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Abstract: This study introduces a new synthesis route for obtaining homogeneous chitosan (CS)-silica
hybrid aerogels with CS contents up to 10 wt%, using 3-glycidoxypropyl trimethoxysilane (GPTMS)
as coupling agent, for tissue engineering applications. Aerogels were obtained using the sol-gel
process followed by CO2 supercritical drying, resulting in samples with bulk densities ranging from
0.17 g/cm3 to 0.38 g/cm3. The textural analysis by N2-physisorption revealed an interconnected
mesopore network with decreasing specific surface areas (1230–700 m2/g) and pore sizes (11.1–8.7 nm)
by increasing GPTMS content (2–4 molar ratio GPTMS:CS monomer). In addition, samples exhibited
extremely fast swelling by spontaneous capillary imbibition in PBS solution, presenting swelling
capacities from 1.75 to 3.75. The formation of a covalent crosslinked hybrid structure was suggested
by FTIR and confirmed by an increase of four hundred fold or more in the compressive strength up to
96 MPa. Instead, samples synthesized without GPTMS fractured at only 0.10–0.26 MPa, revealing a
week structure consisted in interpenetrated polymer networks. The aerogels presented bioactivity in
simulated body fluid (SBF), as confirmed by the in vitro formation of hydroxyapatite (HAp) layer with
crystal size of approximately 2 µm size in diameter. In vitro studies revealed also non cytotoxic effect
on HOB® osteoblasts and also a mechanosensitive response. Additionally, control cells grown on
glass developed scarce or no stress fibers, while cells grown on hybrid samples showed a significant
(p < 0.05) increase in well-developed stress fibers and mature focal adhesion complexes.

Keywords: hybrid silica aerogels; chitosan; GPTMS; textural properties; mechanical properties;
swelling properties; bioactivity; bone tissue engineering; osteoblasts; focal adhesions

1. Introduction

A new generation of bio-based aerogels has been attracted much attention research during the last
two decades, particularly in emerging areas associated to environmental and biomedical sciences [1–5].
Thanks to their unique and tuneable properties, as well as ease of functionalization, a widespread range
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of applications has been proposed and developed for silica-based biopolymer aerogels [6]. Moreover,
their characteristic 3D open network structure facilitates the access for external fluids, which allows
a controlled interaction with internal active surfaces and/or encapsulated secondary phases. Due to
its versatility, these type of materials have been proposed for very different applications, such as
catalysis [4], CO2 capture [7], oil–water separation [8], drug delivery and medicine [9]. In this context,
a well-diversified collection of biopolymers has been considered for the preparation of bio-aerogels,
including collagen [10], gelatin [11], whey proteins [12], etc. Also polysaccharides such as alginate [13],
cellulose [14], chitosan (CS) [15] and many others have been successfully used to produce bio-based
aerogels [16,17]. Among the natural compounds, CS (a biopolymer extracted from chitin natural
source) has attracted great interest due to their remarkable properties for industrial technology and
biomedical fields [18–20].

Besides, extensive research has been conducted on the chemical modifications of chitosan,
as summarized in numerous and excellent publications focused on this topic [21–24] Hence,
the hybridization of CS with an inorganic silica network by using sol-gel method has been investigated
so far, as a strategy to achieve improved properties from a combined synergistic effect of the properties of
the individual organic and inorganic component [15,25]. Moreover, silica is considered to be a decisive
part of the mechanism of biomineralization of biomimetic apatite on bioactive surfaces [26], so it may
help to stimulate adequate biological response in biomaterials. Regarding this issue, silanol groups in
the surface acts a nucleation sites together with factors related with the textural characteristics of the
materials, thus controlling the mechanism for nucleation and growth of biomimetic hydroxyapatite
layer [27]. Therefore, silica-based hybrid aerogel structures, presenting tunable mechanical and
chemical properties, may also improve the primary characteristics of biomaterials: non-cytoxicity,
biocompatibility, bioactivity, biodegradability, etc. [28,29]. Consequently, hybrid aerogels in the
CS-silica system are expected to improve mechanical strength as well as biological properties of the
resulting biomaterials in the field of biomedical engineering.

To date, various CS-silica aerogel synthesis processes have been reported and, in general, all of
them involved a mixture of sol-gel precursors followed by the formation of the hybrid gel [25,30–32]
The subsequent extraction of the pore filling liquids from the wet gels is the most important step for
obtaining the hybrid aerogels, which has been usually accomplished by supercritical drying [31,33]
However, also freezing drying [34] or ambient pressure drying [25] methods have been successfully
employed. The first reported fabrication of CS-silica hybrid monolithic aerogels using CO2 supercritical
drying was performed by Ayers and Hunt [15], who described the influence of CS on the physical
properties and the biocompatibility of the resulting aerogels. After a thorough investigation of the topic,
CS-silica aerogels were proposed for different applications and here we will take special consideration
of biomaterials for biomedical purposes [1,2,20,26,35,36]

To this end, many research studies presented in the literature about the synthesis of chitosan-silica
hybrids proposed the use of crosslinking agents, to create strong interactions at nanoscale with
creation of covalent bonds between chitosan and silica network [37]. This strategy is favored by
the presence of both hydroxyl and primary amine groups in chitosan molecule (a heteropolymer
made of glucosamine and N-acetyl glucosamine), that facilitates the introduction of coupling agents.
Best reported results were observed using 3-glycidoxypropyl trimethoxysilane (GPTMS), one of the
most frequently used alkoxysilanes to synthesize class II hybrid materials [37,38] according to the
hybrid classification of Gomez-Romero and Sanchez [39] In acidic aqueous solution, GPTMS may
proceeds to functionalize chitosan creating covalently bonded compounds, according to different
reaction mechanisms (see Figure 1) [40,41]. So, for example, through the nucleophilic attack by the
primary amine group of chitosan to open the epoxide ring, (route 1); by condensation of silane groups
of GPTMS with hydroxyl groups of chitosan (route 2); through nucleophilic attack by the hydroxyl
groups of the chitosan to open the epoxide ring (route 3). In addition, some ionic chemical species can
be formed too between positively charged amine groups and negatively charged silanes, or negatively
charged oxygen from the epoxide group. In all cases, the methoxysilane groups hydrolyzed to form
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silanol groups simultaneously, as shown in Figure 1, and may eventually condense with the silica
network developed from the corresponding inorganic component of the hybrid, to form the Si–O–Si
covalent bonds and thus creating a crosslinked mechanically reinforced structure.
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Figure 1. Alternatives routes of functionalization of deacetylated chitosan by GPTMS in acidic medium.
(1) Trough nucleophilic attack of epoxide ring by amine group of chitosan; (2) by condensation of
silanol and OH groups of chitosan; (3) by nucleophilic attack of epoxide by OH group of chitosan [40].

