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Abstract: Functional light scattering materials have received considerable attention in various
fields including cosmetics and optics. However, a conventional approach based on optically active
inorganic materials requires considerable synthetic effort and complicated dispersion processes for
special refractive materials. Here, we report a simple and effective fabrication strategy for highly
scattering hierarchical porous polymer microspheres with a high-refractive index inorganic surface
that mitigates the disadvantages of inorganic materials, producing organic-inorganic hybrid particles
with an excellent soft-focus effect. Hierarchical organic-inorganic hybrid particles were synthesized
using the simple physical mixing of porous poly (methyl methacrylate) (PMMA) microparticles with
different pore sizes and regularities as the organic core and titanium dioxide (TiO2) nanoparticles
with different particle sizes as the inorganic shell. The polar noncovalent interactions between polar
PMMA microspheres and the polar surface of TiO2 nanoparticles could induce the hierarchical
core-shell structure of hybrid particles. The synthesized hybrid particles had increased diffuse
reflectance properties of up to 160% compared with single inorganic particles. In addition, the light
scattering efficiency and soft-focus effect could be increased further, depending on the size of the
TiO2 nanoparticles and the pore characteristics of the PMMA microspheres. The proposed study can
provide a facile and versatile way to improve the light scattering performance for potential cosmetics.

Keywords: core-shell structure; diffuse reflectance; hybrid polymer particle; light scattering;
soft-focus effect

1. Introduction

Since the beginning of the industrial era, several studies have been conducted on organic-inorganic
hybrid materials in various fields [1–7]. The combination of organic and inorganic materials improves the
properties of each component while reducing the specific limitations of each material. These functional
hybrid materials generally contain two or more different components, such as inorganic materials
(inorganic particles, metal ions, salts, oxides, etc.) and organic materials (organic groups or molecules,
organic ligands, organic polymers, etc.). They are also combined by various methods—such as
self-assembly, electrostatic interaction, intermolecular interactions, and bonding in molecular structural
units—to improve the synergistic effect of their functional properties. The chemical and physical
bonding between organic and inorganic components can be achieved through hydrogen bonding,
van der Waals bonding, ionic boding, or covalent bonding [8–11]. These organic-inorganic hybrid
functional materials are widely utilized in various industries, including catalysts, drugs, optics,
energy storage, environmental remediation, health, cosmetics, and packaging, and provide potential
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platforms for versatile applications [10–26]. In particular, various studies using the optical properties
of organic-inorganic hybrid materials have been conducted in applications such as lenses, optical
filters, optical adhesives, optical films, anti-reflective films, and cosmetics [27–30].

The soft-focus effect refers to the phenomenon in which the lens is blurred in photography.
This blurring phenomenon can be achieved by soft-focus powder as a filler in various fields, and a
representative example is cosmetic powder [31–35]. Current cosmetic foundations focus on raw
materials that exhibit optical properties through high-refractive-index inorganic particles in order
to provide a good coverage for three-dimensional skin defects such as wrinkles, spots, pores,
and irregularities. This improves the appearance of the skin by introducing light scattering and
reflection functions into an inorganic powder with a high refractive index to visually blur skin defects.
Inorganic powders with such characteristics mainly include titanium dioxide, zirconium oxide, and zinc
oxide. However, the high opacity of the above particles, when accumulated in three-dimensional
skin, causes troubles such as pores and wrinkles, contrasts with other skin, and interferes with natural
makeup [36]. A commonly used foundation is often dispersed in water or oil, and it is important that
the pigment has a stable and uniform dispersion phase. However, it is difficult to stably disperse
inorganic powders in water or oil, which raises concerns of aggregation on the skin [37–39]. In order to
solve this problem, we have prepared organic-inorganic hybrid particles by combining porous organic
polymer microparticles with advantages such as high oil absorption and sebum adsorption power and
inorganic nanoparticles with high refractive properties (Figure 1). Organic polymer particles have
a considerably lower refractive index than inorganic particles, which decreases the scattering effect
of light. However, the high refractive index difference between the two materials on the bonding
surface of the organic and inorganic materials is expected to greatly amplify the light scattering effect.
In addition, the prepared organic-inorganic hybrid particles have an extremely irregular and rough
surface owing to the porous surface of the polymer particle and inorganic nanoparticles irregularly
bonded to the core particles [40–44]. This peculiar surface of the manufactured hybrid particles could
further enhance the diffuse reflection and scattering characteristics of light.

