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Abstract: The effect of short-term (3- and 6-h-long) periodic thermal aging was investigated at
three different temperatures on PVC cables and PVC films. Three different temperatures (110, 125,
and 140 ◦C) were used for aging PVC cables and one (110 ◦C) for PVC films. PVC films were prepared
for the investigation containing 0, 30, 40, and 50 weight percent of dioctyl phthalate plasticizer
(DOP). The effect of short-term thermal aging was monitored by electrical (dielectric spectrum and
voltage response measurement) and mechanical (Shore D hardness) methods. From the loss factor
measurements, different deducted quantities were calculated and compared with Shore D hardness,
which has been shown to be a parameter reflecting the effect of short-term thermal aging on PVC
insulation. The measurements revealed that Shore D hardness is not the best property for monitoring
aging. Instead, increasing dissipated power and the shifting behavior of tan δ–frequency curves
proved to be the best phenomena for assessing the impact of thermal aging. Simple deducted
quantities may provide a basis for following short-term thermal aging.

Keywords: PVC insulation; low-voltage cables; insulation degradation; short-term thermal
degradation; dielectric measurements; hardness testing; loss factor; voltage response measurement

1. Introduction

Due to strict regulations, the market share of low-smoke halogen-free cables is rapidly increasing.
However, polyvinyl chloride (PVC)-insulated low-voltage (LV) cables are still prominent for electrical
distribution and the safe operation of nuclear power plants (NPPs) [1–3]. Condition monitoring and
an understanding of the degradation processes due to short-term thermal stress for low-voltage cables
have been of interest to the nuclear industry because of qualification requirements [4,5]. New challenges
brought about by distributed generation and novel appliances connected to the LV distribution grid
(e.g., solar panels and electric vehicles) increase the need to extend these techniques to LV distribution
cables. Connecting appliances to the low-voltage grid due to reverse power flow may cause the
aggregated load to surpass the cable’s rated capacity in a way that might be undetected by a protecting
fuse. These short-term overloads lead to temperature elevation above rated operating limits, which may
lead to damage that can decrease the lifetime of cables [3,6]. If the temperature is followed using
smart meters and the correlation with aging is known, a better condition monitoring system can be
created [7], increasing the reliability of the LV distribution cable networks.

Many studies have shown that thermal aging affects the mechanical and electrical properties
of cables [8–12]. Moreover, chemical and physicochemical measurement methods have also been
demonstrated to be valid approaches for tracing structural changes occurring in the insulating
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material [13–15]. It has also been shown that the effect of even a few-hour-long overload can be
measured and may degrade cable condition and change the dielectric spectrum of the insulation [16–19].

Correlating the dielectric spectrum of an insulation material and aging time is a complicated task.
Analysis may require evaluation of the strength of the relationship between two quantities. To meet the
requirements for calculating the correlation, it is necessary to order only one number to the dielectric
spectrum curve. For this study, the correlation between short-term thermal aging of PVC insulation
and several deducted quantities from the dielectric spectrum was assessed. To eliminate the effect
of the complex structure of the cable and the presence of colorant additives [20], nine thermal aging
periods were utilized for PVC films having four different plasticizer contents at 110 ◦C. Results and
deducted quantities from the dielectric spectrum (i.e., tan δ vs. frequency curves, voltage response
(VR), and Shore D measurements) were compared to reveal which marker shows strong correlation
with short-term thermal degradation of PVC insulation.

2. Materials and Methods

2.1. Samples

2.1.1. PVC Cable Samples

During the investigation, nine pieces of half-meter-long NYCWY 0.6/1 kV 4 × 10/10 mm2

low-voltage cables (Prysmian MKM Kft., Budapest, Hungary) were used. Figure 1 shows the structure
of the cable.
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to all core conductors; the outer one is an aluminum foil wrapped around the cable. 

2.1.2. PVC Films 
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insulation structure and focus solely on the material itself, PVC films were prepared for the 

investigation. The samples had four different plasticizer contents: 0, 30, 40, 50 weight percent (wt %) 

Figure 1. The construction of the cable: four copper conductors (1), PVC core insulations (2),
filling material (3), copper wire and tape screens (4), and PVC jacket (5).

The core insulations were colored blue, black, grey, and brown. According to manufacturer
information, the maximum operating temperature is 70 ◦C, while the conductors can heat up to
160 ◦C during short circuit. The manufacturer did not provide any information regarding thermal
aging. To measure the cable jacket, inner and outer electrodes were prepared as shown in Figure 2.
Inner electrode was created by connecting wire and tape screens to all core conductors. Outer electrode
was created by wrapping an aluminum foil around each cable jacket.
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Figure 2. Cable sample prepared for measurement. The inner conductor is the screen tape connected
to all core conductors; the outer one is an aluminum foil wrapped around the cable.

