address these issues, in the following we perform numerical modelling of the problem by
means of finite element method.

3. MAE Sphere under a Uniform Field: A Coupled Magnetoelastic Problem

3.1. Finite Deformations Approach

Anticipating large shape changes, the problem is formulated in terms of finite strains. For that,
two configurations are introduced: the initial and actual ones, so that to the radius-vector~r defined in
the initial configuration corresponds the radius-vector ~R =~r + ~u in the actual configuration, here ~u is
displacement vector. The basis vectors are defined as~εi = ∂~r/∂qi and ~̂εi = ∂~R/∂qi in the initial and
actual configurations, respectively; here qi are generalized coordinates.

Hamilton operators in the initial and actual configurations are introduced as ∇ = ~ε i∂/∂qi and
∇̂ = ~̂ε i∂/∂qi where~ε i and ~̂ε i are the vectors of respective reciprocal bases. Introducing fundamental
kinematic function—deformation gradient—as

F = (∇~R)T = ~̂εi~ε
i = g +∇~u T , (7)

where g is metric (unit) tensor and index T denotes transposition, for the inverse function one has

F−1 = (∇̂~r)T = ~εi~̂ε
i = g− ∇̂~u T . (8)

In these terms, the Hamilton operators in initial and actual configurations are related to each
other as
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∇̂ = F−1 ·∇. (9)

A generic expression for an elastic potential of initially isotropic continuum may be presented in
the form

W = W
(

I1(C), I2(C), I3(C)
)
, (10)

where I1(·) = Tr(·), I2, I3 = Det(·) are the main tensor invariants of the right Cauchy–Green
deformation tensor C. With potential (10), the Piola-Kirchhoff tensor of second kind PI I = 2∂W/∂C
takes the form [40]

PI I = 2
(

∂W
∂I1

∂I1

∂C
+

∂W
∂I2

∂I2

∂C
+

∂W
∂I3

∂I3

∂C

)
and the Cauchy stress tensor writes

T = J−1F·PI I ·FT (11)

with J = I3(F) being the Jacobian of deformation gradient tensor.

3.2. Elasticity Energy

To describe the mechanical behavior of an MAE in a realistic way, we choose W in the Peng-Landel
form [38] since it is known to be well appropriate for slightly compressible elastomers at large strains:

W = 1
2 G
(

J−2/3 I1(C)− 3
)
+ 1

2 K(J − 1)2; (12)

we set K = 500G.
To solve the problem in actual configuration, the space of entire calculation box Ω is split in

two parts: Ωsam that is the sample and Ωsur that is its surrounding. To maintain continuity of the
deformation gradient F everywhere in Ω, we ascribe to the sample surrounding an elasticity potential
in the same form as (12) but with modulus Gs that is several orders of magnitude lower than G to
make a particular value of Gs irrelevant for final results. Under those conditions, the elastic energy of
the system is

Uel =
∫

Ωsam
WdV0 + ks

∫
Ωsur

WdV0, (13)

where ks = Gs/G = 10−5 and dV0 = dV/J is the volume element in the initial configuration.

3.3. Magnetic Energy

In the absence of electric currents—we assume that conductivity of MAE is negligible—the
magnetic field ~H inside the system might be presented as a gradient of a scalar function ψ in the
actual configuration:

~H = ~H0 − ∇̂ψ, (14)

where ~H0 denotes external field.
Expression for the magnetic energy density increment valid for any point of the space Ω is [37]:

δWmag = − 1
4π
~B·δ~H, (15)

with ~B = ~H + 4π ~M being magnetic induction vector that incorporates field ~H and magnetization
vector ~M.