Figure 1. Schematic of a hierarchical organic-inorganic hybrid polymer microsphere with an excellent
light scattering performance.
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In this study, we present a simple and effective strategy for the fabrication of hierarchical
organic-inorganic hybrid polymer microparticles with a high-refractive index inorganic surface to
induce a maximum light scattering performance for excellent soft-focus effect. Organic-inorganic
hybrid particles were prepared using porous poly(methyl methacrylate) (PMMA) microparticles with a
low refractive index (n = 1.49) as the organic core and titanium dioxide (TiO2) nanoparticles with a high
refractive index (n = 2.61) as the inorganic shell [45–47]. The prepared hybrid particles enhanced the
light scattering characteristics through multiple effects of the porous morphology, the refractive index
difference between the organic core and inorganic shell, and the rough high-refractive index surface.
Organic-inorganic hybrid particles were named “organic PMMA@inorganic TiO2”. The method
involved inducing polar interfacial boding between two particles through physical agitation in a
solvent dispersion phase in an easy, fast, and economical manner. The nanoscale morphology
and particle size of the prepared organic-inorganic hybrid polymer particles were analyzed using
field emission scanning electron microscopy; additionally, Fourier transform infrared spectroscopy
was conducted to confirm the structure of the hybrid particles. To examine the diffuse reflectance
characteristics, hybrid polymer particles were mixed with an acrylate-based resin to prepare a thin
polymer film with a constant thickness. To compare the soft-focus characteristics, the prepared hybrid
particles were mixed with a nitrocellulose collodion. Various optical properties according to the
structure of PMMA microparticle and TiO2 nanoparticle were compared and discussed.

2. Materials and Methods

2.1. Materials

Titanium dioxide (TiO2) and poly(methyl methacrylate) (PMMA) particles were obtained
from Cosmax (Seongnam, Korea). For TiO2, white powdery particles with average diameters of
20 nm and 250 nm were prepared using a simple sol-gel and calcination method [48]. For PMMA,
round bead microparticles with different pore characteristics were synthesized through dispersion
polymerization [49,50]. The characteristics of each particle, including the particle size, pore size,
and pore uniformity, are shown in Table 1. Acrylate-type resin was received from TMS (Ilsan, Korea).
Nitrocellulose collodion was purchased from Sigma Aldrich (Seoul, Korea).

Table 1. Characteristics of PMMA microparticles and TiO2 nanoparticles.

No. Code Material Average Particle Size Average Pore Size Pore Uniformity

1 NPP PMMA 9 µm non-porous -
2 PP1 PMMA 12 µm 400 nm uniform
3 PP2 PMMA 11 µm 300 nm nonuniform
4 PP3 PMMA 13 µm 200 nm uniform
5 T1 TiO2 20 nm non-porous -
6 T2 TiO2 250 nm non-porous -

2.2. Synthesis of Oranic-Inorganic Hybrid Polymer Particles

For the synthesis of organic-inorganic hybrid particles, a solution of porous PMMA and TiO2

nanoparticles was prepared as a first step. Porous PMMA powder (8 g) was added to 100 mL of ethanol
and stirred at room temperature at 1000 rpm for 10 min. In another beaker, 8 g of TiO2 powder was
added to 100 mL of ethanol, and then stirred at room temperature at 1000 rpm for 10 min. Thereafter,
the two solutions were subjected to ultrasonic dispersion for 10 min. The solution in which the porous
PMMA was dispersed was then added to the TiO2 dispersion solution. The resulting solution was
stirred at 1000 rpm for 4 h at room temperature. In the second step, filtration was performed using
filter paper (3 µm pores) to separate the uncoupled TiO2 nanoparticles. A vacuum pump was used
for fast filtration. Since a small number of uncoupled TiO2 nanoparticles were found in the scanning
electron microscope analysis, it is supposed that the microscale filtration process is an effective method
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for the removal of TiO2 nanoparticles. After the filtration step, the obtained hybrid particles were dried
in a vacuum oven at room temperature for 24 h to remove any residual solvent.