2.1.2. PVC Films

To eliminate the effect of the relatively complicated geometry, dying additives [20], and layered
insulation structure and focus solely on the material itself, PVC films were prepared for the investigation.
The samples had four different plasticizer contents: 0, 30, 40, 50 weight percent (wt %) and size of
100 mm × 100 mm × 1 mm. Each plasticizer group contained three samples. The elements used in
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the compound were the same as in [21], which are as follows: Ongrovil S-5070 type PVC powder
(100 wt %, BorsodChem Zrt. PVC Manufacturing, Kazincbarcika, Hungary), lead stabilizer (3 wt %,
Naftomix PBV 30 Akdeniz Chemson Additives A.G., Arnoldstein, Austria), stearic acid lubricant
(0.3 wt %, Molar Chemicals Kft., Halásztelek, Hungary), and dioctyl phthalate plasticizer (DOP,
KH Chemical BV, Scheepmakerij, The Nederlands) in the following weight percentages: 0, 30, 40,
50 wt %. Generally, a new PVC sheath of a cable has its Shore D hardness in the range of 35–45 [9,11].
The plasticizer contents were chosen in a way that one specimen group had almost the same Shore
D hardness as a new cable sheath (40 wt %). Another specimen group had significantly lower
Shore D hardness (30 wt %), and another one had significantly higher Shore D hardness (50 wt %).
The compound did not contain dying additives since previous studies have revealed that these might
have an effect on the dielectric properties of an insulation material [20]. DOPXXY denotes the yth
sample containing XX wt % of the plasticizer (e.g., DOP401 means the first sample of the group where
40 wt % of the plasticizer content was used in the PVC compound).

2.2. Thermal Aging

2.2.1. PVC Cable Samples

The samples were organized into three groups denoted by 110 ◦C, 125 ◦C, and 140 ◦C. The names
of the groups refer to the temperatures used during thermal aging. Each group contained three cable
specimens. The steps of an accelerated aging cycle are as follows:

• Heating up the heating chamber to the required temperature and letting the temperature stabilize
for at least an hour

• Putting the samples into the heating chamber for 3 or 6 h depending on the aging cycle
• Removing the samples from the heating chamber
• Placing the specimens in the laboratory where the temperature was controlled
• Letting the samples rest for at least 8 h

Hence, a complete accelerated aging cycle lasted for around 2 days.
The samples in groups 110 ◦C and 125 ◦C were exposed to eight cycles of accelerated thermal aging.

The first six aging cycles were 3 h long. The last two lasted 6 h each. By the end of the investigation,
both 110 ◦C and 125 ◦C groups reached 30 h of aging. It is important to note that after reaching 12 h
in total aging (after aging period no. 4), the specimens were resting for around 2 months, although
an aging round was performed in 2 days. Since the aging was performed in a ventilated chamber at
high temperatures, the plasticizer loss is probably a diffusion-controlled process. Hence, the thermal
aging may cause inhomogeneous plasticizer concentration in the PVC components of the cable (jacket,
filling material, and core insulation), containing less plasticizer close to the surface. By introducing a
2-month-long resting period to the cables, inhomogeneous plasticizer concentration may have enough
time to recover to homogeneous plasticizer concentration.

The cable specimens in group 140 ◦C were exposed to four periods of aging. The first two periods
lasted 3 h; the second two lasted 6 h, reaching 18 h of total aging by the end of the investigation.
In group 140 ◦C, the aging periods were not interrupted by any resting periods.

Equivalent aging times were calculated from the different aging temperatures to 110 ◦C, applying
the Arrhenius equation. During the calculation, activation energy was set to 80 kJ/mol (0.829 eV)
according to [22]. The equivalent aging times can be seen in Table 1.

Table 1. Aging times at 125 ◦C and 140 ◦C (row 1) and the calculated equivalent aging times at 110 ◦C
(row 2) applying 80 kJ/mol (0.829 eV) activation energy.

125 ◦C 140 ◦C
Aging Time at Different Temperatures (h) 3 6 9 12 15 18 24 30 3 6 12 18

Equivalent Aging Time at 110 ◦C (h) 8 15 23 31 39 46 62 77 19 37 74 111
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2.2.2. PVC Films

PVC films were organized into four different groups, namely, DOP0, DOP30, DOP40, and DOP50.
All samples in a group contained the same amount of plasticizer. Each group was exposed to nine aging
periods at 110 ◦C in a ventilated heating chamber (Binder GmbH, Tuttlingen, Germany). The first seven
aging periods lasted 3 h, and the last two periods lasted 6 h, with 33 h of total aging. A 1-month-long
resting period was applied for the DOP30, DOP40, and DOP50 groups. For the DOP30 and DOP40
groups, the resting period started after 15 h of total aging, while for the DOP50 samples, after 18 h.
The purpose of including a resting period during aging was the same as mentioned in the case of
cable samples. By letting the PVC films rest, the inhomogeneous plasticizer content could recover if
diffusion-controlled plasticizer loss takes place during thermal aging.

All the samples were holed in the upper right and upper left corners. The holes were used to
hook the samples to a metal rod that was fixed in the heating chamber. This way, the direct contact
between metal parts and the samples could be minimized.

2.3. Measurement Methods

2.3.1. PVC Cable Samples

A Bareiss HPE II Shore D durometer (Bareiss Prüfgerätebau GmbH, Oberdischingen, Germany)
was used to measure mechanical parameters. The hardness was measured 10 times on each cable
jacket after removing the aluminum foil and selecting the measurement spots randomly. These Shore
D measurement results serve only comparison purposes because the thickness of the jacket reaches
about 2 mm, meanwhile, for example, the ASTM D2240 standard requires at least 6 mm thickness of
the inspected material.

