
polymers

Article

Quantitative Investigation of the Process Parameters
of Electrohydrodynamic Direct-Writing and Their
Effects on Fiber Surface Roughness and Cell Adhesion

Chen Jiang 1,2 , Kan Wang 2,*, Xuzhou Jiang 2 , Chuck Zhang 2,3 and Ben Wang 1,2,3

1 School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
cjiang74@gatech.edu (C.J.); ben.wang@gatech.edu (B.W.)

2 Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, USA;
xjiang@gatech.edu (X.J.); chuck.zhang@gatech.edu (C.Z.)

3 H Milton Stewart School of Industrial and System Engineering, Georgia Institute of Technology,
Atlanta, GA 30332, USA

* Correspondence: kan.wang@gatech.edu

Received: 2 October 2020; Accepted: 23 October 2020; Published: 25 October 2020
����������
�������

Abstract: Electrohydrodynamic (EHD) direct-writing has been widely used to fabricate micro/nanofibers
that can serve as a building block in tissue engineering scaffolds. However, the application of EHD
direct-writing in tissue engineering is limited by the lack of fundamental knowledge in the correlations
among the process parameters, the fiber surface roughness, and the cell adhesion performance. Without a
standardized experimental setting and the quantitative database, inconsistent results have been reported.
Here, we quantitatively investigate the process–structure–property relationships as the first step towards
a better understanding of the EHD direct-writing technology for tissue engineering. Polycaprolactone
(PCL) solution is used as a model ink material, and human mesenchymal stem cells (hMSCs) are used to
study cell adhesion on PCL fibers. We investigate the different jetting modes defined by the applied
voltage, the feed rate, and the nozzle–collector distance. The quantitative effects of process parameters
on the fiber surface roughness and the cell adhesion performance are experimentally determined.
The quantitative process–structure–property relationships revealed in this study provide guidelines
for controlling the surface roughness and the cell adhesion performance of EHD direct-written fibers.
This study will facilitate the application of EHD direct-writing in tissue engineering.

Keywords: electrohydrodynamic (EHD) direct-writing; electrospinning; surface roughness; cell-substrate
interaction; tissue engineering

1. Introduction

Tissue damages caused by diseases or injuries require treatments to facilitate tissue repair,
replacement, or regeneration [1]. Organ transplantation remains a major clinical method to repair
damaged tissues. However, the shortage of organ donors necessitates tissue engineering development
to develop biological substitutes that restore, maintain, and improve the original functionality of
damaged tissues [2,3]. One of the biological substitutes’ key elements is a scaffold that provides a
suitable environment for cell adhesion, proliferation, and differentiation [4]. Cell–substrate interactions
play a crucial role in deciding the scaffolds’ functionality to regulate cellular activities, ranging from
attachment and morphology to proliferation and differentiation through contact guidance.

Cell–substrate interactions, relying on a specific binding between the cell membrane’s surface
molecules and the substrate, are affected by the physical properties of substrates such as surface
roughness, topography, and stiffness [5]. Some of the most commonly used techniques for eliciting the
desired cellular responses on biomaterials are photolithography [6] and electron beam lithography [7].
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However, these techniques need photosensitive or electrosensitive materials, expensive equipment,
and a high level of expertise, hindering the scale up and scale out of these techniques. Low scalability
will lead to high costs of tissue engineering products and, subsequently, low patient accessibility of
regenerative medicine. Electrospinning is a versatile technique for generating ultrathin fibers with the
potential to be specifically engineered to elicit desired cellular responses.

Electrospinning is an electrostatic spinning process that can produce fibers from nearly one
hundred different polymers [8,9]. Electrospun fibers have been intensively used in tissue engineering
because their fibrous structures mimic the fibrous extracellular matrix [10]. Moreover, the morphology
of electrospun fibers can be easily modified to affect cellular activities. The morphology of electrospun
fibers can be subdivided into the morphologies of individual fibers and electrospun mats [11].