2.3. Preparation of Polymer Thin Films Containing Organic-Inorganic Hybrid Particles

To measure the diffuse reflectance, polymer thin films containing hybrid particles were prepared
using an acrylate-type resin containing a photoinitiator. First, 0.5 g of hybrid particles was added to
9.5 g of acrylate resin and mixed using a paste mixer of a revolution/rotation system (AR-100, Thinky,
Tokyo, Japan). The mixing process was carried out at a speed of 2200/800 rpm (revolution/rotation) for
30 min. After the mixed resin was applied between two release films (polyethylene terephthalate film
coated with silicon), a uniform thin film with a thickness of 150 µm was prepared using a roll-to-roll
coater. The prepared film was UV-cured with 4 J cm−2 using a UV curing machine (KJPHT-101, KJUV,
Incheon, Korea). As a result, various thin film samples including pure thin film without any particles,
thin films with only organic PMMA particles, thin films with only inorganic TiO2 particles, and thin
films with organic-inorganic hybrid particles were prepared.

2.4. Characterization

A Fourier transform infrared spectrometer (FT-IR, model: Agilent, Cary 660 FTIR, Santa Clara,
CA, USA) was used to analyze the chemical structure of organic, inorganic, and organic-inorganic
hybrid particles. The FT-IR measurement was performed by mixing the sample and KBr in the form
of pellets and then subjecting them to wavelengths in the range of 4000–500 cm−1 (8 cm−1-resolution
and 30 infrared scans). A field emission scanning electron microscope (FE-SEM, model: Hitachi,
SU-70, Tokyo, Japan) was used to examine the morphology and size of the organic, inorganic,
and organic-inorganic hybrid particles. The FE-SEM images were measured by placing the sample on
carbon tape and coating it with platinum. A thermogravimetric analysis (TGA, model: TA Instruments,
SDT Q-600, New Castle, DE, USA) was carried out to determine the composition of the organic-inorganic
hybrid particles. Visible, near-infrared, and shortwave-infrared spectroscopy (VNIR-SWIR, model:
Malvern Panalytical, ASD LabSpec 4, Malvern, UK) equipped with a contact probe was performed to
examine the diffuse reflectance of thin films embedded with hybrid particles. With the black substrate
as the base line, the diffuse reflectance was measured by contacting the sample with a probe that
simultaneously generates incident light and detects reflected light. A goniophotometer (Murakami
Color Research Laboratory, GP-5, Tokyo, Japan) was used to examine the light scattering characteristics
of the hybrid particles and obtain a soft-focus factor. Each hybrid particle was mixed with nitrocellulose
collodion, which is used as a makeup matrix or surgical dressing, and measured as coated on the black
substrate. The scattered light was measured in the range of 0◦ to 180◦.

