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Abstract: In this study, we report on the use of poly(cyclohexylmethacrylate) (PCHMA) as an
alternative to the commonly used poly(methylmethacrylate) (PMMA) for the design of efficient
luminescent solar concentrators (LSCs). PCHMA was selected due to its less polar nature with respect
to PMMA, a characteristic that was reported to be beneficial in promoting the fluorophore dispersibility
in the matrix, thus maximizing the efficiency of LSCs also at high doping. In this sense, LSC thin
films based on PCHMA and containing different contents of Lumogen F Red 305 (LR, 0.2–1.8 wt%)
demonstrated optical efficiencies (ηopt) comprising between 9.5% and 10.0%, i.e., about 0.5–1% higher
than those collected from the LR/PMMA systems. The higher LR/polymer interactions occurred using
the PCHMA matrix maximized the solar harvesting characteristics of the fluorophore and limited the
influence of the adverse dissipative phenomena on the fluorophore quantum efficiency. These effects
were also reflected by varying the LSC film thickness and reaching maximum ηopt of about 11.5% in
the case of PCHMA films of about 30 µm.

Keywords: poly(cyclohexylmethacrylate); poly(methylmethacrylate); Lumogen F Red 305;
optical efficiency; luminescent solar concentrators; photovoltaics

1. Introduction

Climate change is one of the most relevant issues of our time. It is a shared opinion that the
exponential increase in the energy demand has played (and sill plays) a major role in it, due to the
vast use of fossil fuels and the related carbon dioxide emissions [1]. In this sense, renewable sources
have become a powerful tool to reduce pollution. Among these, solar power is the cleanest and
most abundant renewable energy source available and it can be converted into electrical or thermal
energy through photochemical, photothermal, or photovoltaic processes. The latter consists in the
direct conversion of sunlight into electricity and has been extensively investigated both in industry
and academia for its simple scalability respect to power needs. Photovoltaic systems (PV) achieved
tremendous progress in the past decades, leading to a 90% decrease in the energy price from 2007 to
2017 [2]. At the end of 2018, global PV capacity reached about 512 GW, of which about 180 GW (35%)
were newly installed capacity [3].

However, because of their working principles, it is complex to integrate these solutions in the
urban environment where the solar radiation is far from being optimally used. This is because the
power produced by solar modules is directly proportional to the total power (i.e., the flux) of the
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incident light and thus the performances of these devices are drastically reduced when they operate in
diffuse light or with a nonoptimal orientation [4]. As a result, currently, their use in cities is mostly
limited to roof-top installations. A better and improved integration of solar power with the urban
architecture, however, could bring an outstanding contribution toward the realization of greener
and smarter cities of our future, where energy is produced directly where it is used, from renewable
resources, and without requiring additional dedicated space [5].

Among possible systems for building-integrated PV, we can find luminescent solar concentrators
(LSCs), optical systems intrinsically capable of trapping and concentrating light [6]. The concept of
LSCs was first developed in the 1970s as an eco-friendly alternative to reduce the total cost of solar
energy [7]. A typical LSC is made of a slab of a transparent matrix (the host), often a polymer, in which
a fluorescent substance (the guest), often an organic dye with a high quantum yield, is dispersed
(Figure 1) [8].
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Figure 1. Working principle of the luminescent solar concentrators (LSC)/photovoltaic systems
(PV) system.

When the LSC/PV system is exposed to a radiation of a suitable wavelength, the latter is absorbed
by the fluorophore, which then re-emits it at a longer wavelength by fluorescence. Because of the
refractive index mismatch between the host and the air, this radiation remains trapped in the device by
means of total internal reflection and it is emitted from the sides of the slab where it can be conveyed to
a PV solar cell to produce electricity. Compared to the standard solar technology, the main advantages
of these devices consist in their ability to work better than conventional designs in diffuse sunlight
conditions (as in urban and domestic environments), they are transparent, and they have pleasing
colors that can be used as functional architectural elements [9]. Several examples of working LSC
prototypes can be found in the literature [10,11]. In addition, the technology of LSC can also be
employed as spectral converter, shifting wavelengths of the solar spectrum to different ones that better
match the regions of better efficiencies of solar cells [12].

