
polymers

Article

Experimental Study on the Effectiveness of
Polyurethane Flexible Adhesive in Reduction of
Structural Vibrations

Natalia Lasowicz 1,* , Arkadiusz Kwiecień 2 and Robert Jankowski 1
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Abstract: The aim of the present study is to consider the idea of using polyurethane flexible adhesive
in to reduce the vibrations in structures exposed to dynamic loads and evaluate their damping
properties in relation to large deformations. Firstly, two aluminium cantilever beams, simulating
structural elements (without and with polyurethane layer in the form of tape), were analysed, in order
to check the damping of the unconstrained polymer layer. In the second stage of the study, a composite
beam consisting of two aluminium flat beams bonded with polymer adhesive was considered, so as
to check the damping of the constrained polymer layer. Dynamic parameters, such as modes of free
vibrations, corresponding natural frequencies and damping ratios, were determined and compared.
The third stage of the investigation was aimed at solving the problem of the additional mass of
the applied polymer layer, which influences the frequencies and damping of the tested structure.
A special separating procedure is proposed that makes it possible to calculate the corrected real
values of the polymer layer’s damping. The results of the study clearly show that the response
of the composite aluminium beam with and without polymer adhesive layer is mainly influenced
by the layers’ thickness and the large strain deformation, in terms of its damping characteristics.
The use of polymer adhesive layers in constrained and unconstrained conditions leads to a significant
reduction in the vibrations of tested beams, while preserving their stiffness at nearly the same level.
The applied analysis procedure made it possible for us to separate the damping properties of the
analysed polymer layers and evaluate them independently with respect to the influence of integrated
structural elements on damping.

Keywords: polymer adhesive; dynamic load; structural vibrations; damping ratio

1. Introduction

Excessive structural vibrations due to different dynamic loads are among the most serious and
dangerous situations that can occur in the case of civil engineering structures [1–3]. Wind, earthquake
or crowd load effects determine the design procedure of structures that are regularly subjected to such
significant dynamic loads (see, for example, [4–6]). The excited structures are more resistant to dynamic
loads when they are characterized by high ductility and damping properties. The use of composite
materials in the strengthening of various kinds of structures (infilled reinforced concrete frames or
masonry) is nowadays a popular approach [7–12]. Composite materials are usually bonded to the
structures using stiff adhesives made of mineral mortars or epoxy resins. Such kind of stiff adhesives
of brittle behaviour cause stiffening of the strengthened structures and do not introduce ductile and
damping properties. Moreover, strengthening of masonry and concrete structures using composite
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systems on stiff adhesives is not fully effective because of the low strength of the substrates [13].
Stress concentrations overcome strength of the substrates generated by stiff adhesives [14]. A solution
to this problem might be the use of polyurethane flexible materials, which are more compatible
with masonry and concrete substrate [15,16] and ensure a high amount of ductility and deformation
capacity [17].

When the induced vibrations excite a natural frequency of the affected part of the structure,
resonance might occur. This may lead to severe damages or even total structural collapse [18,19].
The dynamic characteristics of structures, such as natural frequencies and damping, play important roles
in dynamic response of structures, and thus various methods of determination of these characteristics
are exploited. Dynamic detection methods are also used in determination of structural condition of
structures, including their damage [20–22]. Anyway, the application of innovative strengthening or
repair solutions in masonry or infill structures, such as composite materials externally bonded [23]
or injection filling of cracks [24], also requires increasing the structural damping. This aspect is
especially important in seismic areas. Innovative solutions using dissipative viscoelastic elastomers,
like PolyUrethane Flexible Joints (PUFJ) and Fibre-Reinforced PolyUrethane (FRPU) [18], manifest
efficiency in structural damping, but cause problems in determination of damping properties of
polymeric materials separately. Meanwhile, the damping values are required for the dynamic
numerical analysis of repaired/strengthened structures, where appropriate damping properties of
component materials are sought. Moreover, elastomeric materials usually show nonlinear behaviour,
described by hyper elastic theory [25,26], which does not include damping, thus this parameter must
be determined experimentally.

Masonry and reinforced concrete structures undergo reduction of stiffness through crack
development during earthquakes, resulting in a shift in their natural frequencies [27]. The most
commonly used method of vibration attenuation in the resonance range is the application of dampers
so as to increase dissipation of energy during vibrations. A few types of such elements (passive,
active, half-active and hybrid) are used as an effective method in reduction of structural vibrations [28].
The passive method is often used in such structures as bridges, footbridges, tall buildings, masts,
towers and chimneys.

A viscoelastic damper is an example of a passive vibration reduction method [29]. This can be a
viscous damper, consisting of a cylinder filled with a highly viscous liquid, in which a piston with holes
moves and energy is dissipated as a result of friction between fluid particles and the piston. Another
example of a passive damper is the Tuned Mass Damper—TMD (also called vibration absorber or
vibration damper)—where an additional mass is attached to a specific location of a structure, so as
to reduce the amplitude of vibrations to an acceptable level during dynamic excitation. This type
of passive damper is used to reduce vibrations of structures such as footbridges, bridges and tall
buildings [30,31]. The most famous examples of using TMD systems include the Millennium footbridge
in London and the Taipei skyscraper in Taiwan.

The alternative idea of using polymer material, which has already been successfully applied for
filling cracks in order to repair damaged masonry structures [27,32], was considered in this study.
The analysed polymer adhesive is a specially designed flexible two-component grout, which is based on
polyurethane resin [33,34]. It has been confirmed, based on previous experimental studies (see [35,36]),
that the material also has additional damping properties. Moreover, it is characterized by very good
adhesion to steel and concrete and high deformability [37]. Good damping properties of polyurethane
have also been confirmed during shaking table tests, in which a damaged infill specimen was protected
by externally bonded composite GFRP strengthening using flexible polyurethane adhesive (FRPU) [18].
The application of this solution allowed the weakened structure to survive dynamic excitation in the
range of resonance. Only damping properties of the deformable elastomeric adhesive of the FRPU
protected the structure against collapse, when the tested structure manifested large displacements (up
to 10 cm), generating large deformations in the elastomeric adhesive layers.
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The numerical analysis of the tested dynamic system requires knowledge about damping properties
of the flexible adhesive, and thus experiments and analysis should be focused on determining the
damping of a single polyurethane layer. This problem is not easy to solve, because the influence of large
strains in the deformed adhesive layer has to be taken into account. Moreover, boundary conditions
applied to the elastomeric layer, as well as the thickness of the layer, are of great importance. Moreover,
to make analysis as simple as possible, polymeric adhesive layers can be combined in testing with
materials of well-known and stable parameters, like aluminium [26,38] or glass [39,40]. Such composite
structures can be easily tested, and parameters of elastomeric layers can be determined indirectly [41].

