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Abstract: Cellulose is one of the most hydrophilic polymers with sufficient water holding capacity
but it is unstable in aqueous conditions and it swells. Cellulose itself is not suitable for electrospun
nanofibers’ formation due to high swelling, viscosity, and lower conductivity. Carboxymethyl
cellulose (CMC) is also super hydrophilic polymer, however it has the same trend for nanofibers
formation as that of cellulose. Due to the above-stated reasons, applications of CMC are quite limited
in nanotechnology. In recent research, loading of CMC was optimized for electrospun tri-component
polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), and carboxymethyl cellulose (CMC) nanofibers
aim at widening its area of applications. PVA is a water-soluble polymer with a wide range of
applications in water filtration, biomedical, and environmental engineering, and with the advantage
of easy process ability. However, it was observed that only PVA was not sufficient to produce
PVA/CMC nanofibers via electrospinning. To increase spinnability of PVA/CMC nanofibers, PVP was
selected as the best available option because of its higher conductivity and water solubility. Weight
ratios of CMC and PVP were optimized to produce uniform nanofibers with continuous production
as well. It was observed that at a weight ratio of PVP 12 and CMC 3 was at the highest possible
loading to produce smooth nanofibers.

Keywords: carboxymethyl cellulose; electrospinning; polyvinyl alcohol; polyvinylpyrrolidone;
uniform morphology

1. Introduction

Advancement in technologies, product, and system design have brought revolution in the
lifestyle of mankind. However, continuous development is key to sustaining a developing
society. Nanotechnology is one of the most advanced technologies, which covers a wide range
of applications [1–3]. Electrospinning is a technique to produce the nonwoven mats that offer a large
surface-area-to-mass ratio. Nanofibers produced by electrospinning have a diameter in the range of
some nanometers to sub-micron while the length of nanofibers can be in the range of some microns to
sub-millimeter [4–10]. Due to high surface area, nanofibers from hydrophilic polymers may have the
best utilization in water adsorption or absorption. However, applications of electrospun nanofibers are
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not limited to water treatment/adsorption only, but cover tissue engineering, biomedical engineering,
energy storage, sensors and actuator, food packaging, air filtration, antibacterial, and antiviral
nanofibrous products as well [11–17]. Hydrogels are very good in their water absorption properties.
They have three dimensional macromolecular networks, which swell in the presence of water but do
not dissolve in the water. They possess excellent water absorption due to the hydrophilic functional
groups, which are attached to their backbone chain [18,19].

Natural, semi-synthetic, and synthetic polymers have a wide range of applications in materials
science and engineering. However, sustainable development is a key consideration for modern
research. Cellulose is one of the most useful natural polymers having number of applications in
tissue engineering, water treatment, filters, food and packaging industry, and other areas of science as
well [20–24]. However, applications of cellulose are limited in the nanofibers-based products due to
high swelling, gel formation, and processing difficulties. To widen the area of applications for cellulose,
it is modified into different semi-synthetics like cellulose acetate, CMC, hydroxyethyl cellulose, and
other sub types of cellulose [25–28]. Carboxymethyl cellulose CMC is famous due to its versatile
applications in different fields like drug delivery, tissue engineering, food industry, cosmetics, printing,
and dying. CMC also gains attention due to its water holding capacity. It possesses good water holding
capacity even at low temperature. CMC has good water absorption properties in all forms, but the
absorption rate is higher in film than the fiber. It is reported that 6000% of water has been absorbed by
the CMC film from its initial mass while in fiber form, it is 2000%. The water-absorbing property of
CMC is due to the presence of hydroxyl groups. Hydroxyl groups work as the bonding sites for the
water through hydrogen bonding [29,30]. CMC is hydrophilic polymer. It can be easily dissolved in
cold water without gel formation. It does not form a gel in cold water because unsubstituted sites of
the backbone chain are not fully active and do not work. Meanwhile, the gel formation rate increases
as the temperature of water increase because of unsubstituted sites of cellulose along the backbone
chain act as temporary cross linkers between the chains. Viscosity of the CMC increase due to the gel
formation and it became very difficult to electrospun.

PVA is a polymer with the decreasing trend of viscosity as the temperature increase. The presence
of hydroxyl groups on PVA create inter and intra molecular hydrogen bonding. Hydrogen bonding is
the reason for the strong interaction between CMC and PVA. The mechanical properties of the blend are
also very good. The blend possesses smooth morphology with no bead formation. However, there is
bead formation as the concentration of CMC increase above 5%. The absorption rate of CMC may
decrease by adding the PVA. To maintain the good absorption level, it is necessary to introduce the
strong hydrophilic polymer to the blend [31–33]. PVP is a very good hydrophilic polymer with good
biocompatibility, excellent film-forming properties, non-toxicity, biodegradability, and low surface
tension [34,35]. PVP also possess electrical conductivity as its intrinsic characteristic and charge storage
capacity [36,37]. PVP has a strong interaction with both CMC and PVA. Carbonyl groups are present
on the backbone chain of the PVP, which make inter-chain hydrogen bond with the hydroxyl groups
present on the PVA chain.

