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Abstract: Complementary complexation between 2,2′:6′,2”-terpyridine (tpy) and
6,6”-dianthracenyl-substituted tpy in the presence of Zn(II) ions provided an efficient strategy for
construction of metallo-supramolecular diblock copolymers. To synthesize well-defined tpy-modified
polystyrenes (PSs), an Fe(II) bis(tpy) complex bearing α-bromoester as a metallo-initiator was applied
to atom transfer radical polymerization (ATRP) to avoid poisoning the Cu(I) catalyst. Subsequently,
a series of tpy-functionalized PSs was obtained after the decomplexation of <tpy-Fe(II)-tpy> junction
by tetrakis(triethylammonium) ethylenediaminetetraacetate (TEA-EDTA) under mild conditions.
The metallo-supramolecular poly(3-hexylthiophene) (P3HT)-block-PS diblock copolymers were
prepared by simply mixing the corresponding terminally tpy-modified homopolymers with Zn(II)
ions, and further characterized by 1H NMR and diffusion ordered spectroscopy (DOSY) experiments.
The approach using metallo-initiators for ATRP offers an opportunity to construct tpy-functionalized
polymers with controllable molecular weights and low polydispersities. Through the spontaneous
heteroleptic complexation, a variety of metallo-supramolecular diblock copolymers with tunable
block ratios can be easily constructed.

Keywords: metallo-initiator; terpyridine; heteroleptic complexation; self-assembly;
metallo-supramolecular copolymer

1. Introduction

Metallo-supramolecular block copolymers are generated through metal–ligand coordination of
ligand end-modified homopolymers with proper metal ions [1]. Various ligands have been utilized
in construction of diverse copolymers, such as 2,2′-bipyridine (bpy) [2–4], 2,2′:6′,2”-terpyridine
(tpy) [5–13], and pincer-type ligands [14–18]. Among them, bis(tpy) complexes are commonly
used for preparation of diblock copolymers in a stepwise manner [6–12]. However, the challenge
remains to prevent unwanted homoleptic complexation and tedious purification processes. Recently,
we demonstrated that the spontaneous heteroleptic complexation between unsubstituted tpy and
6,6”-dianthracenyl-substituted tpy could be achieved upon the addition of Zn(II) ions under ambient
conditions, and was further applied to the construction of poly(3-hexylthiophene)-block-poly(ethylene
oxide) (P3HT-b-PEO) copolymers [19]. The complementary ligand pairing indeed provides an efficient
approach for synthesis of metallo-supramolecular diblock copolymers.

In order to incorporate tpy motifs into a wide variety of well-defined polymers, the tpy-modified
chain-transfer agents or initiators have been feasibly utilized in controlled polymerizations,
such as reversible addition-fragmentation chain transfer (RAFT) [20–22], nitroxide-mediated radical
polymerization (NMP) [23–26], and ring-opening polymerization (ROP) [27–29]. However, since the

Polymers 2020, 12, 2842; doi:10.3390/polym12122842 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
https://orcid.org/0000-0003-3014-2416
https://orcid.org/0000-0001-9658-2188
http://www.mdpi.com/2073-4360/12/12/2842?type=check_update&version=1
http://dx.doi.org/10.3390/polym12122842
http://www.mdpi.com/journal/polymers


Polymers 2020, 12, 2842 2 of 9

atom transfer radical polymerization (ATRP) is often mediated by copper catalysts, the presence of
uncomplexed tpy ligands could adversely affect the copper catalyst during the ATRP reaction [30,31].
To attenuate the ligand interference, bpy ligands have been successfully introduced into a polymeric
structure via the ATRP initiated by bpy-based metallo-initiators [32–40]. For example, the Ru(II), Fe(II),
and Zn(II) tris(bpy) complexes bearing chloromethylpyridine and α-bromoester have been employed
in the ATRP of styrene and methyl methacrylate [41,42], where the use of metallo-initiators with
coordinated bpy ligands efficiently prevented poisoning of copper catalysts. Therefore, inspired by the
aforementioned researches, herein the use of an Fe(II) bis(tpy) complex as metallo-initiators in ATRP is
realized for the synthesis of tpy end-modified polystyrenes (PSs), which is evident from the kinetic study
as well as 1H NMR and gel permeation chromatography (GPC) analyses. Subsequently, the well-defined
tpy-functionalized PSs obtained after decomplexation are successfully applied to the construction of
metallo-supramolecular diblock copolymers (P3HT-Zn-PS), where the complexation and self-assembly
characteristics are investigated by diffusion ordered spectroscopy (DOSY) NMR experiments.