Additionally, several studies have focused on the preparation of CS-silica hybrid materials
using tetraethoxysilane (TEOS) as silica source and GPTMS crosslinker, reporting the formation of
covalent bonding between silica and CS networks [40,41]. The resulting materials were intended
for drug delivery technology [42–44] but also as separation membranes in biomaterials [45]. Other
authors obtained interpenetrating network hybrid membranes made of silica and CS instead, without
using crosslinking agents [46]. Nevertheless, despite significant achievements in the preparation and
characterization of CS-silica hybrids for biomedical purposes, and the hundreds of articles related
to this topic, more efforts are needed to evaluate the potential applications of their corresponding
mesoporous aerogels as biomaterials for tissue engineering.

The current study suggests that chitosan-silica mesoporous aerogels has osteoregenerative
properties. To this end, we synthesized monolithic hybrid aerogels by sol-gel followed by supercritical
CO2 drying, based on chitosan (CS) and two types of alkoxysilanes: TEOS, as silica inorganic precursor,
and GPTMS, as crosslinker agent, used in different molar ratios. We prepared several formulations
of hybrid aerogels incorporating different amounts of chitosan and GPTMS and examined the effect
of their compositions on the structure, mechanical and swelling properties. In addition this work
investigates the in vitro bioactivity of the hybrid materials in simulated body fluid (SBF), as well as the
osteoblast cell response of the hybrids by in vitro culture methods.

2. Materials and Methods

2.1. Materials

Tetraethylortosilicate (TEOS, 99%) and Chloride acid (HCl) (37%) were obtained from Alfa
Aesar (Haverhill, MA, USA). Chitosan (CS; 50,000–190,000 Da; 75%–85% deacetylation degree) and
3-glycidoxypropyltrimethoxysilane (GPTMS, >98%) were purchased for Sigma Aldrich (St. Louis,
MO, USA). Absolute ethanol (99.5%) was purchased from Panreac (Barcelona, Spain). Acid acetic
(Reagent Grade) was purchased for Scharlau (Barcelona, Spain). HOB® human osteoblasts, foetal
calf serum and Osteoblast Growing Medium (Promocell, Heidelberg, Germany). Paraformaldehyde,
PBS, Triton x-100, bovine serum albumin, Metanol, rhodamine phalloidin and monoclonal anti-vinculin
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FITC conjugate were all purchased from Sigma, (St. Louis, MI, USA), Vectashield® (Vector, Burlingame,
CA, USA).

2.2. Synthesis of TEOS and CS-GPTMS Precursor Sols

CS-silica and CS-GPTMS-silica hybrid aerogels were fabricated with different compositions using
the sol-gel method by mixing two precursor sols. The first one made of hydrolysed TEOS with the
stoichiometry acid water and the second one was prepared by mixing low molecular weight chitosan
and GPTMS (where necessary) in aqueous acetic acid solution. The diagram in Figure 2 summarizes
the key steps of the complete synthesis process.
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Figure 2. Scheme of the synthesis procedure. In total, ten hybrid aerogels were prepared, denoted as
CSnGx (n is a code number that goes from 1 to 10 and x = 0, 2, 4, indicates the GPTMS/CS monomer
molar ratio).

First, TEOS was totally hydrolysed with stoichiometric quantity of 0.1 N HCl under the catalyst
effects of ultrasound, by supplying 0.25 kJ/cm3 of sonic power using a Vibracell 500 Watt ultrasonic
processor from Sonics & Materials (Newtown, CT, USA). A second sol was obtained by dissolving CS
powder in 0.5 M aqueous acetic acid solution under vigorous stirring for 2 h at 25 ◦C to produce 2%
w/v CS solution. Then, different amounts of GPTMS were added drop-wise to this CS solution with
30 min additional mechanical stirring at 25 ◦C, in order to functionalize the CS biopolymer. In contrast,
the preparation of a CS solution without the addition of GPTMS was contemplated. In summary,
four sols were obtained: an aqueous silica sol (pH = 1.2) from TEOS, and three additional GPTMS-CS
sols with different molar ratios GPTMS:CS monomer: 0 (no GPTMS), 2 and 4 (pH ~ 3.80).

2.3. Synthesis of CS-GPTMS-Silica Hybrid Aerogels Monolith

The preparation of hybrid aerogels continued by mixing separately the three CS-GPTMS sols with
the hydrolyzed TEOS until homogenization, under mechanical stirring at 25 ◦C for 30 min. Several
inorganic/organic (chitosan) weight ratios and molar ratios of TEOS, CS and GPTMS were examined,
as shown in Table 1, where the detailed synthetic conditions used in this work are presented.
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Table 1. Sample identification, starting compositions and final content of CS based on Elemental
Analysis (EA) measured data for each synthesized aerogel.

Sample
Identification

Nominal CS
Content GPTMS/CS TEOS/CS Final CS Content

from EA 1

(wt%) (Molar Ratio) (Molar Ratio) (wt%)

CS1G0 3.8 0 150 1.7
CS2G0 7.3 75 3.3
CS3G0 12.3 45 7.6
CS4G0 16.7 30 10.3

CS5G2 3.7 2 150 3.1
CS6G2 6.8 75 5.9
CS7G2 14.2 30 8.0

CS8G4 6.3 4 75 3.1
CS9G4 9.8 45 5.3

CS10G4 12.3 30 9.7
1 Final CS content was calculated from the N values measurements in EA, considering that chitosan is the sole
source of nitrogen in the samples.

The samples with x = 0 were obtained without coupling agent GPTMS, as a reference, being named
CSnG0. In total, ten aerogels with several TEOS/CS and GPTMS/CS molar ratios were prepared and
characterized. Subsequently, the freshly prepared CS-GPTMS-TEOS sols (pH ~ 4.25) were transferred
to 5 mL cylinder-shaped plastic vials and left hermetically closed at 50 ◦C in an oven, until the gels
were set. Following, the resulting alcogels were soaked in ethanol excess at 50 ◦C for 10 days for aging
and removing the residual water from the pore. Finally, wet gels were dried in supercritical CO2 at
40 ◦C and 10 MPa, to obtain the monolithic hybrid aerogels.

2.4. Physical and Textural Characterisation

The density of the samples was obtained by measuring the mass and the size of the monolithic
cylindrical samples with a sliding calliper and a microbalance (precision ± 0.1 mg). The textural
properties of the hybrid aerogels were investigated by means of nitrogen physisorption experiments
(Micromeritics ASAP2010, Norcross, GA, USA), working at 77 K and equipped with pressure transducer
resolution of 10−4 mm Hg). Specific surface area, pore volume and pore size distribution were
determined, considering BET and BJH standard models for the analysis. Prior to these experiments,
samples were degasified at 120 ◦C for 6 h.

2.5. Thermal Characterization

Thermogravimetric analysis (TGA) was performed with a TGA Q50 from TA Instruments
(New Castle, DE, USA) in order to determine the stability of the sample as a function of temperature.
The sample heating rate was 10 ◦C min−1 and a temperature ramp of 50 to 900 ◦C under air atmosphere
was used to completely resolved all the weight loss events.