Tan δ vs. frequency curves were monitored by a Wayne–Kerr 6430A impedance analyzer (Wayne
Kerr Electronics, West Sussex, UK). The connection of cable samples to the equipment can be seen in
Figure 3a. The tan δ values were measured 14 times, increasing the frequencies logarithmically in the
20 Hz–500 kHz range at 5 V. During the measurement, the equipment was set to parallel R-C mode.
The specimens were measured at 23 ± 1 ◦C.
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Figure 3. The measurement of tan δ by impedance analyzer: (a) measurement of cable samples in a
Faraday cage; (b) measurement of PVC films by guarded electrode setup.

The equipment that were used for measuring voltage responses were developed at the Budapest
University of Technology and Economics, Department of Electric Power Engineering. After a long
duration (1000–10,000 s) of charging by DC voltage, VR method [23,24] measures the slopes of the
decay voltage (Sd) after disconnecting the insulation from the voltage source. Slopes of return voltages
(Sr) can be measured after a few seconds of short-circuiting the insulation. Figure 4 shows the schematic
and timing diagram of the measurement method. For charging time, 2000 s was chosen, and charging
voltage was set to 1000 V DC. The inner electrode (inner cores and wire and tape screens) was connected
to 1000 V DC, and the outer electrode (aluminum foil) was grounded during the VR measurements
(Figure 5a) to reduce electromagnetic noises. The specimens were measured at 23.35 ± 0.55 ◦C.



Polymers 2020, 12, 2809 5 of 19

Proper connections were tested before each electric measurement. During this investigation, only the
cable jackets were measured.
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Figure 5. Measurement of dielectric properties: (a) voltage response measurement on a PVC cable
sample; (b) measurement of PVC films by cylindrical copper electrodes by Wayne–Kerr 6430A
impedance analyzer.

2.3.2. PVC Films

In the case of PVC films, the same measurements were performed as in cables with the same
settings except for the following details.

The samples were measured by putting the films between two copper cylinders having 35.6 mm
diameter each as in [21] (Figures 3b and 5b). Due to the high temperature dependence of dielectric
processes in PVC, the measurements were executed in an air-conditioned laboratory, where the
temperature was 25 ± 0.5 ◦C.

Shore D measurements were executed in the following manner. In the case of plasticized specimens,
the three samples of an aging group (e.g., DOP30) were stacked on each other and put onto the DOP01

sample so as to reach a total thickness of around 4 mm. After carrying out 10 measurements on the
topmost sample, the order of the plasticized samples was changed to have one unmeasured sample on
top. In the case of nonplasticized (DOP0) specimens, only three samples were stacked. After measuring
the hardness of the topmost sample, the order of the plasticized samples was changed to have one
unmeasured sample on top. The reason for using only three samples instead of four is that the DOP0
specimens had ca. two times greater hardness than the plasticized samples. Hence, the contact between
the table and the presser foot of the hardness tester was avoided.
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2.4. Measured and Calculated Deducted Quantities for Following Aging

The tan δ as the function of frequency characterizes the dielectric loss of the material in a wide
frequency range. Changes in material structure also change the shape or the position of tan δ(f)
curves. Although these curves contain very detailed information about the dielectric loss of the
material, the “shape changing” is not an exact parameter for monitoring degradation or for correlation
analysis. Hence, deducted quantities were introduced and tested. The central loss factor (CLF)
and central frequency (CF) are two deducted quantities that have been demonstrated to be valid
approaches for condition monitoring [18]. Central loss factor, central frequency, and five more deducted
quantities are defined below. In each case, the index i refers to the ith measurement carried out in the
20 Hz–500 kHz range.

2.4.1. Central Loss Factor (CLF)

The CLF was calculated by summing up the multiplication of the logarithm of the frequencies by
the measured tan δ values at given frequencies and dividing this sum by the sum of the logarithm of
the frequencies, as can be seen in Equation (1).

CLF =

∑n
i=1 log10 fi × tanδi∑n

i=1 log10 fi
(1)

2.4.2. Central Frequency (CF)

The CF was calculated by summing up the multiplication of the logarithm of the frequencies by
the measured tan δ values and dividing this sum by the sum of the measured tan δ values and using
this as an exponent to base 10 as Equation (2) shows.

CF = 10

∑n
i=1 log10 fi×tanδi∑n

i=1 tanδi (2)

2.4.3. Central Capacitance (CC)

The central capacitance (CC) was calculated by the same logic as the CLF values just substituting
the tan δ values by the capacitance values as Equation (3) shows.

CC =

∑n
i=1 log10 fi ×Ci∑n

i=1 log10 fi
(3)

2.4.4. Capacitance × Log(Frequency) × tan δ (CxlgFxLF)

Another deducted quantity, the capacitance × log(frequency) × tan δ (CxlgFxLF), was calculated
as shown in Equation (4) by multiplying the logarithm of the frequencies by the corresponding loss
factor and capacitance values for each frequency, respectively, and summing them.