2. Materials and Methods

2.1. Materials

Styrene (Showa, 99%, Tokyo, Japan) and acetonitrile (Fischer, HPLC grade, Loughborough, UK)
were distilled over CaH2 under reduced pressure. N,N,N′,N”,N”-Pentamethyldiethylenetriamine
(PMDETA) (Acros, 98%, Morris Plains, NJ, USA) was distilled over KOH under reduced pressure,
and then degassed by three freeze-pump-thaw cycles in a Schlenk tube before use. CuBr (Alfa Aesar,
99%, Ward Hill, MA, USA) was purified by stirring overnight in AcOH, filtered, washed with absolute
EtOH and diethyl ether, and then dried under vacuum. Unless otherwise noted, reagents and
solvents were used as received from Fisher Scientific (Loughborough, UK) and Sigma-Aldrich
(St. Louis, MO, USA) without further purification. 4′-(4-Hydroxyphenyl)-2,2′:6′,2”-terpyridine
(1) [43], 9-anthraceneboronic acid [44], tetrakis(triethylammonium) ethylenediaminetetraacetate
(TEA-EDTA) [45], 2,5-dibromo-3-hexylthiophene [46], mono-brominated P3HT
(Br–P3HT) [19], 6,6”-di(anthracen-9-yl)-4′-(4-methoxyphenyl)-2,2′:6′,2”-terpyridine (L2) [19],
4′-(4-methoxyphenyl)-2,2′:6′,2”-terpyridine (L3) [47], and (L2–Zn–L3) complex [48] were prepared
according to the reported procedures.

2.2. Methods

1H, 13C, and DOSY NMR experiments were performed at 25 ◦C on a Varian Mercury NMR
400 spectrometer, where chemical shifts (δ in ppm) were determined with respect to the nondeuterated
solvents as a reference. Gel permeation chromatography (GPC) was conducted on the instrument
equipped with two columns (Shodex KF-803 and KF-804, Tokyo, Japan), a Waters 515 HPLC pump,
and a differential refractive index detector (LabAlliance RI2000, New York, USA). Tetrahydrofuran
(THF) mixed with tetrabutylammonium bromide (TBAB) (1 wt%) was utilized as an eluent at a flow
rate of 1 mL min−1 at 40 ◦C [49]. The calibration curve was established by linear polystyrene standards.
MALDI-TOF-MS measurements were conducted on a Bruker Autoflex Speed MALDI-TOF-MS
(Bruker Daltonics, Billerica, MA, USA). The polystyrene samples for MALDI-TOF-MS measurements
were prepared by mixing the polymer (5.0 mg mL−1), dithranol (DIT) (10 mg mL−1), and trifluoroacetic
acid (TFA) (1%) in THF.

2.3. General Procedure for Complexation Reactions

To a CHCl3 solution (5 mL) of PSn (n = 19, 33, 85, 106, 161, and 235) and P3HT54 in an equimolar
ratio calculated from the corresponding number average molecular weights (Mn,NMR), 1 Eq of Zn(OTf)2

in MeOH (5 mL) was added. After the reaction mixture was stirred at room temperature for 5 min,
the solvent was evaporated under reduced pressure to give the corresponding diblock copolymers.
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3. Results and Discussion