3. Results and Discussion

3.1. Structural Characterization of Hierarchical Organic-Inorganic Hybrid Polymer Microspheres

A FT-IR analysis was performed to analyze the chemical structure of the organic-inorganic
hybrid particles synthesized by a simple mixing and drying process. Commonly, organic-inorganic
hybrid particles have been prepared by a chemical bonding method using the electrostatic charge
interactions between different particles [1–11]. However, the chemical bonding method requires a
complex and long synthetic procedure. Therefore, the used physical mixing method can provide
the fast and simple fabrication of hybrid particles using the polar interfacial interactions between
polar PMMA microspheres and the polar surface of TiO2 nanoparticles. It is reported that PMMA
and TiO2 nanoparticles can interact chemically and physically due to the presence of polar functional
groups, offering an excellent compatibility between the two materials [51–53]. Figure 2a shows the
FT-IR spectra of pure TiO2 nanoparticles (T1), pristine PMMA (NPP), and hybrid particles (NPP@T1).
First, in the spectrum of the TiO2 nanoparticle, the Ti-O-Ti peak of TiO2 was observed broadly at
500–800 cm−1 [54]. In the spectrum of the PMMA polymer microparticle, C-H stretching vibration
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peaks were observed at 2951 and 2998 cm−1, and C=O carbonyl peaks were observed at 1728 and
1145 cm−1 [55]. Meanwhile, in the spectrum of the organic-inorganic hybrid particle (NPP@T1),
the characteristic peaks of both T1 and NPP particles were observed. Therefore, it was confirmed that
both the PMMA microparticles and TiO2 nanoparticles were incorporated into the organic-inorganic
hybrid polymer microparticles. Figure 2b shows the FT-IR spectra of the prepared organic-inorganic
hybrid particles. Similar spectral features were obtained for other hybrid particles, indicating the
successful preparation of organic-inorganic hybrid particles.

Figure 2. (a) FT-IR spectra of pure TiO2 (T1), pristine PMMA (NPP), and organic-inorganic hybrid
particles (NPP@T1). (b) FT-IR spectra of other porous hybrid particles.

Next, an FE-SEM analysis was performed to confirm the size and morphology of the
organic-inorganic hybrid particles. Figure 3 shows FE-SEM images of pure TiO2 nanoparticles and
pristine PMMA microparticles. The T1 and T2 nanoparticles exhibited angular shapes of about 20 and
250 nm, respectively. In the case of pristine PMMA, spherical particles with average diameters of about
10 µm were observed. While non-porous NPP has a smooth surface without pores, the three porous
PMMA particles have a large number of pores with different sizes and regularities, as summarized in
Table 1. Notably, PP1 and PP3 showed uniform pore diameters of about 400 and 200 nm, respectively,
and PP2 exhibited a nonuniform pore size of about 300 nm. Figure 4 shows FE-SEM images of
the prepared organic-inorganic hybrid particles. All the hybrid particles maintained the spherical
morphologies of pristine PMMA microparticles, however their surface morphologies were changed
to irregular and rough surfaces with a great number of TiO2 protrusions, suggesting the successful
binding between PMMA microparticles and TiO2 nanoparticles. The polar interfacial interactions
between polar PMMA microspheres and the polar surface of TiO2 nanoparticles could lead to the
hierarchical core-shell structure of hybrid particles. These irregular and rough surfaces of the hybrid
core-shell particles with high-refractive index TiO2 protrusions are expected to enhance the light
scattering and diffuse reflection characteristics.
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Figure 3. FE-SEM images of pure TiO2 nanoparticles and pristine PMMA microparticles.

Figure 4. FE-SEM images of hierarchical organic-inorganic hybrid particles.

To quantitatively determine the composition of the organic-inorganic hybrid particles,
a thermogravimetric analysis was performed. Figure 5 shows the TGA thermograms of pure TiO2

(T1), pristine PMMA (NPP), and organic-inorganic hybrid particles (NPP@T1). While the pure TiO2

particles maintained their initial weight even at 600 ◦C, a complete degradation at 500 ◦C was observed
for pristine PMMA. In addition, a final weight loss of about 49% was detected for the NPP@T1 hybrid
particle, indicating that the organic-inorganic hybrid particle prepared with a mixing ratio of 1:1 retains
the exact chemical composition of TiO2:PMMA = 1:1.

Figure 5. TGA thermograms of pure TiO2 (T1), pristine PMMA (NPP), and hybrid particles (NPP@T1).
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3.2. Optical Properties of Hierarchical Organic-Inorganic Hybrid Polymer Microspheres