However, light reabsorption and fluorescence quenching phenomena limit the PV performances
in LSC [13]. To tackle this problem, much attention was given in the development of new
fluorophores to improve the light concentration in LSCs cells. In particular, such compounds
must possess specific characteristics to enhance the overall efficiency including broad absorption
range, minimal self-absorption phenomena (i.e., large Stokes shift), high fluorescence quantum
yields, long-term photo- and thermal stability (more than 20 years), and good solubility in the host
matrix [14,15]. Commonly used fluorescent emitters include organic dyes [8,16–19], quantum dots [20],
and lanthanide ions [21–25]. Among the wide variety of chromophores considered for LSCs,
the perylenediimides [26,27]—and, in particular, the perylene-based fluorophores of the Lumogen
series from BASF—represent the state-of-the-art in this field, thanks to the high quantum yields and
long-term stability [28–30]. For instance, Lumogen F Red 305 (LR) is a fluorescent dye characterized by
excellent photostability, efficient absorption in the visible light region, and high quantum efficiency
with approximately 97% yield in poly(methylmethacrylate) (PMMA) [31], the most common host
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polymer for LSCs devices. In addition, among the proposed designs, the stacking of two or three layer
configurations and the mixing of multiple fluorophores in the same bulk are also encountered in the
literature to increase the overall LSC/PV power output [32,33].

Together with the characteristics of the dye, also the properties of the host matrix can affect the
final performances of an LSC. The wide-spread use of PMMA for these applications, is due to the
fact that it is commercially available, easy to process, and possess several optimal characteristics
for LSC devices, such as a refractive index of about 1.50, a high glass-transition temperature (Tg),
good transparency, and good compatibility with most of organic fluorophores [34]. Nevertheless, it is
also possible to overcome some of the limits of LSC devices by changing the nature of the polymeric
host material [35]. Aimed to find accessible sustainable solutions, recent approaches suggested the
use of biobased renewable resources as supporting matrices for LSC. L-poly(lactic acid) (L-PLA) [36],
cellulose nanocrystals [37], fluorescent proteins [38,39], polyesters [40], and waterborne coatings [41]
have been reported as sustainable alternatives to PMMA. In addition, poly(oxyalkylene)/siloxane
organic–inorganic hybrid known as a ureasil and obtained from a sol–gel chemistry route have been
recently employed as matrix for LSCs [42,43]. Over last years, improving the efficiency of PMMA as
host matrix for LSCs have been a hot topic for many researchers. For example, Griffini et al. reported
fluorinated polymers as matrix thin-film LSC devices with improved stability over time [44]. It was
demonstrated that polymers with a more hydrophobic character than PMMA represent a viable
alternative for LSCs [45,46]. Mansour et al. prepared a copolymer formed by styrene and methyl
methacrylate (poly(STY-co-MMA)) doped with three different fluorophores, reporting an enhancement
of the concentration efficiency for all tested copolymer/dye systems that the authors ascribed to the
improved compatibility of the matrix with the apolar high quantum yield fluorophores [47].

On this account, we herein report on the performances of the commercially available
poly(cyclohexylmethacrylate) (PCHMA) polymer matrix regarding the optical features and
performances of thin-film LSCs. Notably, PCHMA (Figure 2A) was proposed in the literature
as a more hydrophobic polymer matrix than PMMA that made it able to effectively disperse carbon
fillers [48]. We selected LR (Figure 2B) as the state-of-the-art fluorophore for LSCs and we compared
its optical efficiencies in PCHMA with those of standard PMMA-based thin-film solar collectors.

Figure 2. Chemical structures of (A) poly(cyclohexylmethacrylate) (PCHMA) and (B) Lumogen F Red
305 (LR).
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2. Materials and Methods

2.1. Materials

All the solvents were obtained from Sigma-Aldrich and used as received.
Poly(cyclohexylmethacrylate) (PCHMA, Mw = 65,000 g mol−1, glass transition temperature
(Tg) = 104 ◦C) and poly(methylmethacrylate) (PMMA, Mw = 350,000 g mol−1, Tg = 105 ◦C) were
purchased from Sigma-Aldrich (Sigma Aldrich, Milan, Italy) and used as received. Lumogen F Red
350 (LR) was kindly provided by BASF (BASF Colors & Effects Italy srl, Cesano Maderno (MB), Italy)
and used without purification. Optically clear glass slides were cleaned by pouring them in 6 M HCl
for 12 h, rinsing with water, acetone, and 2-propanol, and then drying for 8 h at 120 ◦C.