Inspired by the pioneering research of metallo-initiators for ATRP, we designed and
synthesized an Fe(II) bis(tpy) complex bearing α-bromoester as a bifunctional metallo-initiator
(4) (Scheme 1). The α-bromoester modified tpy-based initiator (3) was synthesized from the precursor
4’-(4-hydroxyphenyl)-tpy (1) in moderate yield. First, 1 was alkylated by 2-chloroethanol to give
4′-(4-(2-hydroxyethoxy)phenyl)-tpy (2). The following esterification was achieved by reaction of
2 with α-bromoisobutyryl bromide in the presence of triethylamine at room temperature to afford
compound 3. Subsequently, the complexation was conducted by adding a MeOH solution of FeCl2
(0.5 Eq) into a CHCl3 solution of ligand 3 (1 Eq) at room temperature, followed by counter-anion
exchange with NH4PF6 (10 Eq), to yield 4 as a dark purple powder in quantitative yield. The suitable
crystals for single-crystal X-ray crystallography were obtained by slow diffusion of diethyl ether into an
MeCN solution of 4. The structure of complex 4 was unequivocally established by its crystal structure
(Figure S8), NMR spectroscopy (Figures S5 and S6) and ESI-MS (Figure S7).
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Scheme 1. Synthesis of metallo-initiator 4 and PSn. Reagents and conditions: (a) K2CO3,
dimethylformamide (DMF), 2-chloroethanol, 50 ◦C; (b) NEt3, α-bromoisobutyryl bromide,
dichloromethane (DCM), 0 ◦C; (c) (1) FeCl2, MeOH/CHCl3, r.t., (2) NH4PF6; (d) styrene,
CuBr, pentamethyldiethylenetriamine (PMDETA), MeCN, 110 ◦C; (e) tetrakis(triethylammonium)
ethylenediaminetetraacetate (TEA-EDTA), DMF, r.t.

Our attempts to conduct Cu(I)-mediated ATRP of styrene using the initiator 3 were unsuccessful
possibly due to the strong chelating ability of tpy ligands acting as a catalyst poison. To investigate
the controllability of ATRP of styrene initiated by the bifunctional metallo-initiator 4, a kinetic study
was performed via a typical ATRP protocol as follows. Initiator 4 (45.2 mg, 34.9 µmol) and CuBr
(15.0 mg, 104.8 µmol) were added to a degassed Schlenk flask equipped with a stir bar. Subsequently,
MeCN (1.3 mL) and styrene (3.6 mL, 31.4 mmol) were added into the flask, which was degassed by three
freeze-pump-thaw cycles, followed by the addition of PMDETA (21.9 µL, 104.8 µmol), and then stirred
at 110 ◦C. The polymerization solution was periodically sampled via a pre-degassed syringe to monitor
the conversion of monomer by 1H NMR and calculate the theoretical molecular weight (Mn,theo).
The sampled solution was further treated with TEA-EDTA in dimethylformamide (DMF) for 1 day at
room temperature to decomplex the <tpy–Fe(II)–tpy> junction to afford the tpy end-modified PSs.
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The corresponding Mn,GPC and PDI (Mw/Mn) were determined by GPC, and Mn,NMR was calculated
from the 1H NMR peak integral ratios of polymerized styrene and terminal tpy.

The kinetic study on ATRP of styrene initiated by the metallo-initiator 4 was summarized in Figure 1.
The semilogarithmic kinetic plot of ln([M]0/[M]) versus reaction time indicated the first-order radical
polymerization process and the radical concentration was kept constant during the polymerization
(Figure 1a). In addition, the experimental molecular weights (Mn,NMR) were in good agreement with
the theoretical ones (Mn,theo) and linearly increased with respect to the monomer conversion (Figure 1b),
implying the absence of significant chain transfer reactions. Moreover, the polydispersities were
decreased with increasing conversion (Figure 1b), and a clear shift to higher molecular weights with a
mono-distribution was evidenced by GPC traces (Figure 1c). These observations suggested that the
well-controlled ATRP of styrene could be initiated by 4.
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Figure 1. (a) Semilogarithmic kinetic plot, (b) Mn and Mw/Mn versus conversion, and (c) gel
permeation chromatography (GPC) traces for the atom transfer radical polymerization (ATRP) of
styrene ([4]:[styrene]:[CuBr]:[PMDETA] = 1:900:3:3, styrene/MeCN = 3/1 (v/v), 110 ◦C).