CxlgFxLF =
n∑

i=1

log10 fi × tanδi ×Ci (4)

2.4.5. Capacitance × Frequency × tan δ (CxFxLF)

The capacitance × frequency × tan δ (CxFxLF) was calculated as in Equation (4), but instead of
using the logarithmic frequencies, the frequencies of the measurement were used.

CxFxLF =
n∑

i=1

fi × tanδi ×Ci (5)
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2.4.6. Area of Capacitance Times tan δ at Logarithmic Frequencies (Alog)

A similar deducted quantity to the latter was calculated by basically integrating the tan δ times
capacitance values at the logarithmic frequency scale. The integration was performed by calculating
the area of rectangles and summing these areas up as Equation (6) shows,

Alog =
n−2∑
i=1

(min(pi, pi+1) + (max(pi, pi+1) −min(pi, pi+1))/2) × (log10 fi+1 − log10 fi) (6)

where pi = Ci × tan δi and i is the ith frequency in which the samples were measured but without the
last one.

2.4.7. Multiplication of Available Values: CFxCLFxCC, CFxCLF

By multiplying the CF, CC, and CLF values, another two deducted quantities (CFxCLFxCC and
CLFxCC) were calculated.

2.4.8. VR Measurements

From the VR measurement results, the initial slope of decay voltage (Sd) and the initial slope of
return voltage (Sr) were used. Sd is directly proportional to the specific conductivity of the insulating
material, and Sr is directly proportional to the polarization conductivity [25,26]. In this study, only the
Sd values were used in both cables and films since Sr was demonstrated to have weak correlation with
aging on cables [19].

3. Results—PVC Cable Samples

3.1. Shore D vs. Aging

The measurement results at each temperature can be seen in Figure 6. As in [11,18,19], the hardness
of the jacket after an initial drop increases, and this behavior can be inspected at each aging temperature.
The effect of the 2-month-long rest was clearly visible in the case of 110 ◦C and 125 ◦C: the values
after 12 h showed nearly the same behavior as the results after 0 h. In both cases, after an initial drop,
an increasing trend could be inspected.
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3.2. Loss Factor (Tan Delta) vs. Aging

The results of loss factor measurements can be seen in Figure 7. The effect of the 2-month resting
of the samples can be clearly seen in Figure 7a,b. The tan delta values increased at each frequency.
The general trend of loss factor curves can be seen in Figure 7c. The loss increased, and the curve
shifted leftward, so the peak of the loss moved to lower frequencies.
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Figure 7. Changing of loss factor with aging time: (a) 110 ◦C, (b) 125 ◦C, (c) 140 ◦C.

3.3. Slope of Decay Voltage (Sd) vs. Aging Time

The results of the voltage response measurement with aging time can be seen in Figure 8. In the
case of the 110 ◦C and 125 ◦C aging temperatures, similar to the Shore D hardness values (Figure 6),
the Sd values started to decrease in the first few aging periods. Then, the values increased until
reaching a peak. Reaching the peak, the slopes of decay voltages decreased again. At a 140 ◦C aging
temperature, the Sd reached a peak after 3 h of aging. Then the results followed a decreasing trend.
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3.4. Comparison of Deducted Quantities

The previous study of the authors claimed that central loss factor and central frequency values
are relatively good deducted quantities for monitoring thermal aging for PVC-insulated cables.
However, so far it has not been possible to decide whether these parameters are better than Shore D
hardness or not [18]. Otherwise, as Figure 7 shows, the changing of loss factor curves is clearly visible,
but the calculation of correlation with aging requires numerical values. Therefore, for correlation
analysis, ordering only one numerical value for each tan delta vs. frequency curves is necessary.

The results of the correlation analysis of deducted quantities are in Table 2.

Table 2. Correlations between deducted quantities and equivalent aging time, hardness, and hardness
changing of PVC cable samples.

CLF CF CFxCLF CFxCLFxCC CxFxLF CC Alog ShoreD CxLFxlgF Sd

11
0
◦
C

(2
1

m
ea

s.
)

Aging t. 0.687 −0.853 −0.676 0.077 −0.354 0.874 0.875 0.853 0.849 −0.636

ShoreD 0.332 −0.700 −0.717 −0.092 −0.592 0.706 0.627 1.000v 0.598 −0.388

Diff. −0.831 −0.612 −0.897 −0.835 −0.844 −0.589 −0.753 1.000 −0.765 0.090

11
0
◦
C

(9
m

ea
s.

)

Aging t. 0.675 0.277 0.830 0.869 0.849 0.877 0.815 0.432 0.826 −0.440

ShoreD −0.319 0.842 0.407 0.357 0.016 0.293 −0.045 1.000 −0.013 0.065

Diff. −0.941 0.781 −0.025 −0.174 −0.896 −0.389 −0.869 1.000 −0.862 0.306

12
5
◦
C

(9
m

ea
s.

)

Aging t. 0.821 −0.898 −0.469 0.835 0.935 0.984 0.959 0.721 0.957 −0.393

ShoreD 0.281 −0.519 −0.609 0.464 0.524 0.677 0.529 1.000 0.531 0.076

Diff. −0.739 0.586 −0.433 −0.336 −0.492 −0.167 −0.754 1.000 −0.707v 0.302

14
0
◦
C

(4
m

ea
s.