Figure 6 shows photographs of the thin polymer films embedded with organic-inorganic
hybrid particles. In order to visually compare the actual appearance and transparency of the films,
the manufactured films were cut into 3 × 3 cm2 sizes, respectively, and placed on paper printed with
the logo. The first row showed pure thin films without any particles and thin films with only PMMA
microparticles. These thin films exhibited transparent logo images due to the good compatibility
and similar refractive indices between the PMMA microparticles and the acrylate-based matrix resin.
The second and third rows displayed the thin films embedded with only TiO2 nanoparticles and hybrid
particles, and opaque and blurry images were obtained for all samples compared to those of the pure
and PMMA-embedded thin films. This result is ascribed to the light scattering effect of high-refractive
index TiO2 nanoparticles in the low-refractive index acrylate-based matrix. Notably, the thin films with
large-sized TiO2 nanoparticles (T2) showed much blurrier images than those with small TiO2 (T1) [56].
Based on these results, thin films embedded with organic-inorganic hybrid particles are expected to
have good light scattering characteristics comparable to those with only inorganic TiO2 nanoparticles.

Figure 6. Photographs of the pure thin film and thin films with only PMMA, only TiO2,
and hybrid particles.

To examine the difference in the light scattering performance, the diffuse reflectance spectra of
the pure film and thin films with only PMMA, only TiO2 nanoparticles, and hybrid particles were
measured and their diffuse reflectances at 600 nm were compared [57]. A diffuse reflectance analysis
on the thin films was performed using contact reflectance measuring equipment. The prepared thin
films were placed on a black substrate, and incident light generated from a contact probe was absorbed
or reflected by the thin films embedded with light scattering particles. Figure 7 shows the diffuse
reflectance spectra of the pure film and thin films with only PMMA (PP3), only TiO2 nanoparticles
(T1 and T2), and hybrid particles (PP3@T1 and PP3@T2). Pure thin film without any particles and
thin films with only PP3 polymer showed low diffuse reflectances of approximately 10% and 13% at a
wavelength of 600 nm due to the low refractive indices of PMMA microparticles and acrylate-based
matrix, which is in accordance with the visual analysis results. On the contrary, the thin films embedded
with only T1 or T2 nanoparticles exhibited high diffuse reflectances of approximately 39% and 57%,
respectively, owing to the high refractive index of TiO2 nanoparticles [58]. In addition, the introduction
of organic-inorganic hybrid particles into the thin films led to the improved diffuse reflectances of 48%
and 62% for PP3@T1 and PP3@T2, respectively. These results suggest that the rough surface of the
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hybrid porous PMMA microsphere with high-refractive index TiO2 protrusions induces enhanced light
scattering characteristics for organic-inorganic hybrid particles. Moreover, hybrid particles with large
TiO2 nanoparticles (PP3@T2) showed a higher diffuse reflectance than those with small TiO2 (PP3@T1)
due to the rougher surface structure. Tables 2 and 3 summarize the diffuse reflectance characteristics
of all the thin films at 600 nm. The organic-inorganic hybrid structure including the porous PMMA
microsphere as the core and the large-sized TiO2 nanoparticles as the shell could maximize the light
scattering performance. As a consequence, the thin film embedded with the PP3@T2 hybrid particle
showed an about 620% higher diffuse reflectance than the pure thin film, which was 488% higher
than the thin film with only NPP polymer, 160% higher than the thin film with only inorganic T1
nanoparticles, and 110% higher than the thin film with only T2 nanoparticles.

Figure 7. Diffuse reflectance spectra of the black substrate, pure thin film, and thin films with PP3, T1,
T2, PP3@T1, and PP3@T2 particles.

Table 2. Diffuse reflectance of the pure thin film and thin films with only PMMA or TiO2 particles at
600 nm.

Materials Pure Film NPP PP1 PP2 PP3 T1 T2

Reflectance (%) 10.0 ± 0.4 12.7 ± 0.3 12.7 ± 0.1 12.6 ± 0.3 12.7 ± 0.2 39.1 ± 0.6 56.6 ± 0.8

Table 3. Diffuse reflectance of the thin films with organic-inorganic hybrid particles at 600 nm.