The morphology of individual fibers can be controlled by changing solvent types [12], collector
temperature [13], humidity [12,14,15], or thermal annealing time [16]. For example, Chen et al. have
successfully regulated the surface nanoroughness of fibers via humidity control of the electrospinning
environment [15]. Results showed that different surface roughnesses supported the expression of
different genes. Ribeiro et al. fabricated electrospun fibers with different surface roughness by changing
the thermal annealing time and found a higher roughness promoted lower osteoblast but higher
fibroblast proliferation [16]. Despite these advantages, the conventional electrospinning process is
restricted to applications without the requirement of orderly patterns due to its whipping phenomenon.
Most human tissues (e.g., blood vessel, nerve, muscle, etc.) have regular and anisotropic structures.
Thus, the morphology of electrospun mats also needs to be modified to facilitate the application of
electrospinning in tissue engineering.

The morphology of electrospun mats can be engineered into organized structures using templated
collectors [17,18] or electrohydrodynamic (EHD) direct-writing [11,19,20]. Fernandez, P. J. et al. have
fabricated electrospun scaffolds with random, radial, and perpendicularly aligned fibers [17]. Results
showed that cells adopted different morphologies at different scaffolds, and aligned fibers promoted
cell migration. Lee et al. fabricated patterned fibrous mats using EHD direct-writing and realized cell
patterning [11].

Desirable cellular responses can be elicited by engineering the morphologies of individual fibers
or electrospun mats. In this sense, the morphologies of both individual fibers and electrospun mats can
be engineered when fabricating electrospun scaffolds. Zhou et al. fabricated well-aligned electrospun
fibers using templated collectors and achieved different surface topography by varying ambient
humidity. Results demonstrated a synergistic effect of individual fibers’ morphologies and electrospun
mats on cell attachment, proliferation, and alignment [21]. However, this method is limited to aligned
fibrous structures, unable to control electrospun scaffolds’ geometric features.

An attractive method to control geometric features of electrospun scaffolds is EHD direct-writing.
EHD direct-writing can precisely control the patterning of electrospun fibers by reducing the
nozzle-collector distance to eliminate the whipping segment of the electrospun jet. EHD direct-writing
has been used to fabricate two-dimensional (2D) [11,22] and three-dimensional (3D) scaffolds [23,24]
with the ability to pattern cells. It has also been used to fabricate hybrid scaffolds with improved
mechanical properties combined with 3D printing [25]. To achieve better cellular responses, researchers
have successfully engineered the morphology of individual fibers in EHD direct-writing, such as the
width of fibers [22,26], the straightness of fibers [27–29], and the beads on fibers [30], by varying process
parameters such as electrical voltage, writing speed, nozzle diameter, and feed rate. However, the effect
of process parameters on the surface roughness of EHD direct-written fibers is underinvestigated.
Although some studies revealed that the surface roughness of EHD direct-written fibers affected
cell attachment and proliferation [24,31,32], quantitative studies about correlations among process
parameters, fiber surface roughness, and cell adhesion performance had not been reported for EHD
direct-writing so far.

We hypothesize that the surface roughness of the EHD direct-written fiber, and subsequently,
the cell adhesion performance can be precisely tuned by controlling the process parameters of EHD
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direct-writing. We used polycaprolactone (PCL) as the model material for EHD direct-writing.
PCL has been widely used in tissue engineering because PCL exhibits reasonable elastic properties
and low inflammatory response [33]. PCL and its composites have been widely used in EHD
direct-writing [22–24]. In this study, we mainly focused on the effect of substrates’ physical properties
and did not consider the effect of the chemical properties of substrates on cell adhesion, so we used
PCL as the model material in EHD direct-writing.

To test our hypothesis, we conducted three successive tasks. Firstly, we determined the ranges of
the process parameters of the EHD direct-writing based on the experimental observation. Secondly,
we characterized the surface roughness of EHD direct-written fibers fabricated at different settings
of the relevant process parameters. Lastly, we seeded human mesenchymal stem cells (hMSC) on
the fibers with different surface roughness and characterized their adhesion performance. The result
showed that the fiber surface roughness was affected by the process parameters and cells reacted
differently to fibers with different surface roughness. Based on the results, we conclude that our
hypothesis is true and report a quantitative guideline to the EHD direct-writing process for tissue
engineering. Our findings will facilitate any tissue engineering research using EHD direct-writing as a
tool for tissue engineering and enable better manipulation of the scaffold’s physical properties.