2.6. FT-IR Spectroscopy

FTIR was performed on a Bruker Tensor 37 spectrophotometer (Billerica, MA, USA). The spectra
were recorded at room temperature with a resolution of 4 cm−1 and 100 scans in the region from 500 to
4000 cm−1 The samples were stored 24 h at 60 ◦C, then ground into fine powder, mixed with KBr and
pressed into a self-supporting wafer which was put on a sample holder for spectrum measurement.

2.7. Swelling Behavior-PBS Swelling Capacity

The swelling ratio of hybrid aerogels was studied to evaluate their swelling behavior and
mechanical stability under aqueous medium. To investigate the hybrid network ability to absorb,
dry sample monoliths (5 mm high and 8–10 mm in diameter) were immersed into 30 mL phosphate
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buffer solution (PBS; pH = 7.4) at room temperature. The swelling ratio SR of the samples was
defined as the weight increase, per unit weight of the original dry hybrid aerogel, due to PBS aqueous
solvent absorption. It was calculated in grams of the liquid absorbed PBS per grams of dry sample
using Equation (1)

SR =
Wt −Wd

Wd
(1)

where Wd and Wt correspond to the weights of the sample in dry and in swollen states at time t,
respectively. Experiments were performed in triplicate using a 30 mm inner diameter basket made of
2 mm aperture stainless steel wire mesh, which was carefully dried for each measurement. Weight
measuring was carried out by first blotting both the aerogel surface and the wire basket with filter
paper, to remove excess surface PBS, and then weighed immediately. The process was repeated several
times at different time intervals, until the sample saturation point W∞ was reached and did not indicate
any weight change.

2.8. Swelling Kinetics

Besides quantifying the swelling capacity effects for the hybrid aerogels, the knowledge of
the swelling kinetics can also be important to evaluate their applicability as porous materials for
tissue repair, as it gives information on the rapidity for filling and repairing some bone defects for
certain applications [43]. Hence the investigation of the swelling rate for hybrid aerogels should be
accomplished. To this end, the absorption behavior was described by the normalized absorption
ratio M*(t) and was plotted versus √t. This square-root-of-time dependency suggested denotes a
Lucas-Washburn model for absorption kinetics [47], typical of fast imbibition of liquids by capillary
rise, considering a rigid porous structure. The Equation (2) was used:

M∗(t) =
Wt −Wd

W∞
(2)

where W∞ is the weight of saturated sample.

2.9. Mechanical Properties

Mechanical properties of samples were characterized by uniaxial compression (Shimadzu AG-I
Autograph, Kyoto, Japan) with a load cell of 5 kN for dry samples and of 50 N for samples immersed
in PBS. Cylindrical samples 16–20 mm high and 8–10 mm in diameter were used, fulfilling with ASTM
D7012 (h = 2D). The compressive strength and maximum strain were obtained from the maximum
deformation before the fracture of the sample, and the elastic modulus from the initial tangent of the
stress-strain curve.

2.10. In Vitro Bioactivity

Biomineralization was studied by submerging 5 mm length × 8 mm diameter aerogel pellets in
30 mL simulated body fluid SBF in polyethylene containers, through the analysis of hydroxyapatite
(HAp) formation at the surface. SBF was prepared according to Kokubo’s method [48] and soaking was
maintained for 21 days at 37 ◦C. The test was performed with fluid weekly exchange and samples were
taken out from the buffer solution after every 7 days, carefully washed with Milli-Q (MilliporeSigma,
Burlington, MA, USA) for removing surface minerals and later again dried at 50 ◦C and ambient
pressure. Surface morphologies of SBF treated samples after different soaking periods were investigated
with SEM/FEI Nova NanoSEM 450 (FEI, Morristown, NJ, USA); (resolution 1.4 nm) equipped with a
Bruker SDD-EDS detector, used for determining Ca/P compositional differences across the specimen
surface. High resolution imaging HRTEM was performed with TEM TALOS FX200 (Thermo Scientific,
Waltham, MA, USA) and selected-area electron diffraction (SAED) patterns were obtained in microprobe
mode, in order to identify the crystalline nature of possible nanocrystalline phases.
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2.11. In Vitro Biocompatibility

HOB® human osteoblasts (Promocell, Heidelberg, Germany) were seeded at a density of
15,000 cells/cm2 and incubated in Osteoblast Growing Medium supplemented to a final concentration
of 0.1 mL/mL of fetal calf serum (Promocell) at 37 ◦C and 5% CO2 on test surfaces and immunolabelled
after 48 h, 72 h and 1 week. Growth medium was changed every two days. HOB cells did not exceed ten
population doublings. Aerogels were sterilized in autoclave in order to achieve optimal sterilization,
prior to cell seeding. At least five samples of each type were seeded and analyzed per experiment.
The test groups for selected samples with higher CS content were as follows: CS4G0, CS7G2 and
CS10G4. HOB® cells grown on glass were used as control.

2.11.1. Cell Morphology and Spreading

Cells were daily examined with the phase contrast microscope in order to evaluate cell morphology,
alignment and initial adhesion phase to surfaces. Morphological changes, cell distribution and spreading
were assessed prior to immunolabelling for fluorescence and CLSM examination of the CS4G0, CS7G2
and CS10G4 samples.

2.11.2. Actin Cytoskeletal Organization and Vinculin Expression

At the end of each experiment, cells were washed with prewarmed phosphate buffered saline (PBS),
pH 7.4, and fixed with 3.7% paraformaldehyde at room temperature, washed, and then permeabilized
with 0.1% Triton x-100). After washing, cells were preincubated with 1% bovine serum albumin
(Sigma) in PBS for 20 min prior to cell immunolabelling for actin cytoskeleton with rhodamine
phalloidin (Sigma) and monoclonal anti-vinculin FITC conjugate (Sigma). After 20 min. TiO2/PLGA-10,
TiO2/PLGA-3, TiO2/PLGA-100 samples were rinsed with prewarmed PBS prior to mounting with
Vectashield ® (Vector, Burlingame, CA, USA).

2.11.3. Confocal Examination

Samples were visualized using an Olympus confocal microscope (Tokyo, Japan). At least five
samples were analyzed for each group to assess surface influence on cytoskeletal organization, focal
adhesion number, and development and cell morphology. Images were collected and processed using
imaging software. At least 50 cells per sample were analyzed. Samples were exposed to the lowest
laser power that was able to produce a fluorescent signal for a time interval not higher than 5 min to
avoid photobleaching. A pinhole of 1 Airy unit was used. Images were acquired at a resolution of
1024 × 1024, mean voxel size of 209.20 nm.