Under assumption of linear magnetization law ~M = χ~H with a constant isotropic susceptibility
χ, the magnetic energy density is

Wmag = − 1
8π (1 + 4πχ)H2, (16)
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so that the magnetic part of the system energy takes the form

Umag =
∫

Ω
Wmag J dV0 = − 1

8π

∫
Ω

H2 J dV0 − 1
2 χ
∫

Ωsam
H2 J dV0, (17)

where the field ~H (14) is transformed to the actual configuration with the aid of Hamilton operator as

~H = ~H0 − F−1 ·∇ψ. (18)

Uniting Equations (13) and (17), one arrives at the expression for the joint magnetoelastic energy
of the system:

U(∇~u,∇ψ) = − 1
8π

∫
Ω

H2 J dV0 + ks

∫
Ωsur

W dV0 +
∫

Ωsam
(W − 1

2 JχH2) dV0, (19)

which minimum determines the equilibrium shape of the MAE sample under a given field. For the
problem under study, the general form of variational equation to be solved is

δU =
∂U

∂(∇~u) · ·(∇δ~u)T +
∂U
∇ψ
·∇δψ = 0. (20)

4. Method of Solution

The problem has evident axial symmetry around the direction of applied field. Accordingly,
a cylindrical coordinate frame (ρ, z, ϕ) is introduced with polar axis along ~H0. Making further use
of the symmetry, we consider only a space region abutting the quarter (1st quadrant) of the circle of
radius 10R that is perpendicular to Oz and centered at the coordinate origin, the outer border of this
region is denoted as Γ.

Equation (20) is solved numerically by the finite-element numerical method realized in the
algorithms of FEniCS computing platform [41,42]. The built up mesh is nonuniform, it is most dense
at the central part of Ω and gradually becomes more sparse when approaching Γ. Two functions:
~u(ρ, z) and ψ(ρ, z) defined in a mixed finite-element space (P3, P1) inside Ω, are evaluated under
boundary conditions

uρ

∣∣
ρ=0 = 0, uz

∣∣
z=0 = 0; ψ = 0 on Γ. (21)

The strength of applied field ~H0 is varied gradually in small steps. Equation (20) is solved anew for
each value of H0 with boundary conditions (21) on the adopted mesh by Newton method (implemented
in FEniCS platform); the values of ~u(ρ, z) and ψ(ρ, z) obtained in result of a given calculation step are
taken as initial ones when commencing the next step. For the case of finite deformations, the stretch
ratio is evaluated according to λ = 1 + uz(ρ = 0, z = R)/R that fully complies with the previous
definition since for a spheroidal case R + uz(ρ = 0, z = R) = a.

5. Results and Discussion

A simple test for correctness of the obtained results follows from comparison with the dependence
derived analytically in the framework of perturbation theory in Ref. [24]; when recalculated for a
linearly magnetizable MAE it yields

λ− 1 =
20χ2H2

0

57
(
1 + 4π

3 χ
)2 . (22)

As already mentioned, formula (22) had been obtained beyond the ‘spheroidal’ approximation:
the magnetic and mechanical stress fields inside the MAE sphere are nonuniform.
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The results of numerical modelling, which scheme is outlined in Sections 3 and 4, are shown in
Figure 2 together with plots of the perturbation-approach formula (22).

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1 1

H0

1

2

3
45

Figure 2. Magnetodeformational curves for a sphere made of a linearly magnetizable MAE with
Peng–Landel stress-strain law. Solid curves are obtained by numerical modelling, dashed curves
render dependence (22). The curves (right to left) correspond to the values of magnetic susceptibility χ

[in CGS units]: 0.1 1), 0.2 (2), 0.3 (3), 0.5 (4) and 1.0 (5); the external field strength is nondimensionalized
as H0 = H0/

√
G.

As seen, quite expectably, the perturbation theory works the better the lower the susceptibility.
A much more striking feature is that, in comparison with the parameters of the plots of Figure 1,
the values of χ which ensure strong elongation, are 40–50 times lower than those predicted by the
‘spheroidal’ approximation. This proves that prognostic ability of the latter in the MAE case is very
limited. Apparently, there is only general qualitative likeness between the plots of Figures 1 and 2 and,
this completely changes the view on the possibility to really access the effect. For example, according
to Figure 2 a well discernible hysteresis loop emerges at χ > 0.5, see curve 5 that corresponds to
χ = 1. Certainly, even with the so much reduced estimate, to find a MAE with χ > 0.5 among now
available systems is hardly possible. However, even at χ ∼ 0.2 the growth of λ(H0) is much faster than
parabolic, and this is an unambiguous signature of the pretransition regime. To test such a behavior
should not be difficult since χ ∼ 0.20–0.24 is a typical value for standard MAEs filled with carbonyl
iron under the particle volume fraction around 30% [8,43,44].

