Effects of SiO₂ filler in the shell and wood fiber in the core on the thermal expansion of core-shell wood/polyethylene composites

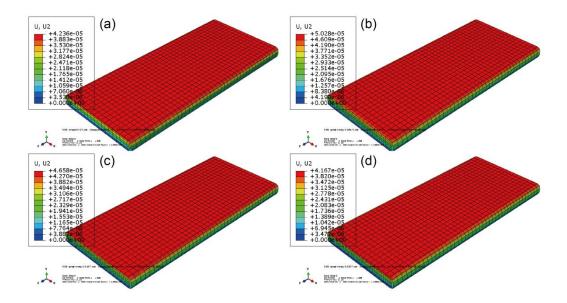
Lichao Sun ^{a, b, c, 1}, Haiyang Zhou ^{a, c, 1}, Guanggong Zong ^d, Rongxian Ou ^{a, c}, Qi Fan ^{a, c},

Junjie Xu^{a, c}, Xiaolong Hao^{a, c, *}, Qiong Guo^{a, c, *}

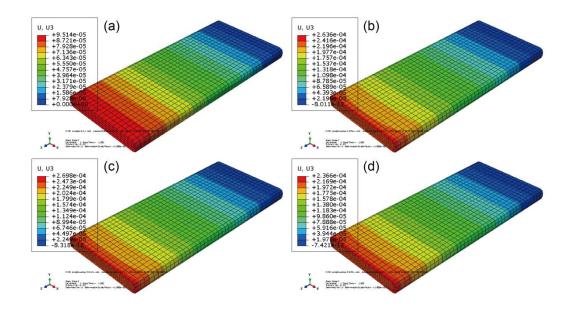
^a Key Laboratory for Biobased Materials and Energy of Ministry of Education,

College of Materials and Energy, South China Agricultural University, 483 Wushan

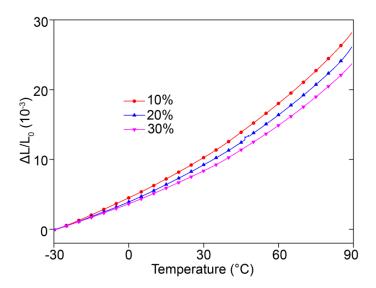
Road, Guangzhou 510642, P. R. China

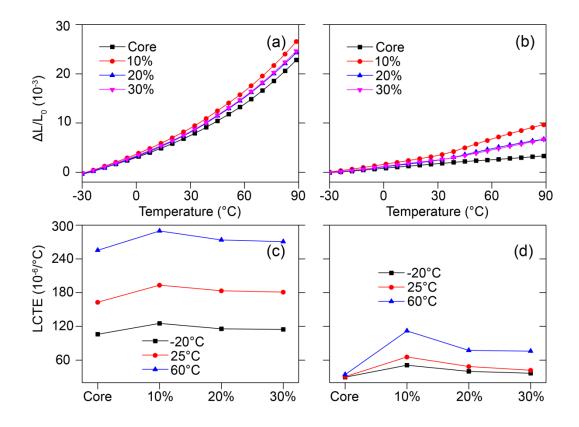

^b Key Laboratory of Bio-ased Material Science and Technology (Ministry of

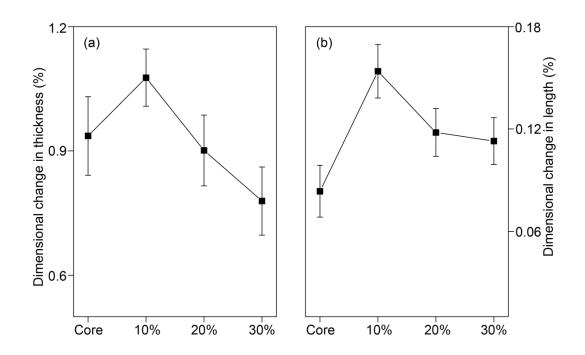
Education), Northeast Forestry University, Harbin, Heilongjiang, 150040, China


- ^c Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, 510642, China
- ^d Art and Design Institute, Yangzhou University, 88 Daxue South Road, Yangzhou 225009, P. R. China

¹ These authors contributed equally to this work.


* Correspondence to: Xiaolong Hao, haoxiaolong@scau.edu.cn; Qiong Guo, email: guoqiong@scau.edu.cn


FS. 1 Simulated thermal expansion strain values the entire Co-WPCs in the thickness direction: (a) single core layer (W50), (b) S0, (c) S10 and (d) S20.


FS. 2 Simulated thermal expansion strain values of the entire Co-WPCs in the extrusion direction: (a) single core layer (W50), (b) S0, (c) S10 and (d) S20.

FS. 3 Thermal expansion strain of the shell filling with different wood fiber contents.

FS. 4 Thermal expansion strain of the cut Co-WPCs (W50) filling with different wood fiber in shell layer in the thickness (a) and extrusion directions (b); and LCTE in thickness direction (c) and extrusion directions (d).

FS. 5 Thermal expansion strain of the entire Co-WPCs (W50) filling with different wood fiber in shell layer in the thickness (a) and extrusion directions (b).