In this paper, the results of experimental investigation, concerning the effectiveness of polymer
adhesive in reduction of vibrations, are described. The experiment has been divided into two parts.
In the first stage, two aluminium cantilever beams (without and with polymer layer in the form
of a tape) have been analysed. The second stage of the study focuses on five cantilever composite
beams consisting of two aluminium flat bars bonded with polymer adhesive of different thickness
(see also [26,38]). The specimens were forced to induce large deflections of the beams and thus large
strain deformations of the polymer layers. In the analysis, changes in thickness and in shear strain were
considered. Representative impact load cases, induced by using a modal hammer, are presented and
described in detail in the paper. Dynamic parameters, such as modes of free vibrations, corresponding
values of natural frequencies and damping ratios, were determined. Next, a detailed analysis, focused
on the interpretation of the results, was carried out using the approaches described in [18,26,37].
Moreover, a new approach, separating the influence of equivalent stiffness and additional mass on
damping of a polymeric layer, is also proposed. Large shear deformation and thickness of an adhesive
have been investigated as factors influencing damping properties.

2. Investigation on Plain and Composite Aluminium Beams with Polymer Layer

2.1. Experimental Study—Part 1

2.1.1. Experimental Setup

The first stage of the investigation was devoted to the analysis of two aluminium cantilever beams
with a total length of 965 mm, a width of 30 mm and a height of 9 mm. One of them represents a plain
cantilever beam (see Figure 1a), while the second one considers a beam with a polymer layer applied in
the form of tape of the same width as the beam, with a total thickness of 7 mm, located on the bottom
of the beam (see Figure 1b).

Polymers 2020, 12, x FOR PEER REVIEW 3 of 21 

 

determining the damping of a single polyurethane layer. This problem is not easy to solve, because 
the influence of large strains in the deformed adhesive layer has to be taken into account. Moreover, 
boundary conditions applied to the elastomeric layer, as well as the thickness of the layer, are of 
great importance. Moreover, to make analysis as simple as possible, polymeric adhesive layers can 
be combined in testing with materials of well-known and stable parameters, like aluminium [26,38] 
or glass [39,40]. Such composite structures can be easily tested, and parameters of elastomeric layers 
can be determined indirectly [41]. 

In this paper, the results of experimental investigation, concerning the effectiveness of polymer 
adhesive in reduction of vibrations, are described. The experiment has been divided into two parts. 
In the first stage, two aluminium cantilever beams (without and with polymer layer in the form of a 
tape) have been analysed. The second stage of the study focuses on five cantilever composite beams 
consisting of two aluminium flat bars bonded with polymer adhesive of different thickness (see also 
[26,38]). The specimens were forced to induce large deflections of the beams and thus large strain 
deformations of the polymer layers. In the analysis, changes in thickness and in shear strain were 
considered. Representative impact load cases, induced by using a modal hammer, are presented and 
described in detail in the paper. Dynamic parameters, such as modes of free vibrations, 
corresponding values of natural frequencies and damping ratios, were determined. Next, a detailed 
analysis, focused on the interpretation of the results, was carried out using the approaches described 
in [18,26,37]. Moreover, a new approach, separating the influence of equivalent stiffness and 
additional mass on damping of a polymeric layer, is also proposed. Large shear deformation and 
thickness of an adhesive have been investigated as factors influencing damping properties. 

2. Investigation on Plain and Composite Aluminium Beams with Polymer Layer 

2.1. Experimental Study—Part 1 

2.1.1. Experimental Setup 

The first stage of the investigation was devoted to the analysis of two aluminium cantilever 
beams with a total length of 965 mm, a width of 30 mm and a height of 9 mm. One of them 
represents a plain cantilever beam (see Figure 1a), while the second one considers a beam with a 
polymer layer applied in the form of tape of the same width as the beam, with a total thickness of 7 
mm, located on the bottom of the beam (see Figure 1b). 

  
(a) (b) 

Figure 1. (a) Aluminium cantilever beam; (b) aluminium cantilever beam with polymer adhesive. 

The study focused on determining the effectiveness of the polymer layer for reducing the 
structural vibrations at various levels of large strain deformation. Dynamic parameters, such as 
modes of free vibrations and the corresponding natural frequencies of the two aluminium cantilever 
beams (without and with the polymer layer) were estimated. The aluminium cantilever beams were 
induced to vibrate by impacts with a modal hammer applied in the middle of the elements’ length. 

Figure 1. (a) Aluminium cantilever beam; (b) aluminium cantilever beam with polymer adhesive.

The study focused on determining the effectiveness of the polymer layer for reducing the structural
vibrations at various levels of large strain deformation. Dynamic parameters, such as modes of free
vibrations and the corresponding natural frequencies of the two aluminium cantilever beams (without
and with the polymer layer) were estimated. The aluminium cantilever beams were induced to vibrate
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by impacts with a modal hammer applied in the middle of the elements’ length. Schematic diagrams
of both of the analysed beams and the manner in which they were induced to vibrate are presented in
Figure 2. A modal hammer type PCB 086C01 (PCB Piezotronics, Inc., Depew, NY, USA), with a force
that was variable over time and a maximum value of F = 15 N, was used. The total duration of each
measurement was set to be equal to 12.5 s. The behaviour of the beams was observed and recorded
using two accelerometers, including a triaxial one (PCB Piezotronics, Inc., Depew, NY, USA), that were
installed on the metal side at the end of each beam. The response of the cantilever beams was analysed
under various values of vertical load (weights with a mass ranging from 1 kg to 6 kg), applied in a
distance of 30 mm from their ends (see Figure 2). This applied load resulted in large deflections of the
beams and their visible curvature.
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The aluminium used in this study possessed the following parameters: Young’s modulus
E = 70 GPa, Poisson’s ratio ν = 0.3, and mass density ρ = 2700 kg/m3 (producer data). In the case of the
polyurethane layer, which was made of Sika PSM (SIKA Poland, Cracow, Poland), the properties of the
material were: Young’s modulus E = 6 MPa, Poisson’s ratio ν = 0.48, mass density ρ = 1000 kg/m3,
tensile strength Rm = 2.5 MPa, shear strength Rt = 1.2 MPa, and ultimate strain ε= 110% (producer data).