2.11.4. Image Analysis

To analyze the differences in focal adhesion number between different sample groups, images were
collected as frames obtained at 40×magnification and processed using Image J software. All experiments
were repeated in triplicate, unless otherwise stated. All data were SPSS analyzed and expressed as
mean ± standard deviation. For the variable number of contacts, a descriptive analysis was used to
summarize the number of contacts in each experimental group, and a two-way ANOVA and Tukeys
comparison of means were employed. Statistical significance was defined as p < 0.05.

3. Results and Discussion

3.1. Synthesis of CS-GPTMS-Silica Hybrid Aerogels

CS-SiO2 and CS-GPTMS-SiO2 monolithic hybrid aerogels were here synthesized by sol-gel
techniques. The specimens were elastic and mechanically resistant upon handling and homogeneous
throughout the bulk, suggesting a well distribution and incorporation of the chitosan and silica
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components, as shown in Figure S1 of Supplementary materials. The influence of both CS and GPTMS
on the structure, mechanical and biological activity of the hybrids was studied.

The suggested reaction mechanisms between CS and GPTMS were previously described in Figure 1
and as result of the crosslinking reaction for G2 and G4 aerogel series, a class II hybrid copolymer
network was produced [40]. In its place, hybridization without the silane-coupling agent (G0 aerogel
series) could lead to the formation of interpenetrating network hybrid aerogels, featuring class I hybrid
structure [39], with rigid silica 3D mesoporous structure and swellable CS moieties. Under these
conditions, CS would even get involved in condensation reaction with silanol groups to create Si-O-C
bonds with carbonyl groups of the polysaccharide.

Code samples and theoretical compositions are shown in Table 1. The remaining content for CS at
the end of the synthesis process is also listed and was calculated based on nitrogen Elemental Analysis
(EA) data, obtained from dry aerogels. Although CS nominal content ranged from 3.7 to about 16.7 wt%
loading, the results show that only a fraction remained at the end of the synthesis. As consequence,
the final composition of the hybrids was not well controlled by the amount of CS, due to its dissolution
and leaching in the acid media. Additionally, the tendency of GPTMS to diol formation in acid aqueous
media, resulting in deactivation of its cross-linking capacity, was also responsible for the observed
decreasing CS contents respect to their theoretical compositions [41]. Though, it was possible to obtain
a series of hybrid aerogels with different CS and GPTMS concentrations, providing us to study the
influence of both components on the structural and mechanical properties of the hybrids.

3.2. Bulk Density and Textural Properties

We estimated the bulk densities of the samples for different CS and GPTMS contents by using
geometric measurements. Table 2 and Figure 3a displays the corresponding values for all of the
samples studied. A decreasing trend in the density of G0 aerogels series, from the ρ = 0.38 g cm−3 of
CS1G0 sample (CS 1.7 wt%) to the ρ = 0.17 g cm−3 for both CS3G0 CS (7.6 wt%) and CS4G0 (CS 10.30
wt%) samples, reflects macroscopically the progressive incorporation of the chitosan. For the G2
aerogels series the same decreasing trend in density can be observed. However, the corresponding
density values showed a narrower variation range, from ρ = 0.29 cm3 g−1 for CS5G2 (3.1 wt% CS) to
ρ = 0.22 cm3 g−1 for CS6G2 (5.9 wt% CS), respectively. These changes reveal the cross-linking action
of GPTMS which contributes to the regularization of the hybrid structure. This normalization effect
provided by the cross-linker is also observed in the G4 samples series but, in this case, the amount
increase of CS determines a slight increase in bulk density, which goes from 0.31 cm3 g−1 for CS8G4
(3.1 wt% CS) up to 0.37 cm3 g−1 for CS10G4 (9.7 wt% CS) samples.

Table 2. Bulk density and textural data from N2 physisorption for CS-GPTMS-Silica hybrid aerogels.

Sample Density
(±0.01 g cm−3)

Physisorption

SBET
1

(m2 g−1)
Pore Volume

(cm3 g−1)
Pore Size (nm) Porosity (%)

CS1G0 0.38 1184 2.6 8.1 81.9
CS2G0 0.26 1230 3.4 10.2 87.6
CS3G0 0.17 811 2.3 10.2 82.4
CS4G0 0.17 755 1.9 11.1 91.6

CS5G2 0.29 1042 3.1 11.2 86.1
CS6G2 0.22 903 3.2 14 89.3
CS7G2 0.23 771 2.2 11.6 89.1

CS8G4 0.31 955 2.1 8.7 85.4
CS9G4 0.32 697 1.6 8.9 82.6
CS10G4 0.37 695 1.7 9.8 82.3

1 Correlation coefficient for BET surface area measurement was higher than 0.9996.
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Besides, as a consequence of the CS addition and also that of the GPTMS cross-linker, the hybrid
aerogels tend to feature lower BET surface area, varying from 1230 m2 g−1 (CS2G0) to above 700 m2 g−1

(CS10G4) (Figure 3b). Thus, it was found that aerogels with higher crosslinker content (CS8G4, CS9G4
and CS10G4) presented the lowest surface area values. However, although pore volume and pore
size data did not follow an uniform trend, it can be concluded that the gradual inclusion of chitosan
inside the porous volume of the silica porous matrix (from 1.7 wt% to above 8–10 wt%), joined to an
increase of the crosslink density, produced a reduction of the porous volume from 2.6 cm3 g−1 (CS1G0)
to 1.7 cm3 g−1 (CS10G4). Meanwhile, pore size experimented a slight increase from 8.1 nm to 11.1 nm
for G0 aerogel series, 11.2 nm–14 nm for G2 series and 8.7 nm to 9.8 nm for G4 series. In addition,
the porosity was calculated following Equation (3):

% porosity =

(
1−

ρbulk

ρskeleton

)
× 100 (3)

where ρbulk is the bulk density and ρskeleton is the density of a silica matrix. (2.09 g cm−3) [49].
The corresponding porosity values ranged from 81.9% to 91.6% for CS1G0 and CS4G0 samples, respectively,
and are presented in Table 2, together with the most relevant values of the structural parameters.

N2-physisorption isotherms of CS1G0, CS4G0, CS7G2 and CS10G4 selected samples with 1.7, 10.3,
8.00 and 9.7 wt% CS content, respectively, are shown in Figure S2 (in the Supplementary Materials).
We found that this selection of low and high organic and GPTMS content, was representative for
describing the structural properties of the obtained aerogels. According to the IUPAC classification
all of these samples exhibited type IV isotherms, with a hysteresis loop that determine the presence
of interconnected network of mesopores [50], by which multilayer adsorption as it proceeds through
capillary condensation process.

A type H1 hysteresis loop, characteristic of materials with uniform pores and narrow pore size
distributions (PSD), according to previous structural studies on silica aerogels [51] is observed for the
CS1G0 isotherm curve. A change to a type H2 hysteresis loop (CS4G0, CS7G2 and CS10G4 aerogels)
was observed by the concurrence of a plateau at high relative pressure (0.9–0.95). This is a sign of the
existence of a highly interconnected complex pore network hybrid structure and as a result the pores
have a large range of size and shape (Figure 3b). However, as expected, CS1G0 shows a narrow PSD as
corresponds to an almost pure silica aerogel (see inset in Figure S2b in the Supplementary Materials).