2.2. Preparation of Lumogen F Red 305/Polymer Films for Optical Studies

Different Lumogen F Red 305/polymer thin films were prepared by drop casting, i.e., pouring about
1.4 mL chloroform (CHCl3) solution containing about 60, 90, or 120 mg of polymer (i.e., PCHMA or
PMMA) and the desired amount of LR to get concentrations in the range of 0.2–1.8 wt% on
50 mm × 50 mm × 3 mm cleaned glass (BOROFLOAT® Window, Edmund Optics Ltd., York, UK).
CHCl3 evaporation was performed on a warm plate (30 ◦C) and in a closed environment. The film
thickness was measured to be 23 ± 6, 31 ± 7, and 40 ± 8 µm, respectively, using a Starrett micrometer
(The L.S. Starrett Company, Athol, MA, USA). For spectroscopic and microscopic characterization,
the polymer films were removed after immersion in water and stored in a desiccator.

2.3. Spectroscopic Characterization of Films

UV–VIS absorption measurements were performed using a Cary 5000 spectrometer
(Agilent, Santa Clara, CA, USA). Fluorescence spectra in the solid state were measured at room
temperature with a Fluorolog®-3 spectrofluorometer (Horiba Jobin–Yvon, Horiba Italy, Rome, Italy)
equipped with a 450 W xenon arc lamp and double-grating both excitation and emission
monochromators. The emission quantum yields of the solid samples were obtained by means
of a 152 mm diameter “Quanta-ϕ” integrating sphere, coated with Spectralon®, using as excitation
source the 450 W xenon lamp coupled with a double-grating monochromator for selecting wavelengths.
The Quanta-ϕ apparatus was coupled to the spectrofluorometer by a 1.5 m fiber-optic bundle in a
slit-round configuration, 180 fibers; slit-end termination is 10 mm O.D. × 50 mm long; round-end
termination is FR-274; and the sheath is PVC monocoil. The final quantum yields are an average of
three distinct measurements carried out on different films sampling areas. Epifluorescence microscopy
images were taken by a LED epifluorescence microscope (Schaefer South-East Europe Srl, Rovigo, Italy)
equipped with a LED blue and green 5 W epifluorescence illumination and a DeltaPix Invenio 2EIII
microscope camera (DeltaPix, Smorum, Denmark).

2.4. Optical Efficiency Measurements of LSCs

A home-built equipment setup was utilized to measure the efficiency of the LSCs. Each fluorophore
concentration was tested in triplicate. A sample holder with the photovoltaic (PV) module
(IXYS SLMD121H08L mono solar cell 86 mm × 14 mm: Voc = 5.04 V, Isc = 50.0 mA, FF > 70%,
ηPV = 22%) is placed 2.5 cm above a scattering layer. The PV cell is masked with black tape to match
LSC edge (50 mm × 3 mm) so that limiting the stray light to negligible levels. Silicon was used to
grease the LSC edge. The other three edges of the LSC were covered with a reflective aluminum tape.
An LCS-100 solar simulator (ORIEL, Newport, Stratford, CT, USA) was housed 27.5 cm above the
sample. The PV module was connected to a digital potentiometer (AD5242) controlled via I2C by an
Arduino Uno (https://www.arduino.cc) microcontroller using I2C master library. A digital multimeter
KEITHLEY 2010 (Keithley Instruments, Cleveland, OH, USA) was connected in series with the circuit,
between the PV module and the potentiometer, to collect the current as a function of the external
load. Conversely, the voltage was measured by connecting the multimeter in parallel to the digital

https://www.arduino.cc
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potentiometer. Arduino Uno controlled the multimeter via SCPI language over RS-232 bus using a
TTL to RS-232 converter chip (MAX232). Arduino Uno (Arduino LLC, Somerville, MA, USA) was
connected to PC via USB port and controlled by a Python script. The measurement cycle began with a
signal from PC to Arduino, which set the multimeter parameter to measure current. Then, Arduino
began the measure loop, i.e., (1) set the potentiometer to a given value, (2) send a trigger signal to the
multimeter, (3) read the measured data, and (4) send the data back to PC. The loop is repeated 256 times
for potentiometer values ranging 60 Ω to 1 MΩ. Arduino set the multimeter to measure voltage,
and for each potentiometer value, the system recorded 8 data samples, which were subsequently
processed by the Python script. A white back scattering layer (Microcellular MCPET reflective sheet,
ERGA TAPES Srl, Milan, Italy) was placed beneath the LSC with an air gap of about 5 mm, during
the measurements of the current of the PV cell attached to the LSC edges under illumination (ILSC).
The optical efficiency was reported as ηopt.