2.1.2. Experimental Results

Six repetitions of each measurement under each load case were conducted, and the mean values
of the natural frequencies corresponding to the first two modes of free vibration, as well as the
mean values of the damping ratios, were estimated. The results of the experimental study were
determined in the form of acceleration time histories, based on which modal characteristics were
obtained. Two representative acceleration time histories, describing the behaviour of the aluminium
cantilever beams (without and with polymer layer) with an additional weight of 2.5 kg are presented in
Figures 3a and 4a, respectively. Two modes of free vibrations and the corresponding natural frequencies
for each were determined using Fast Fourier analysis (see Figures 3b and 4b). Both natural frequencies
observed during experimental study were analysed separately by filtering out the components with
other frequencies from the measured acceleration time histories. The acceleration time histories of
vibrations with the 1st natural frequency (2.1 Hz and 2.0 Hz, respectively) are presented in Figures 3c
and 4c. Moreover, Figures 3d and 4d show the results of vibrations with the 2nd natural frequency
(36.6 Hz and 31.93 Hz, respectively). The mean values of the natural frequencies calculated for
both aluminium cantilever beams are also summarized in Table 1. The values presented there in
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brackets indicate the frequency change ratio with respect to the first and the second natural frequency
values of the specimen loaded with an additional mass of 1 kg, without the polymer layer. Moreover,
comparisons of the first and the second natural frequency values are presented graphically in Figures 5
and 6, respectively, with respect to the presence of the polymer layer and changes in loading mass.
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Table 1. Mean values of natural frequencies, corresponding to the 1st (*) and the 2nd (**) mode of free
vibrations, calculated for both aluminium cantilever beams (without and with polymer layer) under
various values of vertical load—corresponding frequency change ratio in brackets.

Aluminium Beam Aluminium Beam with Polymer Layer (7 mm)

Mass of Weight
(kg)

f 1 *
(Hz)

f 2 **
(Hz)

f 1 *
(Hz)

f 2 **
(Hz)

1 3.1 (1.00) 37.3 (1.00) 3.0 (0.97) 32.9 (0.88)
2.5 2.1 (0.68) 36.6 (0.98) 2.0 (0.64) 31.9 (0.86)
3.5 1.8 (0.58) 36.6 (0.98) 1.7 (0.55) 31.8 (0.85)
5 1.5 (0.48) 36.6 (0.98) 1.4 (0.45) 31.8 (0.85)
6 1.4 (0.45) 36.6 (0.98) 1.3 (0.42) 31.8 (0.85)
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As can be seen from Table 1, a significant decrease in the natural frequency of the aluminium
cantilever beam can be observed for the first natural frequency as a result of the application of an
additional vertical load in the form of weights with different mass (causing large deformations of the
tested structure). The reduction reaches value up to 55% in a slightly nonlinear manner, and is strongly
related to the change in the loading mass from 1 kg to 6 kg—see Figure 5a. This observation is valid for
both of the analysed beams (with and without the polymer layer) and no significant differences in
the frequencies were observed for both beams—see Figure 5b. On the other hand, the second natural
frequency was practically insensitive to the mass change (with a reduction of up to only 2% for the
plain beam and up to only 4% for the polymer bonded beam)—see Figure 6a. The results also indicate
that the application of an additional polymer layer with a thickness of 7 mm led to a reduction in the
second natural frequency of up to 13% (independent of the increase in mass)—see Figure 6b.
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In the next step of the analysis, the damping ratio was estimated for each case so as to quantify
the effectiveness of polymer for reducing structural vibrations. The mean values of damping ratios for
the aluminium cantilever beams (without and with the polymer layer) were separately determined
for both frequencies of natural vibrations for the loaded beams. The damping ratio, ζ, was calculated
according to the following formulas (see [1]):

δ =
1
n
·

n∑
i = 1

ln
( a j

a j+1

)
,

ζ =
δ

2πn
,

ζ =
1

2πn
·

1
n
·

n∑
i = 1

ln
( a j

a j+1

),
where δ = logarithmic decrement; n = number of cycles; aj = amplitude of n-th cycle; aj+1 = amplitude
of (n + 1)-th cycle.

The mean values of damping ratios, estimated for the plain aluminium cantilever beam and for
the beam with the polymer layer, are summarized in Table 2. The values presented there in brackets
indicate the change in damping ratio with respect to the damping ratios determined for the first and the
second natural frequency of the specimen loaded with 1 kg additional mass and without the polymer
layer. Additionally, graphical comparisons of the damping ratio values for the first and the second
natural frequency are shown in Figures 7 and 8, respectively, with respect to presence of the polymer
layer and the change in loading mass.

Table 2. Mean values of damping ratios, corresponding to the 1st (*) and the 2nd (**) mode of free
vibrations, calculated for aluminium cantilever beam (without and with polymer layer) under additional
weights with different mass—corresponding damping change ratio in brackets.

Aluminium Beam Aluminium Beam with Polymer Layer (7 mm)

Mass of Weight
(kg)

ζ1 *
(%)

ζ2 **
(%)

ζ1 *
(%)

ζ2 **
(%)

1 0.27 (1.00) 0.48 (1.00) 0.92 (3.41) 1.44 (3.00)
2.5 0.33 (1.22) 0.36 (0.75) 0.69 (2.55) 1.23 (2.56)
3.5 0.30 (1.11) 0.54 (1.12) 0.77 (2.85) 1.03 (2.14)
5 0.38 (1.41) 0.45 (0.94) 1.52 (5.63) 1.60 (3.33)
6 0.38 (1.41) 0.34 (0.71) 1.47 (5.44) 1.41 (2.94)
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where δ = logarithmic decrement; n = number of cycles; aj = amplitude of n-th cycle; aj+1 = amplitude 
of (n + 1)-th cycle. 