)

Aging t. 0.700 −0.962 −0.980 −0.769 0.601 0.848 0.860 0.932 0.811 −0.980

ShoreD 0.395 −0.811 −0.957 −0.943 0.279 0.606 0.619 1.000 0.548 −0.915

Diff. −0.993 0.793 −0.851 −0.990 −0.960 −0.940 −0.977 1.000 −0.975 −0.569

The correlation coefficients were calculated between the proposed deducted quantities and aging
time. These rows are denoted by “Aging t.” in Table 2. Previous studies have shown that the Shore
D value correlates well to the degree of thermal aging [9]. Hence, other deducted quantities were
compared with the Shore D values (“ShoreD” rows in Table 2) and the changes in Shore D values
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(“Diff.”). Differences (“Diff.” in Table 2) show how well the deducted quantities follow the changes
of Shore D by thermal aging. Differences were calculated as the differences of the Shore D values
between two measurement points divided by the aging time between the two points. Correlation
coefficients were calculated between the differences values of the Shore D results and other deducted
quantities. The measured data were normalized by dividing each value by the measured data at 0 h of
aging. This way, every deducted quantity starts from the value of 1. Table 2 shows the correlations
between the deducted quantities by (equivalent) aging time, Shore D, and differences values in case of
equivalent aging times at 110 ◦C and all aging temperatures as well.

3.4.1. All Measurements Converted to Equivalent Aging at 110 ◦C

As Table 2 shows, Shore D values follow aging well since the correlation between the equivalent
aging times is 0.853 considering 80 kJ/mol (0.829 eV) activation energy for aging. However, four
deducted quantities proved to have better or comparable correlations with Shore D: Alog (0.875), CC
(0.874), CF (−0.853), and CxLFxlgF (0.849). These deducted quantities are plotted in Figure 9. It can be
seen that all deducted quantities had higher slopes by aging than Shore D hardness. These deducted
quantities had higher sensitivity to thermal aging than Shore D hardness.
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Figure 9. Deducted quantities with the highest correlation coefficients for following aging at 110 ◦C.
The dashed lines are the corresponding linear regression lines of a given deducted quantity.

Examining the differences, the order is CFxCLF (−0.897), CxFxLF (−0.844), CFxCLFxCC (−0.835),
and CLF (−0.831), but CxlgFxLF (−0.765) and Alog (−0.753) are also worth mentioning. If both the
aging time and the cochanging with Shore D hardness are considered, the more reliable parameter for
following aging and hardness together is Alog, and the next one is CxlgFxLF.

3.4.2. Measurements at 110 ◦C

Because 110 ◦C is the lowest temperature for aging, the measured values characterize more the
early period of aging. The results show that the best parameters for monitoring aging time are CC
(0.877), CFxCLFxCC (0.869), and CxFxLF (0.849), but CFxCLF, Alog, and CxlgFxLF are also above 0.8
correlation. All of these quantities are significantly better than Shore D, which has a correlation of only
0.432 to the equivalent aging time. The differences column shows that CLF is the best choice by −0.941,
but CxFxLF, Alog, and CxlgFxLF are also above −0.86 correlation. This result means that these values
follow well the changing of Shore D hardness by thermal aging.
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3.4.3. Measurements at 125 ◦C

In the case of the 125 ◦C group, the best deducted quantities for following aging time are CC
(0.984), Alog (0.959), CxlgFxLF (0.957), CxFxLF (0.935), and CF (−0.898). Nevertheless, CFxCLFxCC
(0.835) and CLF (0.821) also provided better results than Shore D (0.721). The differences column shows
interesting results since the highest correlation (Alog, −0.754) was lower than the differences in the
case of 110 ◦C. Other quantities worth mentioning are CLF (−0.739) and CxlgFxLF (−0.707).

3.4.4. Measurements at 140 ◦C

Since at 140 ◦C only four measurements were carried out, these correlation values have to
be considered accordingly. This temperature was the highest among the three aging temperatures.
Therefore, the measurement results of this temperature characterize more the effect of long-term
thermal aging. Three parameters followed aging better than Shore D (0.932): CLF (−0.98), Sd (−0.98),
and CF (−0.962), while Alog was the first below the level of Shore D, having a 0.86 correlation
coefficient to aging time. The differences in all but two cases were higher than 0.9 considering unsigned
correlation coefficients.

4. Results—PVC Films

4.1. Shore D vs. Aging

The results of the hardness measurements can be seen in Figure 10. All plasticizer contents showed
the same behavior as in Figure 6: after an initial drop, the hardness increases and the effect of the
1-month-long rest is also clearly visible. However, in the case of the nonplasticized DOP0 specimens
after the initial drop and increment, the hardness slightly decreased and remained constant. Another
difference that is worth mentioning is that the effect of resting is becoming less significant by having
less plasticizer content. In the case of DOP50, 15 h of aging was needed to reach the initial hardness
before the resting (18 h of total aging). Meanwhile, the times were only ca. 9 h and 6 h in the cases of
DOP40 and DOP30 samples, respectively.
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4.2. Loss Factor (tan delta) vs. Aging

The results of loss factor measurements of PVC films are shown in Figure 11. As the figure shows,
the shapes of loss factor vs. frequency curves and the magnitudes of the dielectric loss strongly depend
on the amount of contained plasticizer. By increasing DOP content, the tan δ values increase. In the
case of DOP30, the loss factor curves are decreasing monotonically by frequency, while the other curves
are concaves. The peak of the dielectric loss is around 20,000 Hz in the case of non-plasticized (DOP0)
samples. In the case of DOP40, the peak values are around 2000 Hz, and around 8000 Hz in the case of
DOP50 samples.