Also, the well-defined plateau in the CS10G4 isotherm leading to a steep desorption towards low
relative pressures is indicative of a desorption process that takes place over only a small pressure range
for all pores. However, this plateau is not so well defined for the CS4G0 and CS7G2 isotherms, leading
to a further gradual increase of amount adsorbed at high relative pressure (see inset of Figure S2a).
This is consistent with the onset of capillary condensation at higher pressures for wider mesopores,
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as can be seen in Figure S2b (Supplementary Materials) that depicts the PSD obtained by BJH analysis
of the desorption branch of the isotherms.

3.3. Fourier Transformed Infra-Red (FTIR) Spectral Analysis

The FTIR spectrum of the CS1G0, CS4G0, CS7G2 and CS10G4 hybrid aerogels showed seven major
peaks corresponding to the following wavenumbers 800, 950, 1090, 1520, 1640, 2900 and 3500 cm−1

as shown in Figure 4 and their bands’ descriptions will be described below. FTIR spectra showed an
intensive broad absorption band located at 1090 cm−1 showing intensity increase due to the absorption
from the Si–O–C bonds, and a peak at 800 cm−1, associated to strong Si-O-Si stretching vibrations.
Another band is positioned at 950 cm−1 featuring the non-bridging oxygens (Si-OH bonds) in the silica
network [40,52,53]. This Si-OH band was most prominent in aerogels without GPTMS, (CS1G0 and
CS4G0) associating silanol groups with TEOS precursor rather than with the crosslinker. The absorption
peak centered at about 3400 cm−1 is assigned to free or adsorbed water and is accompanied by the
peak observed at 1640 cm−1, a characteristic peak for the Si-OH bond, accounting for the hydrophilic
behavior of the silica aerogels [52,53]. Then, its relative intensity decreases as GPTMS content increases,
as shown in Figure 4.
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Considering the covalent crosslinking between CS and silica network through silane-coupling
agent GPTMS the region of interest is found in the range of 1660–1500 cm−1 [40,41]. Chitosan powder
has two absorption bands in this region: one at 1659 cm−1 due to the C=O stretch of the secondary
amide in acetylated units of chitosan and a second one small band at 1589 cm−1, related with N–H
bending of the primary amine in deacetylated units [54,55]. Due to the protonation of chitosan in
acidic conditions both of these bands appeared, for the hybrid aerogel samples, slightly shifted from
their original position, at 1640 cm−1 and 1520 cm−1, respectively (41) (see inset Figure 4). Moreover,
overlapping of the the C=O amide band at 1640 cm−1 with Si-OH bond from silica network, makes it
difficult to discern the mechanisms proposed for the formation of covalent links between functionalized
chitosan and the silica network. However, the FTIR spectra from the studied samples exhibited a
decrease of both amide bands with increasing GPTMS content at 1640 cm−1 and 1520 cm−1 (inset
in Figure 4). Although these FTIR analyses are not conclusive to clearly discern the mechanisms
proposed for the coupling between chitosan and GPTMS, these data would suggest the formation of
N-C bonding between chitosan and GPTMS. So far, there exists several mechanisms proposed for the
coupling between chitosan and GPTMS implying the presence of different types of covalent bonds
between the silica matrix and the functionalized chitosan [40].
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3.4. Thermogravimetric Analysis (TGA)

The thermal stability and degradation behavior of the CS-GPTMS-Silica samples were evaluated by
TGA under air atmosphere (see Figure S3; Supplementary Materials). Normally, the hybrids presented
enhanced thermal stability for samples with high GPTMS content [25]. The TGA thermograms for the
four hybrids CS1G0, CS4G0, CS7G2 and CS10G4 are relatively similar and show three steps of thermal
degradation [24,53]. The first step started from above 60 ◦C to 130 ◦C. The peak at the DTG at above
90 ◦C (see inset in Figure S3; Supplementary Materials) showed an initial dehydration weight loss of
7.55%, referring to the physically adsorbed water surface of the polymer. This weight loss decreased
with the increasing content for both chitosan and GPTMS. The second weight loss step was found
between 130 ◦C and 220 ◦C with maximum peak of 195 ◦C in the DTG curve and corresponding mass
losses increased from above 1.2% to 3.5% with increasing the chitosan content in the hybrid samples
and it is referred to dihydroxylation of the silanols on the surface, (loss of chemically bound water) and
decomposition of chitosan [54]. The third step of weight loss was subdivided in two parts, a first rapid
and a second slow weight loss. First rapid weight loss appeared well differentiated between samples
with and without GPTMS, and corresponds to the decomposition of the hybrid chains for G2 and
G4 hybrids, between 220 and 500 ◦C, with maximum DTG peak at 260 ◦C, and of the polysaccharide
structure for samples without GPTMS (G0) [24,53,56].

Second slow weight loss occurred between 450 and 800 ◦C reveals the complete decomposition of
the organic components of the hybrids. For the first part, weight losses of 8.8% and 13.5% for CS1G0
and CS4G0 were observed, while 12% and 16% were estimated for CS7G2 and CS10G4, respectively.
The second part for slow weight loss was above 4% and 5% for CS7G2 and CS10G2, and around 2% in
the case of both CS1G0 and GS4G0 samples, without any range of weight stabilization.

3.5. Swelling Behaviour-PBS Absorption

The ability of hybrid samples to absorb phosphate buffered saline (PBS) solution was examined
and the swelling curves for selected samples are reported in Figure 5a. All the experiments were
done in triplicate to ensure reproducibility. As a general rule, it was observed that increasing the
concentration of GPTMS decreases the swelling capacity [57] thus the aerogels presented total absorbed
mass ratios ranging between 3.75 and 1.75 for CS7G2 and CS10G4, respectively. It is worth to note that
these two samples were mechanically stable in the swollen state, exhibiting characteristic of class II
hybrids. Instead, for CS1G0 and CS4G0 (class I hybrids), the swelling process provoked the appearance
of multiple cracks at swelling equilibrium although they showed similar swelling capacities of 3.50
and 2.75, separately. These results highlights the importance of the mechanical control during swelling,
to develop technical applications based on these samples [32,58]. These features will be studied in
more detail in Section 3.7.