The mean values of damping ratios, estimated for the plain aluminium cantilever beam and for 
the beam with the polymer layer, are summarized in Table 2. The values presented there in brackets 
indicate the change in damping ratio with respect to the damping ratios determined for the first and 
the second natural frequency of the specimen loaded with 1 kg additional mass and without the 
polymer layer. Additionally, graphical comparisons of the damping ratio values for the first and the 
second natural frequency are shown in Figure 7 and Figure 8, respectively, with respect to presence 
of the polymer layer and the change in loading mass. 

Table 2. Mean values of damping ratios, corresponding to the 1st (*) and the 2nd (**) mode of free 
vibrations, calculated for aluminium cantilever beam (without and with polymer layer) under 
additional weights with different mass—corresponding damping change ratio in brackets. 

 Aluminium Beam Aluminium Beam with Polymer Layer (7 mm) 
Mass of Weight 

(kg) 
ζ1 * 
(%) 

ζ2 ** 
(%) 

ζ1 * 
(%) 

ζ2 ** 
(%) 

1 0.27 (1.00) 0.48 (1.00) 0.92 (3.41) 1.44 (3.00) 
2.5 0.33 (1.22) 0.36 (0.75) 0.69 (2.55) 1.23 (2.56) 
3.5 0.30 (1.11) 0.54 (1.12) 0.77 (2.85) 1.03 (2.14) 
5 0.38 (1.41) 0.45 (0.94) 1.52 (5.63) 1.60 (3.33) 
6 0.38 (1.41) 0.34 (0.71) 1.47 (5.44) 1.41 (2.94) 
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Figure 7. Comparison of damping ratio values for the first natural frequency in relation to: (a) presence
of polymer layer; (b) loading mass change.
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Figure 8. Comparison of damping ratio values for the second natural frequency in relation to:
(a) presence of polymer layer; (b) loading mass change.

As can be seen from Table 2, an irregular increasing trend could be observed in the damping
ratio of the aluminium cantilever beams with and without polymer layer for both analysed natural
frequencies due to the application of additional vertical load in the form of weights with different
mass—see Figures 7a and 8a. Irregular increases and decreases were observed in all analysed cases.
The application of an additional polymer layer with a thickness of 7 mm caused a significant increase
in the damping ratio for both analysed natural frequencies—see Figures 7b and 8b. The damping ratio
was even increased by up to 2–4-fold for the first and the second natural frequencies, but no regularity
was observed with respect to increasing mass of additional weights.

2.1.3. Discussion of Results Obtained

The results of the first experiment confirm that the application of the polymer layer causes
practically no shift in the first natural frequency of the cantilever beam (see Table 1 and Figure 5b),
but for the second one, a reduction of 13% was observed (Figure 6b). This fact indicates that the
damping properties of a structure can only be improved in the higher frequency ranges by externally
bonding a polymer layer to only one side of the structure. The nonlinearly proportional reduction
in the first natural frequency with the load (mass) increase (Figure 5a) is obvious, but the lack of
reaction with the change in load in the case of the second frequency (Figure 6a) could be caused by the
non-proportional mass distribution (i.e., it was located at the cantilever end). However, changes in the
first frequency were strongly dependent on additional mass; thus, deeper analysis of this aspect will be
provided later in the interpretation section.

Moreover, the application of the polymer layer led to a visible increase in the values of the
structural damping ratio of the aluminium cantilever beams (see Table 2 and Figures 7 and 8). Damping,
as well as frequency, is dependent on additional mass. This aspect must be considered in the analysis.
Additionally, no clear correlation was observed between the damping ratio and the load increase,
even though the values of damping ratio were, generally speaking, higher for larger values of mass in
the case of the 1st natural frequency. The influence of this additional mass on damping properties is
discussed later in the interpretation section.

In any case, the above comparison clearly shows that the applied polyurethane Sika PSM exhibited
a significant influence on the damping properties of the beam with respect to the element when no
polymer layer had been applied. The presence of the polyurethane adhesive increased the damping
ratio 2–5-fold in the cases of low (1–3 Hz) and high (30–38 Hz) frequencies, when comparing cases with
the same load. An open issue is the influence of the thickness of the polymer layer and the increase of
the additional mass (causing an increase in the large deflection of the cantilever beam, thus generating
an increase in shear strain in the polymer in the range of large deformations).
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2.2. Experimental Study—Part 2

2.2.1. Experimental Setup

In the next stage of the experimental study, composite cantilever beams consisting of two
aluminium flat bars with a total length of 1250 mm, a thickness of 9 mm, and a width of 30 mm, bonded
together for a length of 992 mm with polymer adhesive of different thicknesses (0.5 mm, 1.2 mm,
1.75 mm, 3.1 mm and 5 mm) were analysed—see Figure 9. The investigation was conducted so as to
verify the effectiveness of the application of polymer adhesive for the reduction of vibrations in the
aluminium cantilever beam when the polymer layer is constrained on both sides by structural elements.
For this purpose, dynamic parameters such as the modes of free vibrations and the corresponding
natural frequencies were determined. Similar to the case of the previous tests, the aluminium cantilever
beams were induced to vibrate through impacts with a modal hammer applied at the middle of the
elements’ length. The total time of each measurement was also equal to 12.5 s. The tests included
measurements carried out for beams with additional vertical loads applied at their ends in the form of
weights with a mass of 1 kg, 2.5 kg, 3.5 kg, 5 kg and 6 kg. The material properties of the aluminium
and polymer adhesive used during the experimental study are described in Section 2.1.
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Figure 9. Aluminium cantilevered composite beam.