2. Materials and Methods

2.1. Materials

Polycaprolactone (PCL, Mn = 80, 000, product number: 440744), Dichloromethane (DCM, product
number: 270997), N, N-dimethylformamide (DMF, product number: 227056), and Glutaraldehyde
solution (GA, product number: G6257) were purchased from Sigma-Aldrich® (MilliporeSigma, St. Louis,
MO, USA). CellTracker™ CM-Dil Dye (category number: C7000) was purchased from Invitrogen
(Thermo Fisher Scientific, Waltham, MA, USA). Umbilical cord matrix hMSC (category number:
C-12971) and hMSC growth medium (category number: C-28009) were purchased from PromoCell
(PromoCell GmbH, Sickingenstr. 63/65, Heidelberg, Germany). Trypsin-EDTA (0.25%, category
number: 25200072) was purchased from Gibco™ (Thermo Fisher Scientific, Waltham, MA, USA).

2.2. Fiber Fabrication Process

Figure 1A,B show the schematic and the experimental setup of electrospinning. We prepared
the electrospun solution by dissolving PCL in the DCM:DMF (v/v ratio = 2:1) cosolvent at a weight
concentration of 10%, and then loaded the electrospun solution into a 5 mL syringe, which was
connected to a micropump (LEGATO 100, KD Scientific Co., Holliston, MA, USA). The nozzle diameter
was 0.8 mm, and the nozzle length was 13 mm. We applied high voltage (PS/FJ30R04.0, Glassman
High Voltage Co., High Bridge, NJ, USA) at the nozzle and attached a planar aluminum foil, parallel
with the collector, to the nozzle to generate an approximate uniform electric field between the nozzle
and the collector (Figure 1B).

To define the process parameters for EHD direct-writing, we selected different settings of the
process parameters. Flow rate, Q, was set at 30, 35, 40, 45, and 50 µL/min. Nozzle–collector distance, Z,
was set at 4, 10, 20, 30, 40, and 50 mm. Voltage, V, was changed from 3 to 8 kV with an interval of
0.5 kV. We monitored the electrospinning process by a super-speed camera (SMM-C012-U, Mightex
Co., Pleasanton, CA, USA). The length of the stable segment of the spun jet, hs, was measured by using
Image J software (1.8.0, National Institute of Health, Bethesda, MD, USA).

After defining the process parameters for EHD direct-writing (Figure 1C,D), we fabricated EHD
direct-written fibers at different process parameters (Table 1) and removed the solvent residue of
fibers under vacuum for 24 h at room temperature. The EHD direct-written fibers’ morphologies
were examined by a scanning electron microscope (SEM; SU8010, Hitachi, Japan) at 3 kV accelerating
voltage after gold-sputtered. The three-dimensional (3D) topography and surface roughness of fibers
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were characterized by a laser scanning confocal microscope (0L-S40-SU, Olympus® LEXT 3D Material
Confocal Microscope, Japan).
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Figure 1. (A) Schematic of the electrospinning process. (B) The experimental platform (with the
amplified image at the nozzle tip). (C) Schematic of the EHD direct-writing process. (D) ‘GT’ logo
fabricated by EHD direct-writing.

Table 1. The process parameters of EHD direct-writing.

Parameters Levels

Q (µL/min) 30 35 40 45 50
Z (mm) 4 6 8 10
V (kV) 3.5

Collector moving speed (m/s) 0.1

2.3. Cell Seeding Process

Before seeding cells, we sterilized EHD direct-written fibers by submerging fibers in 75% alcohol
for 2 h and then exposing fibers to the ultraviolet light for 30 min. The sterilized fibers were placed in
a 24-well plate. The sub-cultured hMSC (P10) were harvested using trypsin-EDTA. A 50 µL hMSC



Polymers 2020, 12, 2475 5 of 12

suspension (5× 105 cells/mL, PromoCell GmbH, Sickingenstr. 63/65, Heidelberg, Germany) was added
to each well. After 3 h for cell attachment, we added 3 mL of fresh media into each well. The cell-laden
fibers were grown in a 5% CO2 incubator at 37 ◦C, with the medium being replaced every day.