3. Results and Discussion

PCHMA was chosen as an alternative host matrix to PMMA due to a low polarity of the
cyclohexyl group that would favor the fluorophore dispersibility in the polymer matrix [48]. As PMMA,
PCHMA is an amorphous polymer with a high glass-transition temperature of 104 ◦C, a good
transparency, and desirable mechanical properties that make it an appealing polymer matrix for
LSC. Perylene-based luminophores are organic π-conjugated molecules well known for their wide
absorption, emission efficiency, and light stability. Among these, LR is the most utilized organic dye
for LSC applications, thanks to its unique spectroscopic properties and commercial availability [49,50].
We prepared PCHMA and PMMA thin films of several thicknesses (23 ± 6, 31 ± 7, and 40 ± 8 µm)
containing different amounts of LR (0.2–1.8 wt%) by drop casting from chloroform solutions. We then
determined the performances of the LR/PCHMA and LR/PMMA thin films LSCs using a Si-based PV
cell attached to one edge of the solar collector.

The concentration factor (C) of a LSC device is measured by computing the ratio between the
maximal current of the PV cell attached to the LSC edges under illumination of a light source (ILSC)
and the maximal current of the bare cell put directly exposed to the same light source (ISC). Such value
depends on the geometrical factor (G) of the device, that is the ratio between the area exposed to the
source and the collecting area exposed to the PV cell (in our setup G = 16.6), and the optical efficiency
(ηopt), which represents the intrinsic concentration efficiency of a particular host-dye system and,
as such, is a fundamental parameter to evaluate its performances. ηopt can, therefore, be measured as:

ηopt =
C
G

=
ILSC

G × ISC
. (1)

As defined, the parameter ηopt can be understood in terms of the efficiency of the different
phenomena that take place between the photons hitting the LSC surface and the absorption of the
emitted ones by the PV cell, i.e., the fraction of photons flux that can arrive at the collection point
(minus entropic losses). Measured values of ηopt vs. dye concentration for the LR/PCHMA and
LR/PMMA systems are shown in Figure 3.

Table 1. Fitting parameters of the optical efficiency data measured for Lumogen F Red 305 (LR)/poly
(cyclohexylmethacrylate) (PCHMA) and LR/poly(methylmethacrylate) (PMMA) films with a thickness
of 23 ± 6 µm.

Entry ε’ µopt D

LR/PCHMA 8.5 ± 0.9 0.98 ± 0.05 6.9 ± 0.3
LR/PMMA 7.7 ± 1.1 1.42 ± 0.16 6.9 ± 0.5
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Figure 3. Optical efficiency (ηopt) % variation of LR/polymer thin films with different dye content
(wt%), with a thickness of 23 ± 6 µm and deposited on a 50 mm × 50 mm × 3 mm optically pure glass
substrate. The curve was fitted with Equation (2) and the parameters are listed in Table 1. Error bars
represent standard deviation in each ηopt value (n = 3).

Notably, we observed an increase in the optical efficiency as LR concentration increased in both
matrices, up to a concentration of 0.70–1.00 wt%. Beyond that value, ηopt decreased. This trend is
common in LSC characterization and can be addressed by two counteracting effects caused by the
growing content of the fluorophore in the thin films: the light-harvesting efficiency rises as an increased
amount of dye molecules in the LSC system can absorb a larger fraction of light; the probability
of reabsorption of photons within the LSC film increases because of the larger overlap between
absorption and emission spectra, while the fluorescence quantum yield diminishes [51]. In addition,
the increased concentration may lead to the formation of less emissive supramolecular aggregates
(aggregation-induced quenching phenomena) [52,53]. These processes adversely affect the optical
efficiency and consequently the performance of LSC devices. As a result, LR in PCHMA displayed
maximum ηopt values of about 9.75%, i.e., more than 0.5% higher than those collected from the LSC
based on LR/PMMA thin films. It is also worth noting that, compared to PCHMA, we observed the
ηopt vs. LR concentration trend in LR/PMMA to decrease faster after the maximum [54,55], indicating a
larger contribution from optical losses (see Supporting Information).

A common way to investigate ηopt is to use the approach of Goetzberger and Greube [13]
(Equation (2)) and analyze the different mechanisms that contribute to it separately:

ηopt = ηT × ηTIR × ηQE × ηStokes × ηLH × ηSA × ηhost, (2)

where the different terms represent, respectively, the fraction of energy that is not lost by reflectance
of the polymer surface, the efficiency of total internal reflection, fluorescence quantum yield,
entropic degradation due to the Stokes shift, absorption spectral mismatch, spectral overlap between
emission and absorption, and defects present in the polymer matrix (i.e., scattering defects, impurities,
and defects at the interfaces). For a more exhaustive discussion, refer to the Supporting Information file.