Based on the kinetic result of ATRP of styrene, a series of tpy-functionalized PSn (n = 19,
33, 85, 106, 161, and 235) with varying chain lengths was prepared via ATRP under optimized
conditions (Table 1). The formation of well-defined PSn could be evident from the narrow molecular
weight distributions and the consistency between Mn,NMR and Mn,GPC. It is noteworthy that
the terminal bromide at PS chain-ends susceptible to elimination easily led to formation of a
double bond during MALDI-TOF-MS measurements [50]. Nevertheless, the high fidelity in the
tpy chain-end functionality was verified by the corresponding MALDI-TOF-MS peaks (Figures S10,
S12, S14, S16, and S18). On the other hand, the well-defined P3HT54 (DP = 54, Mn,GPC = 8800 Da,
Mw/Mn = 1.23) end-functionalized with a 4-(4′-(6,6”-dianthracenylterpyridyl))phenyl group was
obtained through the Suzuki–Miyaura coupling reaction of mono-brominated P3HT (Br–P3HT)
with 6,6”-dianthracenyl-4′-(4-boronophenyl)tpy (Figure 2a) [19]. Notably, Br–P3HT prepared by
Grignard metathesis (GRIM) polymerization method possessed two isomeric chain-end structures, i.e.,
head-to-head and head-to-tail orientations, which could not be differentiated by the 1H NMR spectrum
of Br–P3HT but clearly seen in that of P3HT54 (Figure 2b) [51,52]. Therefore, the 3-hexylthiophene
coupled with two 6,6”-dianthracenyl-substituted tpys (L1) was synthesized as a model compound to
ensure the proper 1H NMR assignments. The two sets of tpy signals of L1 corresponded to two types
of chain-end connections, and the chain-end head-to-tail content of P3HT54 was estimated to be 22%
(Figure S26). The single molecular weight distribution in the MALDI-TOF-MS spectra (Figure S27)
strongly supported the high chain-end functionality for P3HT54.
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Table 1. Results and optimized conditions for ATRP of styrene using 4.