Figure 5b represents the swelling capacity versus CS content for different GPTMS/CS molar ratios
and confirmed the influence of GPTMS on the swelling capacity, with G4 aerogel series (samples
CS8, CS9 and CS10) showing more regular and lowest total absorption values (1.85–2.04). This was
explained by the fact that increasing GPTMS made pore size to decreased (see Table 2) and the
aerogel became more compact and highly crosslinked, which hinders swelling [32,57]. Summarizing,
the affinity of the hybrid chains of the porous aerogels to the aqueous PBS, together with the swelling
phenomenon observed in the hybrid structure, would be responsible for these high values of the
absorption capacity obtained.
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3.6. Absorption Kinetics

The absorption behavior was described by the normalized absorption ratio M*(t) vs. √t. It was
found that the variation of the sample mass showed a root dependency of t, typical of fast imbibition
of liquids by capillary rise, considering a rigid porous structure [51,59]. Also, it was observed that
imbibition occurs almost instantaneously and is followed by a final regime toward saturation. The four
representative curves for selected samples CS1G0, CS4G0, CS7G2 and CS10G4 are depicted in Figure 6
and all of them followed the √t classical-time dependence.
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Figure 6. Normalized absorbed mass ratio for CS1G0, CS4G0, CS7G2 and GS10G4 aerogels during
liquid PBS absorption versus square-root time. Lines correspond to linear fittings according to standard
model of mass increase by imbibition due to capillary rise.

The linear fitting for each curve up to saturation shows well-defined initial linear regimes with
similar slopes, revealing similar nanostructures and chemical composition of the porous network,
with a slight steeper linear regime for CS10G4, indicating faster absorption, which must be related
with its high crosslinking density. Further studies of the kinetic dependence of the absorption with the
composition of these hybrids are in progress in order to completely resolve the absorption kinetics of
the system.
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3.7. Mechanical Properties-Uniaxial Compression

The mechanical properties of the hybrids were analyzed on the samples before (dry) and after
(wet) the PBS liquid absorption experiments. The uniaxial compression experiments provided an
overall vision of the mechanical behavior of the hybrids, and the results obtained are summarized
in Table 3, where Young’s modulus, compressive strength and maximum compressive strain are
reported. Stress-strain curves from rupture tests under uniaxial compression on selected samples
CS1G0, CS4G0, CS7G2 and CS10G4 are plotted for dry (Figure S4a; Supplementary Materials) and wet
samples (Figure S4b; Supplementary Materials). First, the stress-strain curves for dry states denoted
the existence of two well-differentiated mechanical responses between samples incorporating the
GPTMS and samples without the crosslinker.

Table 3. Mechanical properties obtained from the uniaxial compression testing of the dry samples and
wet samples after saturation by the absorption of PBS for CS/GPTMS-Silica aerogels; mean values ±
standard deviation (n = 3).

Sample
Young’s Modulus

(MPa)
Compressive Strength

(MPa)
Maximum Compressive Strain

(%)

Dry Wet Dry Wet Dry Wet

CS1G0 11.2 ± 1.4 1.13 ± 0.44 1.0 ± 0.3 0.17 ± 0.02 12.2 ± 2.3 13.20 ± 3.40
CS2G0 9.9 ± 2.9 0.30 ± 0.10 0.8 ± 0.2 0.07 ± 0.01 18.1 ± 3.8 13.47 ± 0.21.
CS3G0 1.9 ± 0.1 0.30 ± 0.07 16.1 ± 4.2 0.09 ± 0.05 66.4 ± 7.0 12.60 ± 1.71
CS4G0 2.8 ± 0.6 0.75 ± 0.25 1.46 ± 0.1 0.11 ± 0.04 50.4 ± 5.5 9.18 ± 1.55

CS5G2 21.1 ± 7.0 0.78 ± 0.07 5.3 ± 4.8 0.19 ± 0.05 36.5 ± 25.6 12.92 ± 1.30
CS6G2 7.7 ± 1.5 0.40 ± 0.01 22.6 ± 15.1 0.16 ± 0.01 77.6 ± 16.3 21.21 ± 2.09
CS7G2 6.7 ± 1.3 0.16 ± 0.02 77.7 ± 2.7 0.09 ± 0.03 77.7 ± 1.6 22.89 ± 9.47

CS8G4 32.4 ± 3.8 0.77 ± 0.30 5.6 ± 3.1 0.21 ± 0.01 35.2 ± 10.7 9.41 ± 3.01
CS9G4 8.7 ± 0.5 0.82 ± 0.17 5.5 ± 2.9 0.27 ± 0.04 38.0 ± 14.9 10.58 ± 0.86
CS10G4 50.3 ± 7.0 0.27 ± 0.03 95.7 ± 6.9 0.26 ± 0.03 76.2 ± 9.5 21.74 ± 1.37

In general, the increase in CS content is accompanied by a reduction in the elastic modulus and
by structural strengthening of the dry aerogels [32]. At the same time, larger deformations were
developed before rupture, indicating a brittle-ductile transition through elastomeric behavior, being
more evident for higher GPTMS contents. An exception in Young’s modulus progression is CS10G4,
where the synergistic effects between the organic and inorganic hybrid components offers the highest
compressive strength (96 MPa) and stiffness (50 MPa for Young’s modulus) of all of the hybrid samples.
Overall, these results indicate that a large increase in both, the compressive strength (more than 10-fold)
and the maximum strain (more than 25-fold), was achieved for CS10G4, respect to previously reported
for related samples [41].

More specifically, CS1G0 aerogel behaved as brittle material, showing relatively high elastic
modulus (11.2 MPa) and low compressive strength (1.0 MPa) and maximum strain values (12.2%).
Increasing CS from 1.7 to 10.3 wt% (CS4G0) allowed to reach up to 50–60% strain (inset Figure S4a;
Supplementary Materials). Instead, samples incorporating GPTMS in their chemical structures (G2 and
G4 aerogels) showed a rubber-like stress-strain behavior, with high elongation at break and non-linearity
as its most obvious feature, typical of synthetic elastomers (CS7G2 and CS10G4 samples).

On the other hand, the uniaxial compression experiments performed under liquid absorption
(Figure S4b; Supplementary Materials) led to degraded network structures which, in all cases, behaved
as extremely soft materials. Young’s modulus values were in the range (0.16–1.13) MPa and compressive
strength between (0.07–0.27) MPa, showing two-three orders of magnitude lower than for dry samples.
Nonetheless, hybrids with GPTMS at the rupture strain point in wet state, preserved more or less their
original morphology, while samples without crosslinker resulted dispersed in small pieces in the liquid
after fracture.
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3.8. In Vitro Bioactivity Experiments

Figure 7 shows SEM micrographs of some hybrids exhibiting bioactivity. All of the samples
displayed the precipitation of an apatite-like on the surfaces of the samples about 21 days after
immersion in SBF in form of small spherulites. Physiochemical characterization of HAp was performed
by using three different techniques: 1. SEM, to observe the characteristic morphology of microcrystals;
2. Elemental EDS analysis, to determine Ca/P compositional variations across the specimen surface;
3. FFT from HRTEM-SAED images, to confirm the crystalline nature of samples.Polymers 2020, 12, x FOR PEER REVIEW 2 of 25 
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Figure 7. SEM micrographs of the apatite formed on the surfaces of the following hybrid aerogels
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First, it was observed that spherulites started to precipitate on the aerogels about 7 days after
the samples were soaked in SBF, becoming larger and more abundant with increasing soaking
time. This mineral phase was formed through heterogeneous nucleation that take place at preferred
nucleation sites on the surface of aerogels, forming a layer that recovered it more or less within 21 days
soaking, as shown in the micrographs. Thus, Figure 7a,b show surfaces of hybrids CS1G0 and CS4G0
respectively, almost totally covered with HAp spherulites about 2 µm size.