Starting from Equation (2), we showed in an earlier work that for LSC devices of given thickness,
the value of ηopt for a specific host–dye couple is dependent on the dye concentration according to
the equation:

ηopt = ε’
× c × e−µopt × c + D, (3)
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where c is the concentration of the dye, D is an empirical constant describing the trapped light due
to scattering phenomena from surface and bulk defects, and ε′ and µopt are two empirical constants
described as:

ε′ ∝ h× e−ῑ (4)

µopt ∝ µ′′ (QY, p) × ῑ, (5)

where h is the thickness of the thin film, ῑ is the mean path length of the radiation in the optical system,
and µ′′ is a term depending on both QY and the probability of fluorescence reabsorption (p). Both ε′

and µopt are empirical parameters, which allow the comparison of different LSC systems with the same
geometry. This approach is described in detail in the Supporting Information.

Notably, ε′ is a coefficient associated with the absorption features of the fluorophore/polymer
system, whereas µopt integrates all the fluorescence quenching phenomena. In this sense, an efficient
fluorophore/polymer LSC system is considered when it exhibits a high ε′ and a small µopt so that
the maximum efficiency is shifted to higher dye concentrations (which translate to improved light
harvesting properties). The fitting parameters of the optical efficiency variation with LR concentration
in LSC films are shown in Table 1.

The fitting parameters of LR/PCHMA and LR/PMMA films appeared somewhat different and only
D values were equivalent, indicating the same contribution of nonfluorescent trapping phenomena for
samples with the same geometry. Interestingly, the LR/PCHMA system was characterized by a slightly
higher ε′ and a smaller µopt values, thus suggesting that this system was less affected by dissipation
phenomena. One may ascribe these differences in performance to the higher dispersibility of the dye at
high concentration, favored by the higher hydrophobicity of the polymer matrix.

The very high compatibility between LR and the PCHMA was demonstrated by examining the
film containing the 1.4 wt% of the fluorophore by epifluorescence microscopy (Figure 4). It was worth
noting that negligible microphase separation was observed in the case of the PCHMA film and with
the presence a few microsized fluorophore aggregates with average size one order of magnitude lower
than the corresponding film based on PMMA.

Figure 4. Cont.
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Figure 4. Fluorescent microscopy images of (A) poly(methylmethacrylate) (PMMA) and (B) PCHMA
films doped with 1.4 wt% of LR. Scale bar = 70 µm.

In order to corroborate the optical performance of the aforementioned LR/polymer systems as
LSCs, we performed UV–VIS absorption and fluorescence experiments. The optical features of LR
embedded in PCHMA are shown in Figure 5 with maximum absorption and emission bands centered
at 570 and 604 nm, respectively, with a Stokes shift of 34 nm. LR also absorbs light down to 440 nm
with a second structureless band centered at 530 nm. Very similar optical behavior was recorded for
LR dispersed in PMMA films with maximum absorption and emission bands found at 573 and 609 nm,
respectively, with a Stokes shift of 36 nm [54]. The more polar character of the PMMA matrix was
possibly responsible of the 3–5 nm red-shift of the peak maxima. Notably, absorbance increased linearly
in PCHMA with the dye concentration as shown in Figure 5A. However, the fluorescence emission
intensity increased up to a fluorophore concentration of 1.00 wt%, above which a sharp decrease is
observed (Figure 5B), and it is in agreement with the efficiency losses reported in Figure 3. A similar
behavior in PMMA was observed in Figure 6 with both absorption and emission trends confirmed
with LR content.

1 

 

 

Figure 5. (A) UV–VIS absorption. In the inset, the absorbance maximum at 450 nm as a function of LR
concentration and (B) fluorescence emission spectra PCHMA films at increasing dye concentration.
λexc = 450 nm and film thickness of 23 ± 6 µm.
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1 

 

 

Figure 6. (A) UV–VIS absorption. In the inset, the absorbance maximum at 450 nm as a function of
LR concentration and (B) fluorescence emission spectra PMMA films at increasing dye concentration.
λexc = 450 nm and film thickness of 23 ± 6 µm.

Nevertheless, by comparing the absorption intensities, LR in PCHMA displayed higher absorbance
values than the corresponding samples in PMMA, reaching a maximum of about 2 and 1.5 respectively,
at their maximum content of 1.8 wt%. These data support the higher solar harvesting characteristics of
LR in PCHMA, which translate to better ηopt values.