2.2.2. Experimental Results

Six repetitions were carried out for each measurement under each load. The results of the
experimental study were determined in the form of acceleration time histories, based on which the
modal characteristics, including mean values of natural frequencies corresponding to the first two
modes of free vibrations and the mean values of damping ratios, were determined. Five representative
acceleration time histories describing the behaviour of a composite aluminium cantilever beam
(with polymer adhesive with thicknesses of 0.5 mm, 1.2 mm, 1.75 mm, 3.1 mm and 5 mm) with an
additional weight of 1 kg are presented in Figures 10a, 11a, 12a, 13a and 14a. Two modes of free
vibrations and corresponding natural frequencies for each case were determined by conducing Fast
Fourier analysis (see Figures 10b, 11b, 12b, 13b and 14b). Both natural frequencies observed during
experimental study were analysed separately by filtering out the components with other frequencies
from the measured acceleration time histories. The acceleration time histories of the vibrations with
the 1st natural frequency are presented in Figures 10c, 11c, 12c, 13c and 14c. In Figures 10d, 11d, 12d,
13d and 14d, the results of the vibrations with the 2nd natural frequency are shown.
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Figure 10. Results for a composite aluminium cantilever beam with 0.5 mm thick polymer adhesive: 
(a) acceleration time history; (b) Fourier Spectrum; (c) vibrations with the 1st natural frequency; (d) 
vibrations with the 2nd natural frequency. 
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Figure 11. Results for a composite aluminium cantilever beam with 1.2 mm thick polymer adhesive: 
(a) acceleration time history; (b) Fourier Spectrum; (c) vibrations with the 1st natural frequency; (d) 
vibrations with the 2nd natural frequency. 
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Figure 10. Results for a composite aluminium cantilever beam with 0.5 mm thick polymer adhesive:
(a) acceleration time history; (b) Fourier Spectrum; (c) vibrations with the 1st natural frequency;
(d) vibrations with the 2nd natural frequency.
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Figure 11. Results for a composite aluminium cantilever beam with 1.2 mm thick polymer adhesive:
(a) acceleration time history; (b) Fourier Spectrum; (c) vibrations with the 1st natural frequency;
(d) vibrations with the 2nd natural frequency.
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Figure 12. Results for a composite aluminium cantilever beam with 1.75 mm thick polymer adhesive: 
(a) acceleration time history; (b) Fourier Spectrum; (c) vibrations with the 1st natural frequency; (d) 
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Figure 13. Results for a composite aluminium cantilever beam with 3.1 mm thick polymer adhesive: 
(a) acceleration time history; (b) Fourier Spectrum; (c) vibrations with the 1st natural frequency; (d) 
vibrations with the 2nd natural frequency. 
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Figure 12. Results for a composite aluminium cantilever beam with 1.75 mm thick polymer adhesive:
(a) acceleration time history; (b) Fourier Spectrum; (c) vibrations with the 1st natural frequency;
(d) vibrations with the 2nd natural frequency.
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(a) acceleration time history; (b) Fourier Spectrum; (c) vibrations with the 1st natural frequency; (d) 
vibrations with the 2nd natural frequency. 

  
(a) (b) 

Figure 13. Results for a composite aluminium cantilever beam with 3.1 mm thick polymer adhesive:
(a) acceleration time history; (b) Fourier Spectrum; (c) vibrations with the 1st natural frequency;
(d) vibrations with the 2nd natural frequency.
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1 5.3 40.2 5.6 40.1 5.6 38.5 5.3 36.0 5.1 34.2 

2.5 4.0 41.6 4.3 40.7 4.3 39.2 4.2 37.7 4.0 30.6 
3.5 3.5 38.4 3.7 41.4 3.7 40.2 3.7 33.5 3.5 31.9 
5 3.1 38.6 3.2 37.8 3.3 36.1 3.2 35.0 3.1 32.5 
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Figure 14. Results for a composite aluminium cantilever beam with 5 mm thick polymer adhesive:
(a) acceleration time history; (b) Fourier Spectrum; (c) vibrations with the 1st natural frequency;
(d) vibrations with the 2nd natural frequency.

The mean values of the natural frequencies determined for the composite aluminium cantilever
beams are summarized in Table 3. The comparison of the first and second natural frequency values
with respect to the presence of the polymer layer and change in loading mass change estimated for the
beams is presented graphically in Figures 15 and 16, respectively.

Table 3. Mean values of natural frequencies corresponding to the first two modes of free vibration
calculated for composite aluminium cantilever beams (with different polymer adhesive thicknesses)
under additional weights of different mass.

Aluminium Beam with Polymer Adhesive

Mass of
Weight

(kg)

0.5 mm 1.2 mm 1.75 mm 3.1 mm 5 mm

f 1 *
(Hz)

f 2 **
(Hz)

f 1 *
(Hz)

f 2 **
(Hz)

f 1 *
(Hz)

f 2 **
(Hz)

f 1 *
(Hz)

f 2 **
(Hz)

f 1 *
(Hz)

f 2 **
(Hz)

0 7.7 40.1 8.3 39.9 8.2 38.3 8.0 35.9 7.5 34.1
1 5.3 40.2 5.6 40.1 5.6 38.5 5.3 36.0 5.1 34.2

2.5 4.0 41.6 4.3 40.7 4.3 39.2 4.2 37.7 4.0 30.6
3.5 3.5 38.4 3.7 41.4 3.7 40.2 3.7 33.5 3.5 31.9
5 3.1 38.6 3.2 37.8 3.3 36.1 3.2 35.0 3.1 32.5
6 2.8 38.6 3.0 38.3 3.0 36.2 3.0 35.6 2.8 32.1

* in relation to the 1st mode of free vibration. ** in relation to the 2nd mode of free vibration.
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Figure 16. Comparison of second natural frequency values in relation to: (a) polymer adhesive
thickness; (b) loading mass change.

As can be seen from Table 3, a significant decrease in the natural frequency of the aluminium
cantilever beam can be observed for the first natural frequency, due to the application of an additional
vertical load, as was observed in part 1 of the experimental study. The reduction of nonlinear
behaviour reaches 64%, and this is strongly related to the change in the loading mass from 1 kg to
6 kg—see Figure 15a. This observation is valid for all of the analysed beams (with polymer layers
of different thickness). Small differences in frequencies were observed for the beams with changing
layer thickness—see Figure 15b. The second natural frequency was slightly dependent on the mass
change (with up to a 6% reduction for the beams with the maximum additional mass)—see Figure 16a.
The change in polymer layer thickness did not exhibit a clear relationship with the changes in the
second natural frequency—see Figure 16b.