The presence of GPTMS in CS7G2 hybrid provided higher crosslinking density and a more
compacted surface. Nonetheless, it also showed a good bioactive response, with HAp recovering
all the irregularities of the surface area (Figure 7c), and growing from many surface nucleation sites,
as detailed in Figure 7d. Furthermore, CS10G4 aerogel, showing the highest crosslinking density,
behaved similarly to the CS7G2, but the surface density of precipitates was the lowest observed
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in all of the studied samples (Figure 7e), signifying a weak bioactive response in the same soaking
time. Otherwise, CS7G2 also showed regions whose surface was not totally recovered by HAp
spherulites. (Figure 7f). Higher-magnification micrograph of the HAP crystals formed on CS7G2
soaked in SBF for 21 days showed that the crystal morphology of spherulites consists of a large number
of petal-like crystals with the typical cauliflower structure (inset Figure 7f). According to the EDS
analysis performed on the CS7G2 sample, the growing mineral phase is calcium-deficient with a
Ca/P ratio of 1.43 (Figure 7g). This ratio is expected to increase by simply extending the soaking
time to 1 month, desirably reaching values in the range 1.50–1.67 where most biological apatites are
usually found.

TEM-EDX and selected area electron diffraction (SAED) pattern confirmed these results. Hence,
HRTEM micrograph (Figure 7h) of CS7G2 sample revealed the existence of nanocrystals randomly
distributed in the hybrid amorphous matrix, in the size range of about 10–15 nm, probably formed in
early stages of the biomineralization of biomimetic apatite. These observations suggest the existence of
active surface sites (Si–OH) which promoted nucleation and growth of diverse calcium phosphates,
mainly HAp. TEM-EDX microanalysis supported this hypothesis, giving Ca/P ratios between 1.57
and 1.99 from different nanocrystals. Additionally, the small area electron diffraction (SAED) pattern
from HRTEM image (inset of Figure 7h) shows bright spots according with the presence of calcium
phosphate nanocrystals. In this sense, the d-space for (211), (300) and (002) planes were identified
(e.g., d-space for (211) sample was 0.280 nm, in good agreement with standard JCPDS (09-0432) files of
HAP). From these observations, it can be concluded that the formed crystals are HAp particles in the
precipitation and dissolution process of the apatite layer.

3.9. Osteoblast Response In Vitro

3.9.1. Cell Morphology and Spreading

Attachment, cell growth and phenotypic changes of osteoblasts grown in vitro appeared to be
substantially better in cells grown on CS7G2 or CS10G4 samples than in cells grown on the bare substrata,
and revealed a successful cell attachment with marked morphological changes, like filopodial and
lamellipodial emission, and an improved cell spreading. When experimental groups were compared
for the variable number of cells, significant differences were found at initial experimental times (48, 72 h)
between CS7G2 and control (p = 0.007) and between CS7G2 and CS10G4 (p = 1.38 × 10−5), and also
when cell counts at 48 h and 72 h counts (p = 2.57 × 10−6) or 48 h and 1 week counts were compared
(p = 8.97 × 10−4). No significant differences in cell number were found after 1 week in culture when
control and experimental groups were compared and, instead, significant differences were found
in differentiation features related to cell migration and adhesion. Due to the presence of aerogels,
osteoblasts developed filopodia and lamellipodia as markers of cell migration that are absent in
non-coated groups. Furthermore significantly more efficient focal adhesion sites and stress fibers
appeared in the experimental groups. Live/dead staining revealed that the majority of cells were in a
viable state (green) at all time points, with only a few dead cells (red) as shown in Figure 8.

After 48 h in culture, cell spreading evolved to a near confluence stage, with well differentiated
osteoblasts adhered to the surface and tethering contacts to the neighboring cells. Osteoblasts grown
on bare glass, although well adhered, did not spread to confluence, showing discrete cell overlapping
after 48 h in culture (Figures 9 and 10). From 72 h onwards, cells grown on experimental substrata
elongated, and cytoskeletal polarization increased with a significant number of mature focal adhesions
linked to actin stress fibers. After 1 week Cells grown on CS10G4 appeared to be more elongated than
control and CS7G.
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After 48 h in culture, cell spreading evolved to a near confluence stage, with well differentiated 
osteoblasts adhered to the surface and tethering contacts to the neighboring cells. Osteoblasts grown 

Figure 8. Live/Dead staining of osteoblasts growing on (A): CS4G0 after 48 h in culture; (B): CS4G0
after 72 h in culture; (C): CS7G2 after 48 H in culture; (D): CS7G2 after 72 h in culture; (E): Control
cells grown on glass after 48 h in culture; (F): Control cells grown on glass after 72 h in culture. In (G):
Control cells grown on glass after 1 week in culture; (H): osteoblasts grown on CS10G4 after 1 week in
culture. Live cells appear green; nuclei of dead cells fluoresce red once examined with fluorescence
microscope (10× objective lens). Scale bar represents 50 µm. Squares select and amplify filopodial
emissions pointing to material surface.
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culture, and examined with confocal microscope (40x objective lens). Osteoblasts grown on glass were 
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Figure 9. HOB® osteoblasts grown on CS7G2 sample after 48 h (A,B), 72 h (D,E) and 1 week (G,H)
in culture, and examined with confocal microscope (40x objective lens). Osteoblasts grown on glass
were used as reference control, shown in (C), for 48 h in culture, (F) after 72 h in culture and (I) after
1 week. In red, rhodamine–phalloidin immunolabelled actin cytoskeletal fibers, showing polarization
to material and actin cytoskeletal arrangement into stress fibers. Focal adhesions (yellow) were
immunolabelled with antivinculin antibody. Nuclei (blue) were DAPI labelled. Arrow marks filopodial
emissions, star marks lamellipodia. Scale bar represents 20 µm.
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Actin cytoskeleton immunolabelling of growing cells revealed clear differences both in cell 
behavior and in cytoskeletal arrangement. Osteoblasts grown on CS7G2 sample were phenotypically 
elongated and clustered in a reticular pattern from 48 h in culture onwards. From 48 h onwards 
osteoblasts elongated with increased elongation and stress fibers development, and a more defined 
osteoblast orientation was found, together with a higher number of well-developed focal adhesions. 
While cells grown on glass developed scarce or no stress fibers, cells grown on CS7G2 and CS10G4 
samples showed a significant increase in well-developed stress fibers and focal adhesions (p < 0.05), 
mainly evident after 1 week h in culture. Although both groups significantly differed from controls 
(p = 0.004 and p = 0.014, respectively) no significant differences were found between experimental 
groups along experimental times (Figures 9–11). 

