Glucosamine modified the surface of pH-responsive poly(2-(diethylamino)ethyl methacrylate) brushes grafted on hollow mesoporous silica nanoparticles as smart nanocarrier

Abeer M. Beagan,^{1*} Shatha S. Lahmadi,¹ Ahlam A. Alghamdi,¹ Majed A. Halwani,² Mohammed S. Almeataq,³ Abdulaziz N. Alhazaa,⁴ Khalid M. Alotaibi¹ and Abdullah M. Alswieleh^{1*}

¹ Department of Chemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia.

² Nanomedicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi.

³ King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.

⁴ Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia

* Corresponding Authors: A. Alswieleh, Email: aswieleh@ksu.edu.sa

A. Beagan, Email: <u>abeagan@ksu.edu.sa</u>

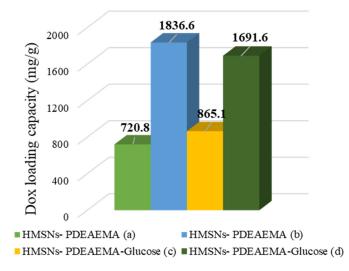


Figure S1: The dox loading capacity of HMSNs-PDEAEMA and HMSNs- PDEAEMA- glucosamine.

Table S1: The loading capacity and the entrapment efficiency before and after glucose modification at different concentrations of Dox. (a, c) Dox (0.5mg/ml), (b, d) Dox (1mg/ml).

Sample ID	loading capacity%	Entrapment efficiency%
HMSNs- PDEAEMA (a)	41.9%	72.1%
HMSNs- PDEAEMA (b)	64.7%	91.8%
HMSNs- PDEAEMA- glucose (c)	46.4%	86.5%
HMSNs- PDEAEMA- glucose (d)	62.8%	84.6%

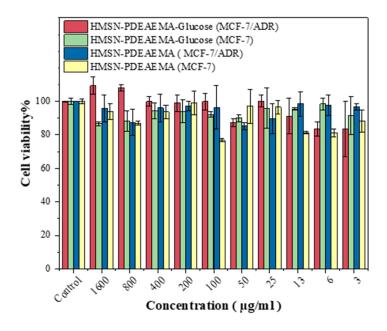


Figure S2. Illustration the effect of unloaded DOX hybrid nanoparticles on MCF-7 and MCF-7/ADR cells.