The mean values of the damping ratios with respect to the natural frequencies determined
(as previously) for the composite aluminium cantilever beams are summarized in Table 4.
The comparison of the damping ratio values for the first and second natural frequency with respect to
the presence of the polymer layer and the change in loading mass estimated for the beams is presented
graphically in Figures 17 and 18, respectively.

As can be seen from Table 4, a small, almost regular increasing trend (up to 1.5%) could be observed
in the damping ratio of the analysed aluminium cantilever beams for the first natural frequency as a
result of the changes in polymer layer thickness—see Figure 17a. Irregular increases and decreases
were observed as a result of additional mass changes—see Figure 17b. The damping ratio determined
for the second natural frequency was strongly irregular, and no clear relation could be observed
with the increase in mass of the additional weights and the changes in the thickness of the polymer
layer—see Figure 18.

Table 4. Mean values of damping ratios, corresponding to the first (*) and the second (**) mode of free
vibrations for composite aluminium cantilever beams (with different polymer adhesive thicknesses)
under additional weights with differing mass.

Aluminium Beam with Polymer Adhesive

Mass of
Weight

(kg)

0.5 mm 1.2 mm 1.75 mm 3.1 mm 5 mm

ζ1 *
(%)

ζ2 **
(%)

ζ1 *
(%)

ζ2 **
(%)

ζ1 *
(%)

ζ2 **
(%)

ζ1 *
(%)

ζ2 **
(%)

ζ1 *
(%)

ζ2 **
(%)

0 0.66 1.37 0.72 1.29 0.98 1.30 1.31 1.11 1.01 1.01
1 0.78 1.43 0.93 1.27 1.06 1.39 1.22 1.28 1.29 1.06

2.5 0.45 2.39 0.75 1.78 0.89 1.41 1.07 2.45 1.31 2.27
3.5 0.60 1.98 0.84 2.97 0.94 2.77 1.09 2.11 1.31 1.68
5 0.50 1.52 0.80 2.80 0.88 2.65 1.23 2.03 1.65 1.48
6 0.55 1.36 0.97 2.23 0.92 1.91 1.29 1.62 1.49 1.17
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Figure 17. Comparison of damping ratio values for the first natural frequency in relation to: (a) polymer
adhesive thickness; (b) loading mass change.
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Figure 18. Comparison of damping ratio values for the second natural frequency in relation to:
(a) polymer adhesive thickness; (b) loading mass change.

2.2.3. Discussion of the Results Obtained

The results of the second experiment show that the application of additional vertical load in the
form of weights of varying mass led to a significant decrease in the 1st natural frequency (*) of the
composite beam with polymer adhesive layers of various thickness (see Table 3 and Figure 15a). On the
other hand, only a small lowering of the frequencies was observed for the 2nd natural frequency (**)
(changes varied +/− 10%—see Table 3 and Figure 16a). Moreover, the application of thicker polymer
layers decreased the natural frequency of the composite beam by 6% in the case of the 1st mode of free
vibrations (*), and by 15–26% in the case of the 2nd mode of free vibrations (**), as can be observed
from Table 3 and Figures 15b and 16b. However, it must be noted that the results for thinner polymer
layers deviated from this pattern.

The application of a thicker polymer layer led, generally speaking, to an increase in the structural
damping ratios of the composite beams in the case of the 1st natural vibration mode (see Table 4 and
Figure 17a). The highest increase (by 230%) was observed for the beam with an additional mass of 5 kg.
On the other hand, the increasing trend of the structural damping ratios was not so clear in the case
of the 2nd natural vibration mode (see Table 4 and Figure 18a). For this mode, the highest increase
(by 84%) in the damping ratio was recorded for the beam with a load of 5 kg. It can also be seen from
Table 4 and Figures 17b and 18b that the change in the damping ratios determined for composite beams
with additional loads in the form of weights with different mass did not really show any decreasing or
increasing trend. In the case of the 1st natural frequency (*), for example, the damping ratio decreased
by up to 34% and increased by up to 63%, without any apparent rule.

It should be mentioned that the investigation presented here is a simulation of the functioning of
flexible polyurethane adhesive between a structural substrate (concrete, masonry) and a composite
laminate. Large shear deformation of the adhesive layer is permitted due to the deflection of the
cantilever beam, where the polymer interface undergoes shear between the two aluminium elements.
Larger loads at the cantilever end generate a greater bending moment, which increases the nonlinearity
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of the flexible polyurethane adhesive behaviour by increasing of shear strain of the polymer layer.
Using data presented in [24], the shear strain calculated for the analysed polymer layers reached a value
of 0.3, which places the obtained strain of 30% within the range of large deformations. By comparing
the influence of this factor, it can be seen that the increase in deformation (caused by an increase in
load) results in an increase in damping only for the highest tested adhesive thickness of 5 mm and
for low frequencies. For high frequencies, the highest damping was observed for medium values of
deformation. Moreover, higher frequencies were damped to an extent about two times greater than the
lower ones.

It seems that the influence of additional mass on the results with respect to frequency and damping
is significant, and this makes the simple interpretation of damping relations introduced by the polymer
layer difficult due to its nonlinear behaviour. For this reason, an additional analysis, presented in
the next section, was carried out, aiming to separate out the damping relationships for the polymer
layer, such that they are independent from the interference due to the application of additional mass.
The corrected results for damping were interpreted in relation to the change in polymer layer thickness
and the increase in large deformations.

3. Approach for Correction of Results

It is well known that a change in mass in a dynamically analysed system will influence the natural
frequency values. Assuming that the tested cantilever beams are systems with evenly distributed
structural mass, and taking into consideration only the first natural frequency (additional mass at the
cantilever end mainly influences the first natural mode), a procedure for the determination of damping
with reference to additional mass is proposed. The first natural frequency of the assumed system can
be calculated using the well-known Equation (1).

f1 =
3.516
2πL2

√
EI
µ

(1)

where: L—length of the cantilever beam [m]; EI—bending stiffness of the cantilever beam [Nm2];
µ—mass of the cantilever beam evenly distributed along its length [kg/m].