Entry [4]:[styrene]:[CuBr]:[PMDETA] a Conversion (%) Mn,NMR
b DP b Mn,GPC

c Mw/Mn
c

PS19 1:100:3:3 31 2700 19 1900 1.14
PS33 1:200:3:3 48 4000 33 3600 1.13
PS85 1:200:3:3 55 9000 85 7900 1.21
PS106 1:400:3:3 46 11,100 106 11,900 1.14
PS161 1:800:3:3 33 16,700 161 16,200 1.17
PS235 1:800:3:3 64 24,500 235 22,000 1.26
a Styrene/MeCN = 3/1 (v/v) for PS19, PS33, PS85, PS106, and PS161. PS235 was obtained from the bulk polymerization.
b Mn,NMR and degree of polymerization (DP) were calculated by 1H NMR. c Mn,GPC and Mw/Mn were determined
by GPC.
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We have demonstrated that the complementary complexation between 6,6”-substituted and
unsubstituted tpy ligands with Zn(II) under ambient conditions could be applied to construction of the
metallo-supramolecular diblock copolymers from two distinct tpy-modified homopolymers [19,48].
In the ligand design, the bulky 9-anthracenyl substituents effectively decelerated the formation rate
of homoleptic complexes. Moreover, the X-ray single-crystal structure of [L2–Zn–L3] (Figure 3a)
exhibited the π–π interactions between unsubstituted L3 and two anthracenyl substituents to facilitate
the formation of heteroleptic complexes. Consequently, a series of metallo-supramolecular diblock
copolymers of [P3HT54–Zn–PSn] (n = 19, 33, 85, 106, 161, and 235) could be readily constructed
from homopolymers PSn and P3HT54 in the presence of Zn(II) ions (Scheme 2). Due to the labile
coordination bonds, the intact copolymers could not be detected by MALDI-TOF-MS [53]. Hence,
the resultant diblock copolymers were characterized by 1H NMR experiments (Figure 3a). The 1H NMR
spectra of [P3HT54–Zn–PSn] strongly supported the formation of the desired heteroleptic junctions
between P3HT54 and PSn as compared with that of the model complex [L2–Zn–L3]. In addition,
the diffusion ordered spectroscopy (DOSY) of [P3HT54–Zn–PSn] (5 mg mL−1 in CDCl3) revealed all
the relevant 1H NMR resonances have the identical diffusion coefficients (D) for each copolymer
(Figure 3b), implying the single distribution of hydrodynamic radii in solution [54]. Accordingly,
as the chain length of the PS segment was decreased, the diffusion coefficient was increased for
[P3HT54–Zn–PS235] (D = 1.05 ×10−10 m2 cm−1), [P3HT54–Zn–PS161] (D = 2.16 × 10−10 m2 cm−1),
[P3HT54–Zn–PS106] (D = 3.08 × 10−10 m2 cm−1), and [P3HT54–Zn–PS85] (D = 7.99 × 10−10 m2 cm−1),
due to the shrinkage in molecular size. However, [P3HT54–Zn–PS19] (D = 1.80 × 10−10 m2 cm−1)
and [P3HT54–Zn–PS33] (D = 2.61 × 10−10 m2 cm−1) showed much smaller diffusion coefficients than
expected, presumably because of the severe intermolecular aggregation, where the shorter PS length
attenuated the interference in the assembly of P3HT segments [55].
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unsubstituted tpy, respectively, upon the addition of Zn(II) ions. The DOSY NMR analysis not only 
supported the formation of the expected copolymers [P3HT–Zn–PS], but also revealed that the PS 
chain length would influence the assembly of P3HT segments in solution. We anticipate that the 
ATRP protocol using tpy-based metallo-initiators along with the complementary ligand pair will 
provide facile access to construction of various copolymers with enhanced topological diversity and 
complexity. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1. Scheme S1. Synthesis 
of metallo-initiator 4; Figure S1-S6. NMR spectra of compounds 2-4; Figure S7. ESI-MS spectrum of 4; Figure S8. 
X-ray crystal structure of 4; Scheme S2. Synthesis of tpy-functionalized polystyrene PSn (n = 19, 33, 85, 106, 161, 
and 235) from the metallo-initiator 4; Figure S9-S20. NMR spectra and MALDI-TOF-MS spectra of PSn; Figure 
S21. GPC traces of PSn; Scheme S3. Synthesis of P3HT54; Figure S22-S25. NMR spectra of compounds 6 and 7; 
Figure S26-S28. NMR, MALDI-TOF-MS, and GPC trace of P3HT54; Scheme S4. Synthesis of L1; Figure S29-S31. 
NMR spectra of L1; Table S1 and S2. Crystal data and experimental details for 4 and [L2–Zn–L3]. 
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Figure 3. (a) 1H NMR spectra of [L2–Zn–L3] and [P3HT54–Zn–PSn] (n = 19, 33, 85, 106, 161, and 235).
The upper left figure shows the X-ray crystal structure of [L2–Zn–L3] (gray, carbon; blue, nitrogen; red,
oxygen; yellow, zinc). Hydrogen atoms and OTf− ions are omitted for clarity. (b) Stacked diffusion
ordered spectroscopy (DOSY) spectra of [P3HT54–Zn–PSn]. The inset table shows the corresponding
diffusion coefficients determined with respect to the D of CHCl3 (2.33 × 10−9 m2 s−1) at 298 K [56].
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4. Conclusions

A series of tpy end-modified polystyrenes with controllable molecular weights and narrow
polydispersities was successfully prepared using a bifunctional tpy-based metallo-initiator via
ATRP and subsequent decomplexation. Based on the pre-designed complementary ligand
pairing, metallo-supramolecular diblock copolymers (P3HT-b-PS) were readily constructed from
the well-defined P3HT and PS homopolymers end-functionalized with 6,6”-dianthracenyl-substituted
tpy and unsubstituted tpy, respectively, upon the addition of Zn(II) ions. The DOSY NMR analysis not
only supported the formation of the expected copolymers [P3HT–Zn–PS], but also revealed that the PS
chain length would influence the assembly of P3HT segments in solution. We anticipate that the ATRP
protocol using tpy-based metallo-initiators along with the complementary ligand pair will provide
facile access to construction of various copolymers with enhanced topological diversity and complexity.
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