Shifting of peaks with aging can also be observed in the case of DOP40 and DOP50 samples.
In both samples, the peaks shifted leftwards by thermal aging. As a result of the first four aging
periods, the magnitude of the peaks follows an increasing trend. As aging advanced, the magnitude of
the peaks decreased.
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Figure 11. Changing of loss factor with aging time of PVC films: (a) DOP0, (b) DOP30, (c) DOP40,
and (d) DOP50.

4.3. Slope of Decay Voltage (Sd) vs. Aging Time

The results of slopes of decay voltage measurement are shown in the diagrams in Figure 12.
The slopes of decay voltages increased by the amount of plasticizer content. Hence, the higher the
plasticizer content is, the higher the conductivity is. The trend of the curves is very similar to each
other. After the first aging period, the Sd values increased, then converted to a decreasing trend with
aging. The effect of 1-month-long resting can also be observed: the conductivity increased after letting
the samples rest (15 h DOP30, DOP40; 18 h DOP50).
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Figure 12. Changing of slopes of decay voltages with aging time of PVC films: (a) DOP0, (b) DOP30,
(c) DOP40, and (d) DOP50.

4.4. Comparison of Deducted Quantities

The calculated correlations between the deducted quantities are shown in Table 3. The meaning
of the rows is the same as in Table 2.

Table 3. Correlations between deducted quantities and equivalent aging time, hardness, and hardness
changing of PVC films.

CLF CF CFxCLF CFxCLFxCC CxFxLF CC Alog ShoreD CxLFxlgF Sd

D
O

P0

Aging t. −0.580 −0.295 −0.516 −0.628 −0.865 −0. 15 −0.569 0.122 −0.686 −0.535
ShoreD 0.404 −0.451 −0.377 −0.297 0.019 0.281 0.458 1.000 0.403 −0.776

Diff. 0.947 −0.114 0.376 0.603 0.924 0.976 0.934 1.000 0.657 −0.904

D
O

P3
0 Aging t. −0.950 −0.027 −0.811 −0.867 −0.935 −0.843 −0.924 0.810 −0.935 −0.769

ShoreD −0.838 0.418 −0.398 −0.468 −0.675 −0.660 −0.832 1.000 −0.816 −0.880
Diff. −0.693 0.746 0.023 −0.156 −0.549 −0.627 −0.698 1.000 −0.060 −0.808

D
O

P4
0 Aging t. −0.879 −0.637 −0.831 −0.869 −0.929 −0.905 −0.811 0.724 −0.875 −0.884

ShoreD −0.876 −0.087 −0.362 −0.415 −0.620 −0.728 −0.873 1.000 −0.856 −0.423
Diff. −0.456 0.605 0.514 0.489 0.255 −0.066 −0.518 1.000 −0.414 −0.131

D
O

P5
0 Aging t. −0.690 −0.829 −0.918 −0.936 −0.958 −0.950 −0.591 0.836 −0.771 −0.925

ShoreD −0.796 −0.544 −0.692 −0.721 −0.786 −0.830 −0.736 1.000 −0.832 −0.639
Diff. −0.364 0.055 −0.046 −0.038 −0.059 0.074 −0.250 1.000 −0.278 0.413

4.4.1. Nonplasticized Specimens

The best quantities for following aging in the case of nonplasticized PVC (DOP0 samples) have
been CxFxLF (−0.865), CC (−0.715), and CxLFxlgF (−0.686). It is important to note that Shore D
hardness shows the lowest correlation of all the results. This is not surprising since hardness correlates
mostly with the plasticizer content. It is important to note that thermal degradation also increases the
hardness of PVC, although the total aging time is not long enough for significant dehydrochlorination.
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When the correlation to the Shore D hardness is examined, the best quantity is Sd (−0.776). All the
others are below 0.5 correlation. Examining the differences, the correlations improved significantly
compared with the correlation with hardness, lifting 6 quantities out of 11 above 0.8 correlation.
However, in this case, it has to be neglected since the changes in hardness were also negligible.

4.4.2. Plasticized Specimens

The Shore D hardness followed well the thermal aging in the case of plasticized specimens
reaching 0.81, 0.724, and 0.836 correlations on DOP30, DOP40, and DOP50 samples. However, four
better quantities have been found to be better at all plasticizer contents. In the order of (DOP30,
DOP40, DOP50) CxFxLF (−0.935, −0.929, −0.958), CC (−0.843, −0.905, −0.95), CFxCLFxCC (−0.867,
−0.869, −0.936), and CFxCLF (-0.811, -0.831, -0.829). Moreover, in the case of lower plasticizer contents
(30 and 40 wt%), CLF (−0.95, −0.879, −0.69), CxLFxlgF (−0.935, −0.875, −0.771), and Alog (−0.924,
−0.811, −0.591) also performed above Shore D hardness. On higher plasticizer contents (DOP40,
DOP50), Sd (−0.769, −0.884, −0.925) performed better than Shore D hardness. The best deducted
quantities for monitoring Shore D hardness behavior are the following: CxLFxlgF (−0.816, −0.856,
−0.832), CLF (−0.838, −0.876, −0.796), and Alog (−0.832, −0.873, −0.736). Surprisingly, the correlation
to differences was low on DOP50 (best: Sd, 0.413) and DOP40 (best: CF, 0.605) specimens. On DOP30
films, all quantities were below 0.7 correlation; only Alog (−0.698) was close to this level.