2.4. Cell Characterization

After culturing for 3 days, we labeled cells on fibers by using CellTrackerTM CM-Dil Dye.
We dissolved CM-Dil dye in DMF at 1mg/mL to prepare a stock solution, and then dilute the
stock solution into a working solution at a ratio of 1:1000. After washing the cell-laden fibers with
phosphate-buffered saline (PBS) for two times, we incubated cell-laden fibers in the working solution
for 5 min at 37 ◦C, and then for an additional 15 min at 4 ◦C. After labeling, we washed the cell-laden
fibers with PBS and observed cells under a fluorescence microscope (BX53, Olympus®, Tokyo, Japan).
Cell density was calculated using Image J software.

To observe cell morphologies, we submerged the cell-laden fibers in 2.5% GA for 30 min for cell
fixation, and then in a series of aqueous alcohol solutions of 30%, 50%, 70%, 90%, and 100% for 10 min,
respectively, for dehydration. The samples were gold-sputtered and observed under SEM.

2.5. Statistical Analysis

All experiments were performed with five replicates for each sample. The relation between cell
density and surface roughness was presented as mean ± standard deviation. Statistical comparisons
were performed using Student’s t-test. In all analyses, the threshold of p values for statistical significance
was set to 0.01.

3. Results and Discussion

The results were analyzed for the following three purposes: (1) defining the ranges of the process
parameters for a steady EHD direct-writing process; (2) investigating the effect of process parameters on
the surface roughness of the EHD direct-written fibers; (3) investigating the cell adhesion performance
of the EHD direct-written fibers with different roughness. The results and the corresponding analysis
are presented in the following subsections.

3.1. The Process Parameters Range for a Steady EHD Direct-Writing Process

To define the ranges of the process parameters for a steady EHD direct-writing process, we used
different process parameters of electrospinning and observed three different working modes (Figure 2).
Figure 2A showed a multi-jet mode since the applied voltage was so high that the cone became
unstable [32,34]. Figure 2B showed a stable single-jet mode, which was able to be used for EHD
direct-writing. Figure 2C showed a dripping mode, which resulted in the production of beaded fibers
or broken fibers [35].
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Figure 2. Three working modes of electrospinning process: (A) multi-jet mode (V = 6 kV, Q = 30 µL/min,
Z = 30 mm), (B) single-jet mode (V = 4.5 kV, Q = 30 µL/min, Z = 30 mm), and (C) dripping mode
(V = 3.5 kV, Q = 30 µL/min, Z = 30 mm).

The mode was affected by the flow rate Q, nozzle-collector distance Z, and applied voltage V.
Figure 3 showed the domains of these three electrospinning modes at different Q, Z, and V. The dashed
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areas were EHD direct-writing domains in which the stable segment length (hs) was smaller than Z.
Since a current breakdown occurred when Z was smaller than 4 mm (when V was 3.5 kV), the smallest
Z employed in this study was 4 mm. Figure 4 showed hs at different process parameters and revealed
that hs increased with the decrease of Z. Thus, a smaller Z resulted in a larger fraction of the EHD
direct-writing domain in the single-jet mode (Figure 3).
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3.2. The Effect of Process Parameters on Surface Roughness of EHD Direct-Written Fibers

After defining the ranges of the process parameters for a stable EHD direct-writing process,
we fabricated fibers with 10 × 10 mm square patterns by EHD direct-writing (Figure 5A) and
characterized the surface roughness (Ra) of fibers (Figure 6). The results (Figure 5B–F) showed that the
Ra of fibers fabricated at Z = 4 mm was significantly higher than that of other groups. SEM images
(Figure 7) showed that the fiber surface changed from more rugged to smoother as Z increased from
4 to 10 mm.
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Since the small nozzle-collector distance in EHD direct-writing limits solvent evaporation,
EHD direct-written fibers remain volatile when deposited. Their morphologies are susceptible to the
impact force when deposited on the collector. At the same voltage level, a smaller nozzle-collector
distance leads to a larger impact force. Moreover, a smaller nozzle–collector distance is less favorable
to solvent evaporation. More solvent left in the deposited fibers makes fiber morphologies more
susceptible to the impact force. In this study, fibers fabricated at Z = 4 mm had significantly larger
surface roughness compared with those fabricated at other Z. A threshold of Z exists between Z = 4 mm
and Z = 6 mm, which is related to the evaporation rate of the solvent.