In this research, PVP and PVA were selected as carriers for CMC. The main objective of this research
was to obtain smooth nanofibers with continuous electrospinning. Addition of CMC can enhance
some of the characteristic properties of nanofibers, which further widened the area of applications for
PVA and PVP. CMC’s excellent water holding capacity, biocompatibility, biodegradability, and other
characteristics can be used in a number of applications such as food packaging (nanofibers based),
biomedical, and environmental engineering applications. This is a novel idea to load maximum
possible amount of CMC on electrospinning to get uniform nanofibers that can be utilized in practical
applications. In future, authors have plans to carry on this idea to further characterize tri-component
nanofibers consisting of optimized ratios of PVA, PVP, and CMC for mechanical, biodegradability,
and water holding capacity to specific application areas for the betterment of society.
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2. Materials and Methods

Polyvinylpyrrolidone (PVP) with an average molecular weight of 40,000 was purchased from
Sigma-Aldrich (St. Louis, MO, USA), Polyvinyl alcohol (PVA) with an average molecular of
85,000–124,000 and 87–89% hydrolyzed was purchased from Sigma-Aldrich, and sodium carboxymethyl
cellulose (Na-CMC) with an average molecular weight of 250,000 and degree of substitution of 1.2 was
also purchased from Sigma-Aldrich chemicals. All materials were used as received without chemical
or physical modification.

Concentration of PVA in spinning solution was kept constant (6% w/w) while weight percentage
of PVP and CMC were varied. PVP was added from 10 weight percent to 14 weight percent while
CMC was added at the lowest from 1 percent to 3 weight percent as shown in Table 1.Distilled water
was used as solvent for PVA, CMC, and PVP. Stated quantities of polymers were blended and stirred
for 8 h at 60 ◦C to get homogenous solution. Viscosity of each spinning solution (3 samples for each
solution) was measured by a viscometer using 63-number cylinder. Electrospinning was carried out at
a voltage of 20 kV, the distance from tip to collector (cooking sheet was wrapped on collecting drum to
get nanofibrous mats) was kept at 18 cm, and the flow rate of spinning solution was set to 1.0 mL/h.
All samples were prepared following the same procedure and conditions. After electrospinning,
all each sample was kept in airtight plastic bag at room temperature for further characterization.

Table 1. Ratio of polymers (w/w) in tri-component composite nanofibrous mats and viscosities of
spinning solutions with standard deviation.

Sample Code Polymers’ Composition Viscosity
Remarks

PVA PVP CMC cps

PVA/CMC-1 6 0 1 181 ± 7 Nanofiber
formation

PVA/CMC-2 6 0 2 238 ± 5 No nanofiber
observed

PVA/PVP 6 12 0 157 ± 4 Nanofiber
formation

C1P10 6 10 1 141 ± 5 Nanofiber
formation

C1P11 6 11 1 161 ± 4 Nanofiber
formation

C1P12 6 12 1 187 ± 6 Nanofiber
formation

C1P13 6 13 1 201 ± 7 Nanofiber
formation

C1P14 6 14 1 218 ± 3 Nanofiber
formation

C2P10 6 10 2 197 ± 5 Nanofiber
formation

C2P11 6 11 2 204 ± 5 Nanofiber
formation

C2P12 6 12 2 215 ± 4 Nanofiber
formation

C2P13 6 13 2 237 ± 6 Nanofiber
formation

C2P14 6 14 2 249 ± 8 Nanofiber
formation
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Table 1. Cont.

Sample Code Polymers’ Composition Viscosity
Remarks

PVA PVP CMC cps

C3P10 6 10 3 236 ± 6 Nanofiber
formation

C3P11 6 11 3 247 ± 4 Nanofiber
formation

C3P12 6 12 3 252 ± 3 Nanofiber
formation

C3P13 6 13 3 277 ± 5 No nanofiber
observed

C3P14 6 14 3 286 ± 6 No nanofiber
observed

Characterization

To investigate the chemical reaction between CMC, PVP, and PVA, FTIR with an ATR prestige-21
(Shimadzu, Japan) was used. Fingerprints of ATR were recorded from 600 to 4000 cm−1. Scanning
electron microscope (SEM, JSM-5300, JEOL Ltd., Akishima, Japan) was used to check the surface
properties of nanofiber mats at the voltage of 10 kV. Average diameter was calculated by image
analysis software (Image J, version 1.4.3) from 50 readings of random nanofibers of each of the samples.
Water contact angle was investigated by using contact angle analyzer (Digidrop, GBX, Bourg-de-Peage,
France). Thermal analysis of PVA/CMC, PVA/PVP, and PVA/PVP/CMC composite nanofibers was
examined by thermogravimetric analyzer Thermo-plus TG 8120 (Rigaku Corporation, Osaka, Japan).
TGA test was performed under ambient (air) atmosphere in static mode and heating rate was set
to 10 ◦C/min and 25–500 ◦C temperature range for all specimen. Water contact angle (WCA) was
measured using contact angle analyzer (Digidrop, GBX). The volume of water droplet was set to 2 µL
while pictures were captured after 1 s (1000 milli seconds).