The change in the first natural frequency is dependent on stiffness EI and mass µ, whereas the
equation part in front of the root can be assumed to be a constant value for the specified length L. In
the cases of the tests on aluminium cantilever beams with polymer layers described above, the stiffness
EI of the aluminium beam and a polymer layer can be easily determined: EIA = 127.6 Nm2 for the
aluminium beam (9 mm of thickness), and EIP = 0.005 Nm2 for the polymer (Sika PSM) layer with a
thickness of 7 mm (see experimental study—part 1). If we analyse the cross-section of the beam with the
polymer layer (EIAP = EIA + EIP) and without it (EIA), the stiffness ratio EIAP/EIA ≈ 1. The application
of thinner polymer layers between the two aluminium bars (see experimental study—part 2) does not
change this ratio, which means that the frequencies and damping ratios of the analysed cases are not
dependent on the stiffness ratio.

On the other hand, the mass of the analysed systems changes in the cases of the tests on the
aluminium cantilever beams with the polymer layers described above. Mass evenly distributed along
the aluminium beam length of the plain aluminium beam (µA) and of the aluminium beam with
the polymer layer (thickness of 9 mm) (µAP) varies, starting from 1 (see experimental study—part
1). The calculated ratio µAP/µA influences the frequencies and damping values, and thus the values
of damping dependent on it should be selected and introduced as a correction for the determined
damping ratios.

The proposed approach of determining the mass influences is based on the ratio of frequencies
given by Equation (1), derived for the case described in part 1 of the experimental study. A modification
of this approach was used in [18] in order to determine building stiffness degradation on a shake
table. A comparison of the mass influences for the plain aluminium beam and the same beam with the
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polymer layer is derived from Equation (2), assuming EIAP/EIA ≈ 1. This equation links frequency ratio
with a mass change factor α, defined as the ratio of evenly distributed masses µAP/µA = α, when µAP >

µA.

f1AP

f1A
=

√
EIAP
µAP√
EIA
µA

→

(
f1AP

f1A

)2

=
µA

µAP
=

1
∝

(2)

Considering the dynamic characteristic and damping of the system with the first natural frequency
described by Equation (1) and assuming the simplification of this system to a single-degree-of-freedom
system (by considering the additional mass at the cantilevers’ ends) with the damped free vibrations [42],
Equation (3) can be used for the locus of the amplitude maxima in variation with frequency and
damping. A simple transformation of Equation (3) with Equation (2) leads to Equation (4), which
defines the relation between the change in the damping ratio ∆ζ and the change in mass from µA to
µAP, described by the mass change factor α.

f1
f1n

=

√
1− ζ2

→

(
f1AP

f1A

)2

= 1− ζ2 =
1
∝

(3)

where: f 1—damped frequency [Hz]—lower frequency related to f 1AP; f 1n—natural frequency
[Hz]—higher frequency related to f 1A; ζ—damping ratio [-]

∆ζ =

√
1−

1
∝

(4)

Values of α, calculated using Equation (2), and ∆ζ, calculated using Equation (4), are presented in
Tables 5 and 6 for the specimens tested in part 2 of the experimental study. The changing character of
the damping ratio ∆ζ is also presented graphically in Figure 19. The presented graphs indicate that the
change in damping ratio ∆ζ is nonlinear in nature, and that it decreases with additional loading mass
increase (shear strain increase). Moreover, the thicker the polymer layer, the higher the percentage of
change in the damping ratio ∆ζ. The gradient of change is higher for the unconstrained polymer layer
(Figure 19a) than for the constrained one (Figure 19b).

Table 5. Values of the mass change factor α and the change in damping ratio ∆ζ determined for the ratio
of evenly distributed masses µAP/µA of the plain aluminium cantilever beam and of the aluminium
cantilever beam with the polymer layer of thickness 7 mm.

Change in Mass from Aluminium Beam to Aluminium Beam with Polymer Adhesive
for Thickness Increment from 0 mm to 7 mm

Mass of Weight
(kg)

7 mm

α

(-)
∆ζ *
(-)

0 1.288 0.473
1 1.119 0.326

2.5 1.063 0.244
3.5 1.048 0.214
5 1.036 0.185
6 1.030 0.171

* in relation to the 1st mode of free vibration.
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Table 6. Values of the mass change factor α and the change in damping ratio ∆ζ determined for the
ratio of evenly distributed masses µAP/µA of the aluminium cantilever beam with a polymer layer of
various thickness increments from 0.7 mm to 4.5 mm.

Change in Mass for Aluminium Beam with Polymer Adhesive for Thickness Increment from
0.7 mm to 4.5 mm

Mass of
Weight

(kg)

0.7 mm 1.25 mm 2.6 mm 4.5 mm

α

(-)
∆ζ *
(-)

α

(-)
∆ζ *
(-)

α

(-)
∆ζ *
(-)

α

(-)
∆ζ *
(-)

0 1.011 0.106 1.020 0.141 1.042 0.202 1.073 0.262
1 1.005 0.074 1.010 0.098 1.020 0.141 1.035 0.184

2.5 1.003 0.055 1.005 0.074 1.011 0.106 1.020 0.139
3.5 1.002 0.049 1.004 0.065 1.009 0.094 1.015 0.123
5 1.002 0.042 1.003 0.056 1.007 0.081 1.011 0.106
6 1.002 0.039 1.003 0.052 1.006 0.075 1.010 0.098

* in relation to the 1st mode of free vibration.
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Figure 19. Comparison of the change in damping ratio ∆ζ values with the additional load (shear strain
of polymer layer) and the increase in polymer layer thickness, presented for the experimental studies:
(a) part 1 and (b) part 2.