Figure 10. HOB® osteoblasts grown on CS10G4 sample after 48 h (A,B), 72 h (D,E) and 1 week
(G,H) in culture, and examined with confocal microscope (40× objective lens). Osteoblasts grown on
glass were used as reference control, shown in (C), for 48 h in culture, (F) after 72 h in culture and
(I) after 1 week. In red, rhodamine–phalloidin immunolabelled actin cytoskeletal fibers, showing
polarization to material and actin cytoskeletal arrangement into stress fibers. Focal adhesions (yellow)
were immunolabelled with antivinculin antibody. Nuclei (blue) were DAPI labelled. Arrow marks
filopodial emissions, star marks lamellipodia. Scale bar represents 20 µm.

3.9.2. Cytoskeletal Organization and Focal Adhesions

Actin cytoskeleton immunolabelling of growing cells revealed clear differences both in cell
behavior and in cytoskeletal arrangement. Osteoblasts grown on CS7G2 sample were phenotypically
elongated and clustered in a reticular pattern from 48 h in culture onwards. From 48 h onwards
osteoblasts elongated with increased elongation and stress fibers development, and a more defined
osteoblast orientation was found, together with a higher number of well-developed focal adhesions.
While cells grown on glass developed scarce or no stress fibers, cells grown on CS7G2 and CS10G4
samples showed a significant increase in well-developed stress fibers and focal adhesions (p < 0.05),
mainly evident after 1 week h in culture. Although both groups significantly differed from controls
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(p = 0.004 and p = 0.014, respectively) no significant differences were found between experimental
groups along experimental times (Figures 9–11).Polymers 2020, 12, x FOR PEER REVIEW 19 of 24 
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Figure 11. Percentage of FAs according to size. Comparative analysis between cells grown on CS7G2
and control groups at (A): 48 h hours in culture; (B): 72 h hours in culture; (C): 1 week in culture;
and cells grown on CS10G4 and controls in (D): 48 h hours in culture; (E): 72 h hours in culture;
(F): 1 week in culture (*: p < 0.005).

The focal adhesion complexes consists of integrin and actins vertically separated by a core that
includes cytoskeletal elements such as vinculin [60–63]. As shown, mature focal adhesions appear in
experimental groups, initially on the tips of filopodia and in the leading edge lamellipodia after 72 h
(Figures 9–11). While in control cells a certain turnover can be appreciated, with small focal adhesions,
in experimental groups the FA complexes maturated, together with a higher expression of stress fibers,
as described by us and others [60,62,64–66], as an expression of reduced cell migration and of the initial
steps cell differentiation. After 1 week the percentage of mature and intermediate size FAs increased,
together with a well-developed stress fiber network including a significant number of mature focal
adhesions, mainly in cells grown on CS10G4 samples.

Spatiotemporal regulation of tension sustained at FAs has been described as essential for regulation
of cell migration and settlement pointing to extracellular matrix remodeling and new bone formation.
Force-mediated FA signaling together with actin bundles organization in stress fibers regulates cell
proliferation and differentiation. Both CS7G2 and CS10G4 have demonstrated to be bioactive and
non-cytotoxic and, at the same time, induce focal adhesion formation and maturation of HOB®

cells in culture. In the presence of aerogels, osteoblasts change their morphology showing changes
in cell morphology compatible with cell migration, such as filopodial and lamellipodial emissions
towards material surface, at initial experimental times, reinforced with focal adhesion and stress
fibers development.

According to our data, time dependent maturation of focal adhesion with significant presence of
mature focal adhesion complexes and stress fiber development appears earlier in CS10G4 samples,
while in cells grown in the presence of CS7G2 nascent and punctate focal adhesion points remaining
for a longer period of time, located in periphery, thus indicating a sustained migration capability
significantly higher than control cells and presumably induced by the biomaterial. This data are in
agreement with the mechanical properties described above and, although the mechanical response in
SBF is not as good as in dry conditions, the mechanoinductive properties of the biomaterial appear to
be adequate.
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Taken together, these results point to a positive effect on HOB® cells of the proposed material in
which both physicochemical and topographical properties appear to be involved [60,67–72].

4. Conclusions

CS-silica and CS-GPTMS-silica mesoporous hybrid aerogels with interconnected high porosity
could be potentially used as substitute material for bone tissue regeneration. Monolith crack free
specimens were obtained by sol-gel, followed by CO2 supercritical drying. The aerogels presented a fast
uptake and swelling in PBS solution by fast imbibition, with swelling capacities ranging from 1.75 to
3.75 by decreasing the GPTMS content from 4 to 2 molar ratio with respect to CS monomer. Mechanical
solicitation of class II hybrid crosslinked aerogels in swollen state in PBS, showed compressive strengths
about 100–250 kPa, retaining their monolith geometry until fracture, thus exhibiting their potential
efficacity to fill the empty space of bone defects. Further understanding of degradation kinetics to
examine the time dependence of weight losses during soaking in PBS is required. Also the quantification
of silicon release will be important to completely describe the hydrolytic degradation process of the
hybrids, in order to perform this novel bioactive system for conducting hydrophilic therapeutic
biomaterials to improve bone tissue engineering. Furthermore, the ability to induce and control the
growth of a bioactive layer formed by HAp spherulites above 2 µm in diameter after 21 days of soaking
in SBF promotes the adhesion and proliferation of osteoblasts, contributing effectively in the bone
regeneration process. Although the exact relationship between focal adhesion maturation and traction
forces role is not yet elucidated, our results clearly indicate that CS-GPTMS-silica hybrids are not only
biocompatible and bioactive, without cytotoxically effects, but also induce cell adhesion, cytoskeletal
rearrangement and elongation with stress fibers development due to the presence of mature focal
adhesion complexes. The results described point to the materials above as good alternatives in bone
tissue cells recruitment and maturation, inducing an excellent initial osteoblast response in vitro.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/11/2723/s1,
Figure S1. Image of CS/GPTMS-SiO2 hybrid aerogel monoliths with different GPTMS content obtained by CO2
supercritical drying. Left (CS4G0), centre (CS7G2) and right (CS10G4) samples containing 10.3, 8.0 and 9.7
wt% chitosan, respectively; Figure S2. (a) N2 physisorption isotherms of selected CS/GPTMS-SiO2 aerogels
with different GPTMS/CS molar ratio and (b) their corresponding pore size distributions (PSD); Figure S3.
Thermogravimetry TG and differential thermogravimetry DTG (inset) for CS1G0, CS4G0, CS7G2 and CS10G4
hybrid aerogels; Figure S4. Stress–strain curves for selected samples (a) uniaxial compression of dry aerogels,
as taken from the autoclave; (b) uniaxial compression of corresponding wet aerogel samples saturated in PBS
solution (w samples).
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