Another and unavoidable drawback of the ‘spheroidal’ hypothesis comes out when the overall
shapes assumed by a magnetized MAE sphere are investigated with the aid of correct numerical
modelling. The sequences of the obtained configurations are shown in Figures 3 and 4. Notably,
independently of actual value of χ all the high-field shapes acquire tapered tips where the local
geometry is completely different. Namely, one of the two main surface indices changes sign:
the meridional curvature, being positive (convex) at the main part of the body, becomes negative
(concave) at the lateral surface of the tips.

For completeness and in connection with the magnetomechanical hysteresis phenomena in MAEs,
we remark that the above-discussed situation is not the only case where such a scenario is encountered.
In particular, the shape transition of a distinctive hysteresis type was discovered experimentally by
Zrínyi et al. [45], the theoretical explanation was given in Refs. [39,45]. A rod-like sample made of
a very soft MAE (ferrogel), was positioned in such a way that one of its ends was close to a field
source (solenoid). On increasing the current in the solenoid, the rod underwent an abrupt elongation
in the direction of the field source, whereas on the current turn-off it restored its initial state passing,
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on its way back, the stage of jump-like shrinking. The intensity of electric current under which the
jump-like stretch occurred was considerably higher than that at which the rod restored its initial length.
This interesting example of hysteretic behavior of a MAE is, however, essentially different from the
magnetostriction situation that we study here. Namely, the stimulus that compels the rod to deform
originates from a nonuniform magnetic field, so that there is a non-zero force exerted on its center of
mass. Meanwhile, in our problem, the MAE object is free-standing as in a uniform field there is no net
force acting on it.
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Figure 3. Meridional cross-sections of the shapes assumed by a MAE sphere under increasing
field; the field is directed along Oz axis and ρ is the transverse cylindrical coordinate. The magnetic
susceptibility χ and field strength H0 values are indicated at each panel.
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Figure 4. Shape evolution of a MAE sphere with χ = 0.2 under increasing magnetic field;
the nondimensional field strengths are (from left to right): H0 = 0; 5.7; 6.12; 7.42 and 9.55.

6. Conclusions

• Theoretical evidence is presented that magnetostriction effect in free-standing MAE
samples—sphere is a test object—could be understood and studied adequately only with the aid of
a detailed magnetomechanical description. The basic cause for that is that only the finite-element
or alike methods are able to account for the virtually infinite number of degrees of freedom of a
deformable elastic body.

• As soon as a powerful numerical tool is applied, it turns out that the estimates obtained
with ‘spheroidal’ approximation could be used exclusively for qualitative analysis and have
no quantitative validity. The here obtained solution refutes the former prediction of virtual
impossibility to observe magnetomechanical hysteresis of MAE samples and moves the
appropriate parameter interval to a real range.

• Even if the magnetic susceptibility of a MAE is not high enough to ensure a real jump of the
stretch ratio λ, function λ(H0) signals on the proximity of the hysteresis regime by a characteristic
inflexion. Besides that, and contrary to the case of ferrofluid droplets, in MAE objects the effect
has no size limitations and may well occur at macroscopic scale.

• The model that we use is adequate for the problem solved but is limited to statics and linearly
magnetiable MAEs. A first step forward, utterly necessary and not extremely laborious, should be
its extension for a nonlinear magnetization law since magnetic saturation is a fundamental feature
of MAEs; such an improvement would bring theoretical predictions closer to real situation.

• In our view, for further advances the model should be developed along the following lines:

– it should allow for re-distribution of the filler particles, which, albeit elastically impeded
by the MAE matrix, possess some translational freedom that is the greater the softer the
elastomer. Due to geometry reasons, the internal field gradients in the tips exceed those
in the middle section of the body, so that the magnetic forces urge the particles to the tips.
The augmented particle concentration enhances the local magnetic susceptibility of the tip,
and this, in turn, affects its geometry. At present, the net effect of this interplay is unknown.

– it should be extended to have a dynamic formulation. This would give an opportunity to
estimate the response time of a MAE sphere shape morphing that, obviously, would strongly
depend on the object size. Besides that, a large number of cases where MAE objects of various
shapes may undergo field-controlled motion and locomotion would become accessible for
reliable predcitions. Evidently, this class of problems is very interesting from a great many of
applicational viewpoints.
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