5. Discussion

5.1. PVC Cable Samples

The measurement results show that there are better deducted quantities for monitoring thermal
aging than Shore D hardness. However, if we consider aging temperatures separately, the best
parameters vary. Mechanical measurements (i.e., indenter-type, elongation at break, etc.) have
proved to be useful for monitoring the degree of deterioration caused by thermal stress [9,22,28,29].
However, these studies focused on the long-term effect of aging, not short-term. Nevertheless, in [9],
although the research did not focus on short-term aging and lower temperature (80 ◦C) was used in the
first aging periods, an initially decreasing trend in Shore D hardness was measured. This trend converted
to an increasing one afterward, and the same was inspected in our measurements. Therefore, for
following the effect of short-term aging, Shore D hardness is not the best parameter to choose.

It can be stated that, on average, the best parameters tend to be Alog, CxFxLF, CxlgFxLF, CF,
and CC. The first three of these are closely related to the dielectric loss in insulation caused by an AC
stress that can be seen in Equation (7):

Pd = E2εrε0ω tanδ (7)

where Pd is the dissipated power, E is the electric field, εrε0 is the relative permittivity times the
vacuum permittivity,ω is the angular frequency, and tanδ is the loss factor. The close relationship lies
in the fact that tanδ appears in Alog, CxFxLF, CxlgFxLF deducted quantities; the angular frequency is
directly proportional to the frequency; and the capacitance is directly proportional to the permittivity.
This means that as a result of short-term thermal aging, the dissipated energy generated by the
20 Hz–500 kHz frequency range increases. This result reinforces the result of a previous study in which
the dissipated energy was found to correlate well to thermal aging using PVC samples in the case of
long-term aging. The dissipation energy was calculated from the measured cumulative charge [8] so
that the study used completely different parameters to measure.

Changes in central capacitance suggest that the capacitance of the cables increases by short-term
thermal aging considering the 20 Hz–500 kHz frequency range. This effect is due to the change in
molecular structure that results in relative permittivity change of the insulation. This effect was also
inspected in [28] but with a wider frequency range, performing a significantly longer aging process
(hundreds of hours) at a higher temperature (140 ◦C).
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Another interesting result is that the central frequency almost linearly decreases by thermal aging.
This means that the overall loss factor spectrum inspected in the 20 Hz–500 kHz range is shifting
towards the lower frequencies by thermal aging. This was also inspected in [17,18], where the peak
of tan δ values shifted towards the lower frequencies. However, the whole process could be seen by
eye and not by one specific number. Moreover, the scope of those investigations was a lot smaller.
Examining the results of [28], the correlation between aging time and central frequency seems to be
dependent on the frequency range inspected. However, the range used in this study seems viable
for the results published in [27] as well. Another study has shown that by aging PVC at 120 ◦C,
the loss factor increases at 50 Hz frequency after 1500 h, and this time drops to 250 h at 140 ◦C [30].
Although the frequency dependence was not in the scope of that study, the increasing trend at a low
frequency implies the central frequency shifting towards the lower frequency range.

The initial steepness of decay voltage, which is directly proportional to the specific conductivity
of the insulating material, proved to be useful only at 140 ◦C. The reason for this could be that at
this temperature, the plasticizer loss becomes the dominant process of aging in a shorter time than
at lower temperatures. If the plasticizer content is higher, the conductivity, and therefore Sd, will be
also higher [25,26]. Hence, the results suggest that in short-term thermal aging, initially not the loss
of plasticizer is the dominant aging process. Instead, the initial drop of Shore D hardness might be
caused by the rearrangement of molecules and the aggregation of molecular chain also known as the
annealing effect as claimed in [31,32]. Another possible explanation for the initially decreasing trend in
hardness is that due to the elevated temperature, the plasticizer from the filling material migrates to
the jacket, softening the material as proposed by [17,18,33].

The resting of samples for 2 months resulted in a breaking point in the measurement results.
All measured data acted the same way after restarting the measurements as if a new measurement had
been started. This implies that the measured data are dependent on the time passed between the aging
rounds. One reason for this would be that the plasticizer loss is a two-step process, namely, the diffusion
from the bulk of PVC to the surface and the evaporation from the surface to the atmosphere [34].
Since the aging was performed in a well-ventilated oven, the plasticizer loss was diffusion-controlled
in our case. As a result of aging, as an earlier study has shown, the plasticizer content varies by the
depth of the insulation [35] having less on the surface. Nevertheless, by resting the samples for a
longer period, these differences can vanish. This explains the softening of the samples after the resting
period. The reason for this is the migration of the plasticizing agent that is seeking the equilibrium of
the plasticizer concentrate. Another reason could be the interdiffusion between the filling material or
the core insulation and the jacket, as mentioned earlier.