3. Results and Discussions

3.1. Fourier Transform Infrared Spectroscopy (FTIR)

All three polymers used in this study are highly hydrophilic in nature, and the reason behind
hydrophilicity is the presence of abundant hydroxyl groups in main chains of polymeric structures.
FTIR-ATR spectra in Figure 1 show the presence of hydroxyl groups (–OH peaks) found in the spectra
of PVA, PVA/PVP, PVA/CMC, and PVA/PVP/CMC nanofiber mats. In the case of PVA/CMC–1 and
PVA/PVP, the hydroxyl peak (–OH) was found to be broader as compared to that of composite
nanofibers containing all three polymers. In Figure 1, a broader peak was observed at the wavenumber
of 3150–3450 cm−1, which was associated with the presence of hydroxyl groups in PVA and PVP
main chains, however the same peak became sharper when the concentration of PVP and CMC was
increased in composite nanofibers, i.e., a sharp peak was observed at 3402 cm−1, which is generic
peak of the hydroxyl group. Further, in the results of the water contact angle, it was also confirmed
that increasing percentage of CMC in composite nanofibers imparted super-hydrophilicity to the
nanofibrous mats. Characteristic peaks of PVA were observed at 3200 to 3500 cm−1, which indicates the
presence of hydroxyl group (–OH stretching) in PVA chains. A peak at 2900 cm−1 was also observed,
which referred to (–CH2–) asymmetric and symmetric band [19]. In the case of PVP, the peak around
1650 cm−1 can be associated with stretching vibration of the C=O in the pyrrolidone group, while CH
stretching can be assigned to the absorption peaks around 2850 to 2980 cm−1. CH deformation bands
can be associated to bands at 1430 and 1370 cm−1 (difference in peaks in red and black in given spectra).
C–N bending vibration of pyrrolidone can be associated with the band at 1279 cm−1, however PVP did
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not show any significance peak at 3400–3500 cm−1, which are usually associated with the presence of
amines [38]. It is highly expected that PVA, PVP, and CMC could form hydrogen bonding among their
chains as it helped in uniform processing and homogenous mixing of the tri-component blend of three
different polymers.
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Figure 1. FTIR-ATR spectra of polyvinyl alcohol (PVA)/polyvinylpyrrolidone (PVP)/carboxymethyl
cellulose (CMC) composite nanofibers with varying weight ratios of PVP and CMC.

3.2. Morphological Properties

Morphological properties like surface structure and nanofibers’ diameter were observed by the
scanning electron microscope (SEM). As it was also stated in the introduction section, CMC cannot be
electrospun due to high viscosity and low conductivity. However, PVA is easily electrospun even at
varying concentrations (6% to 10% is most suitable for smoother nanofibers). PVP is also very difficult
to electrospin at lower concentrations due to lower viscosity. The addition of PVP lowers the viscosity of
CMC solution as well as imparts conductivity to the spinning solution and makes it electrospinnable with
good nanofiber formation. Figure 2 represents SEM images of PVA/PVP, PVA/CMC, and PVA/PVP/CMC
composite nanofibers with varying concentrations of CMC (1-3 weight ratio) and PVP (10–14 weight
ratio). In Figure 2 it can be observed that PVA/CMC-1 (PVA:CMC = 6:1) exhibited smoother nanofibers
while not a single nanofiber was observed by increasing CMC concentration to 6:2 (w/w). PVA/PVP
nanofibers were also found to be smoother and finer. The addition of PVP in spinning solution
provided support of conductivity and viscosity, which resulted smoother nanofibers in case of C1P10,
C1P11, C1P12, and even C1P14. However, the addition of further CMC (weight ratio of 2) did not
show the same trend as that of CMC1. Samples C2P10 and C2P11 nanofibers were not uniform and
have some beads on the surface, while C2P13 and C2P14 nanofibers had uniform morphology. The
ratio of CMC was further increased to a weight ratio of 3 to confirm the maximum loading capacity
of CMC for smoother nanofibers. It was observed that for CMC-3, only the C3P12 sample exhibited
smoother morphology while C3P10 and C3P11 samples had beads on the nanofibers’ surface; on the
other hand, not a single nanofiber was observed in the case of C3P13 and C3P14. In conclusion of
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morphological characterization, it can be stated that maximum and optimum loading capacity for
CMC is up to a weight ratio of 3 with respect to PVA and PVP, while the most suitable concentration for
smoother and continuous nanofibers production without beads formation is PVA:PVP:CMC = 6:12:3.
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3.3. Diameter Distribution of Nanofibers