3.3. The Cell Adhesion Performance of EHD Direct-Written Fibers with Different Roughness

To investigate the cell adhesion performance of the EHD direct-written fibers with different
roughness, we stained cells (Figure 8A–D) and characterized cell density after culturing the cell-laden
fibers for 3 days. More cells were attached to fibers fabricated at Z = 4 mm with the Ra of 0.16 µm than
other groups with the Ra range of 0.08–0.09 µm (Figure 8E). The result was in agreement with Huang’s
research in which he showed that titanium materials with a Ra of 0.15 µm achieved the optimal cell
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Figure 8. Fluorescence images of cells tracking after culturing the cell-laden samples for 3 days:
(A) Z = 4 mm, (B) Z = 6 mm, (C) Z = 8 mm, (D) Z = 10 mm. (E) The correlation between cell density
seeded on fibers fabricated at 3.5 kV, 30 µL/min and different Z and Ra (* represents p < 0.01). (F) SEM
images of cells (red arrow shows) seeded on fibers fabricated at Z = 4 mm. (G) SEM images of cells
(red arrow shows) seeded on fibers fabricated at Z = 10 mm.

Cells exhibited different morphologies on fibers with different roughness. Cells seeded on
rugged fibers exhibited the spreading morphology, a sign of good attachment (Figures 8F and 9).
In contrast, cells seeded on smoother fibers exhibited spindle morphology, a sign of poor adhesion
(Figure 8G) [36,37]. The reason is that fibers with a rougher surface provided more anchor sites for
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cell adhesion than fibers with a smoother surface did. The adhesion process generated a force on the
cytoskeleton, which further affected the following cell activities, including proliferation, apoptosis,
and morphology changes.
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Figure 9. SEM images of cells (red arrow shows) seeded on fibers fabricated at Z = 4 mm: (A) cross the
bump, (B) cling on the surface.

In this study, EHD direct-written fibers fabricated at Z = 4 mm with the Ra of 0.16 µm had the
largest cell density and the best cell adhesion appearance among all experimental groups. The result
indicates that EHD direct-writing can fabricate fibers with different surface roughness for investigating
cell-substrate interactions. Various studies have demonstrated that substrates with a specific range
of surface roughness selectively enhanced the adhesion, proliferation, or differentiation of a specific
type of cells [15,16,38,39]. Therefore, this study brings new insights to design and fabricate EHD
direct-written scaffolds with different surface roughness levels for eliciting different cell responses
without the necessity of post-processing, which has great potential in connective tissue engineering.

Future studies are needed to investigate long-term cell growth on EHD direct-written scaffolds.
Since the hydrophobic nature of PCL is not favorable for long-term cell growth [40,41], hydrophilic
materials such as gelatin [42], collagen [43], or chitosan [44] will be considered to add in PCL for
EHD direct-writing. Constructing 3D structures using EHD direct-writing will also be explored to
investigate the synergistic effect of individual fibers’ morphologies and 3D structures on cell responses.

4. Conclusions

In this study, we demonstrated that the surface roughness of the EHD direct-written fibers,
and subsequently, the cell adhesion performance could be precisely tuned by controlling the process
parameters of EHD direct-writing. We adjusted different process parameters to achieve a stable EHD
direct-writing process, and then characterized the surface roughness and cell adhesion performance of
the EHD direct-written fibers. The surface roughness of the EHD direct-written fibers was the largest
when the Z reached the lower limit (4 mm in this study), and biological experiments indicated that the
larger roughness was beneficial for cell adhesion. The method and the process–structure–property
relationships of EHD direct-writing reported in this study can provide guidelines about how to control
the surface roughness and cell adhesion of EHD direct-written fibers, which facilitates the application
of EHD direct-writing in tissue engineering.
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