Materials NPP@T1 NPP@T2 PP1@T1 PP1@T2 PP2@T1 PP2@T2 PP3@T1 PP3@T2

Reflectance (%) 42.2 ± 0.7 55.8 ± 0.2 46.6 ± 0.5 59.1 ± 0.8 48.0 ± 0.3 58.4 ± 0.7 47.6 ± 0.4 62.0 ± 1.1

3.3. Soft-Focus Properties of Hierarchical Organic-Inorganic Hybrid Polymer Microspheres

To compare the soft-focus characteristics of the hybrid particles for potential cosmetic applications,
light intensity distribution curves were measured using a goniophotometer. A schematic diagram of
the goniophotometer analysis is shown in Figure 8a. Incident light from 45◦ was applied to the sample,
and the reflected light in the range of 0◦–180◦ was measured by the detector. The light intensities for
specular reflection at 135◦ and diffuse reflection at 65◦ were named Ls and Ld, respectively. Especially,
Ld can represent the cover effect of hybrid particles on skin defects due to the diffuse light scattering
and resulting opacity. The soft-focus factor (SFF) for the quantitative light scattering performance is
defined as in Equation (1) [59].

Soft focus factor (SFF) =
Ld
Ls

(1)
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Figure 8. (a) Schematic of the goniophotometer analysis. (b) Light intensity distribution curves of the
mica and hybrid particles.

An SFF value of more than 0.5 indicates a good soft-focus performance, and the maximum
soft-focus effect of particles can be achieved with an extremely high SFF value close to 1.0 [60].
The excellent light scattering performance of the hybrid particles can lead to high SFF values due to
the increased diffuse reflection. Figure 8b shows the light intensity distribution curves of mica as a
reference material for cosmetic application and hybrid particles. While the mica particles exhibited
extremely low diffuse reflectance due to their flat and smooth surface, an enhanced diffuse reflection
was observed for the organic-inorganic hybrid particles. In addition, the hybrid particles with large
TiO2 nanoparticles showed excellent soft-focus effects compared to those with small TiO2, which is
quite in accord with the diffuse reflectance results.

Figure 9 shows the SFF values of mica, pure TiO2 (T1 and T2), pristine PMMA (NPP), and hybrid
particles. The organic-inorganic hybrid porous particles showed remarkably high SFF values compared
to those of the conventional mica particles. The large TiO2 nanoparticles and irregular or small pore
size porous PMMA particles resulted in high SFF values and excellent soft-focus effects. Basically,
the refractive index difference between the PMMA core and the inorganic TiO2 shell induces good
light scattering properties for hybrid particles and, furthermore, the irregular and rough surface leads
to an additional improvement in the light scattering performance. Consequently, the PP3@T2 hybrid
particle showed the highest SFF value of 0.85, which is about 944% higher than that of mica particles,
285% higher than that of pristine PMMA polymer, and 163% higher than that of pure T2 nanoparticles.
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Figure 9. Soft-focus factor values of mica, T1, T2, NPP, and hybrid particles.

4. Conclusions

In this study, we fabricated highly scattering hierarchical porous polymer microspheres with
a high-refractive index inorganic surface for an excellent soft-focus effect. Nano-sized TiO2 and
micro-sized porous PMMA with different pore sizes and regularities were used as organic and
inorganic materials for the synthesis of hierarchical hybrid particles. The thin film embedded with
organic-inorganic hybrid particles showed 488% or 160% higher diffuse reflectance characteristics than
those with only PMMA or TiO2 particles. The synergistic effects of the porous morphology, the refractive
index difference between the organic core and inorganic shell, and the rough high-refractive index
surface can provide high light scattering properties for hybrid particles. In addition, the PP3@T2
hybrid particle comprising porous PMMA microspheres with the smallest pore size and large TiO2

nanoparticles exhibited the highest SFF value among the prepared hybrid particles. The light scattering
characteristics could be greatly improved by controlling the pore characteristics of the organic PMMA
particles and the size of the inorganic TiO2 nanomaterial. Based on these results, it was confirmed that
the pore characteristics of the polymer microsphere and the size of high-refractive index inorganic
material are important factors for the design of highly scattering organic-inorganic hybrid particles.
This study can provide an effective and versatile approach for achieving highly light-scattering
materials with excellent soft-focus effects for potential cosmetic applications including skin coverage.
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