5.2. PVC Films

The results of the PVC films have shown similar behavior to the PVC cables in terms of short-term
thermal aging’s effect on hardness. The results have also shown that there are better deducted quantities
for following short-term thermal aging than Shore D hardness. Nevertheless, due to the fact that in
this case the aging temperature remained unchanged and the percentage of plasticizing agent varied,
other conclusions can be derived from the results. The best deducted quantities were different from
the ones in cables since these were CxFxLF, CC, CFxCLFxCC, and CFxCLF in the case of plasticized
PVC specimens and Alog, CxFxLF, CxlgFxLF, CF, and CC in the case of PVC cables. At first sight,
from the best results, only two (CxFxLF, CC) appear in both films and cables. However, if we take into
consideration that a PVC cable insulation usually contains 40 or less wt% plasticizer content, CxlgFxLF
and Alog also show a good correlation. By decreasing the plasticizer content, both CxlgFxLF and
Alog reach higher than 0.9 correlations. In the case of cables aged at 110 ◦C, the best parameters were
nearly the same: CFxCLF, CxFxLF, CFxCLFxCC, and CLF. In conclusion, only CLF and CC meant the
difference between the best parameters in the case of cables and films.
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The initial steepness of decay voltage correlated much better with aging time on specimens having
higher plasticizer content (DOP0 . . . DOP50): −0.535, −0.769, −0.884, and −0.925. This is again because
of the fact that Sd is directly proportional to the specific conductivity [21,25,26].

There is an initial drop in hardness even in nonplasticized PVC specimens, reinforcing the
hypothesis that the root cause of this phenomenon is the annealing effect [31,32]. The annealing
effect is the rearrangement of the molecules in the insulating material. Hence, the evaporation of the
plasticizing agent is not the dominant process during the first aging period. On the other hand, in [32]
the plasticizer concentration of the inspected samples dropped as a result of thermal aging even after
50 h of aging at 100 ◦C. Hence, it can be stated that at this level of aging, the dominant aging process is
the annealing effect even though the plasticizer content of the inspected samples possibly also started to
decrease because of thermal aging. The decreasing trend of Sd values is also reinforcing this hypothesis.
The initial drop of hardness might also be caused by the stearic acid lubricant, which has been used for
sample preparation. This lubricant increases the glass transition temperature of PVC [36]. Since stearic
acid is an external lubricant [37], after the first aging period, the lubricant might have evaporated from
the surface region of the specimens. This could decrease the glass transition temperature and soften
the PVC as well.

The month-long resting of the samples resulted in a behavior similar to the phenomenon already
seen in the case of PVC cables: Shore D hardness did not increase immediately after the aging started.
Instead, it initially decreased again and, after reaching a minimum value, converted to an increasing
trend. The reason for this is that the plasticizer content varies by the depth of the insulation as a result
of thermal aging. The samples contain less plasticizer on the surface [35] since the circumstances of
aging (ventilated aging chamber) suggest a diffusion-controlled plasticizer loss.

It is important to note that the aging time needed to reach the initial hardness before the
1-month-long resting also differed by plasticizer content. This lasted for around 15, 9, and 6 h in the case
of DOP50, DOP40, and DOP30 samples, respectively. This effect cannot be identified in nonplasticized
samples. This supports the hypothesis that the plasticizer content of the PVC-insulating material is
dependent on the time needed to reach the initial hardness in the case of short-term thermal aging.

6. Conclusions

The aim of this work was to find better quantities than Shore D hardness for monitoring short-term
thermal aging on low-voltage PVC cables and PVC films. To achieve this goal, the effect of multiple
aging temperatures (110, 125, 140 ◦C) on PVC cables and the effect of varying plasticizer contents (0, 30,
40, 50 wt% DOP) on PVC films were investigated.

This investigation has revealed for both cables and films that for following short-term thermal aging,
Shore D is not the best parameter to choose. This is because hardness does not increase immediately
by aging, but only after an initial drop because of the annealing effect in PVC. Instead, Alog, CxFxLF,
CxlgFxLF, CF, and CC values are the best deducted quantities for following short-term thermal aging
for cables. For plasticized PVC specimens, CxFxLF, CC, CFxCLFxCC, and CFxCLF performed best.
However, in DOP40 samples (having about the same plasticizer content as cable sheaths), Alog and
CxlgFxLF also appeared as the best choices. To sum up the results, Alog, CxFxLF, CxlgFxLF, and CC
deducted quantities are the best choices for monitoring short-term thermal aging on PVC cable sheaths,
providing four new quantities from nondestructive measurements.

Moreover, these results fit in and supplement the recent findings regarding thermal aging in PVC
insulation, although approaching the problem from a different and new point of view. Utilizing the
new deducted quantities, the aging process can be characterized by only one number from loss factor
measurement, although a wider frequency range is measured.

The results presented in this paper provide a good basis for a better condition monitoring system
that utilizes online measurements or in any case where the identification of a short-term thermal shock
is helpful (e.g., in NPPs).
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