Diameters of nanofibers were measured by Image J. software by taking 50 random readings of
nanofibers for each sample. Figure 3 represents diameter distribution trend as shown in histograms
of each sample (here samples represent only polymer compositions that were easily converted to
nanofibers on electrospinning). It can be shown that PVA/CMC-1 samples exhibited uniform nanofibers
of diameter range 80 to 180 nm having an average diameter of 120 nm, which indicates successful
conversion of polymers in to nanofibers. However, PVA/CMC-2 (having PVA:CMC = 6:2) did not show
any sign of nanofiber formation. The addition of further CMC and PVP in PVA solution caused some
diversity in the diameter distribution of nanofibers. However, it was observed that samples containing
12% PVP exhibited nanofibers of finer and a uniform diameter range. It may be because of compatibility
or the formation of bonding among three polymers on this specific composition. However, this claim
needs further confirmation after performing the relevant test. As it can be observed in Figures 2 and 3,
that with 12% PVP and varying concentration of CMC exhibited uniform nanofibers without beads
formation, as well as uniform diameter distribution.
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nanofibers of PVA, PVP, and CMC (C1P10–C3P12).

3.4. Water Contact Angle (WCA)

The water-holding capacity of any substance is generally dependent on hydrophilic or hydrophobic
nature [18]. Hydrophilicity can be assessed by measuring water contact angle (WCA). WCA of
PVA/CMC, PVA/PVP/CMC, and PVA/PVP was measured to evaluate hydrophilic capacity of electrospun
nanofibers. Uncrosslinked PVA nanofibers generally have hydrophilic nature while crosslinked
nanofibers exhibit hydrophobicity depending upon the degree and type of crosslinking [19]. CMC and
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PVP are also highly hydrophilic polymers. The selection of hydrophilic polymers for a Tricomponent
blend for enhanced adsorption and absorption properties was also one of the objectives of this research
(however further testing will be carried out in future research regarding adsorption and absorption
characteristics to evaluate usability of prepared blends for such applications commercially). Figure 4
represents WCA for composite nanofibrous mats. It can be seen that water contact angles for all of
the nanofibrous mats are in the range of hydrophilic, however samples a-d exhibited contact angle
ranging from approximately 15◦ to 20◦ while WCA values for samples e-o was found to be at 0◦ (except
samples I and J, but average for these two samples were also well below 1◦). It was observed that
increasing PVP content did not bring any significant changes in water contact angles of composite
nanofibers while increasing CMC content significantly decreased WCA values for composite nanofibers,
which indicates that CMC has more tendency towards water due to containing abundant hydroxyl
groups in main chain as compared to that of PVA or PVP. The addition of optimum content of CMC will
impart hydrophilicity to the composites. It is suggested that CMC should be added with hydrophobic
polymers to increase their tendency towards hydrophilic nature. However, compatibility of polymers
should be properly examined before blending with CMC.
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nanofibers: Effect of variation in weight ratios of PVP and CMC on water affinity of nanofibrous mats.

3.5. Thermogravimetric Analysis (TGA)

CMC is generally unstable above 280 ◦C, while PVA and PVP are thermally stable well above
300 ◦C. Figure 5 represents TGA curves of PVA/CMC, PVA/PVP, and PVA/PVP/CMC (with varying
ratios of PVP and CMC). TGA plots in Figure 5 have been divided in three groups due to the overlapping
of results. Generally, a TGA curve is divided in three parts on the basis of temperature zones [39];
the first temperature zone is up to 100 ◦C, which indicates evaporation of high volatile components
including impurities and vapors. The second zone starts from onset temperature and ends at offset
temperature of substance. The second zone describes the thermal stability of substance, while the third
and the last temperature zone starts from offset temperature of substance, which shows burning or
degradation of substance. For substances/polymers that are not thermally stable, the last zone is usually
flatter as compared to that of being thermally stable. It can be observed that the onset temperatures for
PVA/PVP nanofibrous mats was well above 300 ◦C while the onset temperature of nanofibers containing
CMC was dropped to 220–250 ◦C, which indicated that addition of CMC in tri-component nanofibrous
mats caused decrement in thermal stability of polymers. However, considering practical applications
such as food packaging and water absorption/adsorption, the thermal stability of nanofibers is still
enough to be used as it is. It was also observed that at lower weight ratios of CMC and PVP the third
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onset was not so clearly visible while increasing content of PVP and CMC, and the third onset (curve)
is clearly visible in TGA plot. Increasing CMC content also caused a decrease in residue.
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