Looking at the emission bands, the insets in Figures 5B and 6B evidenced a bathochromic shift
of the maximum peak fluorescence of about 6 and 8 nm for LR/PCHMA and LR/PMMA systems,
respectively. Such phenomenon can be addressed to a combination of effects: (i) dye molecules could
aggregate and exhibit a red-shift in the emission spectra [56] and (ii) auto-absorption phenomena
(inner filter effect) could occur because of spectral overlap. This last seemed more evident for the
PMMA films.

In Figure 7, we report the measured quantum yields (QY) as a function of LR concentration for
both PCHMA and PMMA. We observed a constant and linear decrease in the QY values of up to 50% in
PMMA (Figure 5B), which in agreement with what is reported in the literature [54]. Conversely, LR in
PCHMA (Figure 5A) showed higher QY values for fluorophore contents <1 wt%, which tended to level
off to a plateau of 50% at the higher concentrations. Although, there were no substantial differences
between the absolute QY values of LR in PCHMA and in PMMA, considering also a typical deviation of
10% of each quantum yield measurement, emission concentration appeared more adversely affected in
PMMA. This could be attributed to the presence of larger emissive LR aggregates in PMMA (Figure 4)
that possibly worsen the fluorescence collection at the edge of the collector.

Figure 7. Quantum yields (QY) (%) of LR in (A) PCHMA and (B) PMMA films versus fluorophore
concentration (wt%) with a thickness of 23 ± 6 µm. Error bars represent standard deviation in each QY
value (n = 3).
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Future experiments will be devoted to time-resolved fluorescence that could eventually provide
useful information to dissect the relative contributions from quenching and reabsorption, and the
presence of possible dynamic processes attributed to aggregates within the films [57].

Finally, we evaluated the influence of the film thickness on ηopt, aimed to determine the best
working conditions for an LSC device. To do so, we varied the amount of polymer during the
fabrication to produce LSC systems with film thicknesses of 23 ± 6, 31 ± 7, and 40 ± 8 µm and a fixed
LR concentration of 1.00 wt%. The results are shown in Figure 8.

Figure 8. (A) ηopt of LSC systems versus LSC film thickness at 1.00 wt% of LR for both polymeric
matrices investigated and (B,C) pictures of the same LR/polymer LSC (50 mm × 50 mm × 3 mm)
under the excitation with a Dark Reader 46B transilluminator (∼450 nm) with increasing film thickness
(from left to right). Error bars represent standard deviation in each ηopt value (n = 3).

It is worth noting that all LR/PCHMA systems showed higher ηopt values when compared to
PMMA-based LSCs, thus confirming the ability of the PCHMA matrix in the effective dispersion of LR
fluorophores. Maximum optical efficiencies of about 11.4% and 10.7% were obtained for 31 ± 7 µm
thick LR/PCHMA and LR/PMMA LSCs, respectively. The surface texture appeared also homogeneous
without the typical roughness conferred by the chromophoric clusters (Figure 8B,C). This explanation
is eventually supported by the determination of the QY values of the same LSC systems. As shown
in Figure 9, after an initial growing of QY, a plateau was reached and corresponding to the 70% in
PCHMA and 64% in PMMA, respectively, which is in strong agreement with the ηopt data.
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Figure 9. Quantum yield (%) of LR/polymer thin films as a function of LSC film thickness at 1.00 wt%
of LR for both polymeric matrices studied. Error bars represent standard deviation in each QY value
(n = 3).

4. Conclusions

This work examines the potential offered by the replacement of the PMMA matrix typically
employed in LSC systems with a less polar one such as PCHMA. LSCs prepared from thin film
of PCHMA and containing different amounts of LR (i.e., from 0.2 to 1.8 wt%) showed ηopt values
higher than those measured from the corresponding PMMA films. It was worth noting that LSCs
prepared with 1.00 wt% LR in PCHMA reached maximum ηopt of 11.4%, i.e., about 0.7% higher
than equivalent devices prepared with PMMA. This increment in performances was attributed to
a more effective dispersion of the perylene-based fluorophore in the less polar polyacrylate matrix,
which resulted in higher solar harvesting characteristics, reduced influence of dissipative phenomena,
and higher quantum efficiency. These observations support the use of PCHMA in the preparation
of high-performance LSCs and incentivizes the investigation of similar less polar matrices for these
applications in order to better match the chemical properties of the dyes employed.
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