Figure 20 presents the results of using the proposed procedure. The calculated damping ratio
related to the additional increase in polymer mass (ζ1A(1+∆ζ)) was eliminated from the measured
damping ratio values ζ1AP according to Equation (5), allowing the damping ratio of the polymer
layer ζ1P to be determined. The corrected distribution of the damping ratio ζ1P of the unconstrained
polymer layer (7 mm thickness), following correction of the measured damping values (Figure 7b)
and in relation to the increase in shear strain, is presented in Figure 20a. Similarly obtained values
of ζ1P are shown in Figure 20b for various increments of the constrained polymer layer thicknesses.
This figure confirms that the real damping ratio of the polymer layer (corrected by removing the
additional mass influence) increases with the increase in the polymer layer thickness, and also increases
with the increase in shear strain (additional load causing large deflection).

ζ1P = ζ1AP − ζ1A(1 + ∆ζ) (5)
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Figure 20. Corrected distributions of damping ratio ζ1P after correction of measured damping values on
mass influences, presented for: (a) the unconstrained polymer layer (7 mm thickness) and (b) various
increments of the constrained polymer layer thicknesses.

4. Conclusions

The present paper was devoted to an experimental study focused on the effectiveness of polymer
adhesive for the reduction of vibrations in structures exposed to dynamic loads. The experiment was
carried out in aluminium cantilever beams, for which the natural frequencies and damping ratios
were determined.

In the first stage of the study, two aluminium cantilever beams (without and with polymer layer in
the form of tape) were investigated. A significant decrease in the natural frequency of the aluminium
cantilever beams, due to the application of an additional vertical load in the form of weights of different
mass, was observed. In the case of the frequency corresponding to the 1st mode of free vibrations, an
additional mass of 6 kg caused a shift in the natural frequencies to lower values, and the reduction in
frequency was found to be as great as 55%, with respect to the case where a mass of 1 kg was applied.
Moreover, the results of the study show that the installation of a polymer layer in the form of tape
reduces the natural frequency by 3–7% in the case of the 1st natural frequency and by 2–13% in the case
of the 2nd natural frequency. The application of the polymer layer leads to an increase in the value of
the structural damping ratio by 11–41% in the case of the 1st natural frequency, and does not vary so
much (from −29% to +12%) in the case of the 2nd natural frequency. The investigation shows that the
applied polyurethane Sika PSM increases the damping ratio significantly (as much as 2–5 times) in the
cases of low (1–3 Hz) and high (30–38 Hz) frequencies.

The second stage of the study was focused on a cantilever composite beam consisting of two
aluminium flat bars bonded with polymer adhesive of varying thickness. The dynamic parameters,
such as mode of free vibrations and corresponding natural frequencies, as well as damping ratios, were
estimated. The results of the study indicate that the application of additional load led to a decrease
in the values of the 1st natural frequencies for composite beams of up to 61%, while only a small
shift in frequencies (changes vary +/− 10%) was observed for the 2nd natural frequencies. Moreover,
the application of the polymer layer increased the natural frequency of the composite beams by 6–8%
for the 1st natural frequency, and by 15–26% for the 2nd natural frequency. Additionally, the results
clearly show that the application of polymer adhesive led to a substantial increase in the damping ratios
of the beams (an increase of 230% for the 1st natural frequency and of 84% in the case of the 2nd natural
frequency). The investigation shows that the increase in deformations results in a damping increase
only for the highest tested adhesive thickness, when considering low frequencies. For high frequencies,
the largest damping was observed for middle values of deformation. A significant increase in damping
was also observed with the increase of thickness for low frequencies. For higher frequencies, the largest
damping was recorded for medium values of adhesive thickness. Higher frequencies were damped
about 2 times more than lower ones.
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The third stage of the study aimed to solve the problem of the additional mass of the applied
polymer layer, which influences the frequencies and damping of the tested structure. It was shown
that very large differences in stiffness between the aluminium beams and the bonded polymer layers
(4–5 orders) did not influence the global stiffness of the specimen. On the other hand, mass changes
influenced the dynamic parameters, causing difficulties in determining the real damping properties of
the polymer layer. A special separating procedure was proposed that makes it possible to calculate the
corrected real values of the polymer layer’s damping. The distribution of these values, with respect to
the layer thickness and large shear strains, confirmed that the increase in the polymer layer thickness
results in an increase in damping. The same conclusion was observed in relation to the increase in
shear strain, which also caused an increase in damping.

The results obtained from the study indicate that the application of polymer adhesive can be
considered an effective method for reducing vibrations in the tested frequency range (up to 40 Hz).
Moreover, the simulation of a working composite tape bonded to a substrate using flexible polyurethane
adhesive allowed us to recognize that flexible polyurethane adhesives could be effective in damping
structural vibrations in the resonance range, where large displacements and large shear strains occur.

The results from the analysis carried out in this paper will be used in numerical analysis,
where precise damping properties of applied components are required. We plan to avoid some
inaccuracies observed in the results by using modal analysis and the half-band power method, instead
of the logarithmic decrement method, for determination of the damping properties.
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26. Szeptyński, P. Comparison and experimental verification of simplified one-dimensional linear elastic models
of multilayer sandwich beams. Compos. Struct. 2020, 241, 112088. [CrossRef]

27. Blasi, C.; Foraboschi, P. Analytical Approach to Collapse Mechanisms of Circular Masonry Arch. J. Struct.
Eng. ASCE 1994, 120, 2288–2309. [CrossRef]

28. Housner, G.W.; Bergman, L.A.; Caughey, T.K.; Chassiakos, A.G.; Claus, R.O.; Masri, S.F.; Skelton, R.E.;
Soong, T.T.; Spencer, B.F.; Yao, J.T.P. Structural Control: Past, Present, and Future. J. Eng. Mech. 1997, 123,
897–971. [CrossRef]

29. Lewandowski, R.; Pawlak, Z. Dynamic analysis of frames with viscoelastic dampers modeled by rheological
models with fractional derivatives. J. Sound Vib. 2011, 330, 923–936. [CrossRef]

30. Weber, F.; Maslanka, M. Frequency and damping adaptation of a TMD with controlled MR damper.
Smart Mater. Struct. 2012, 21, 55011. [CrossRef]

31. Naderpour, H.; Naji, N.; Burkacki, D.; Jankowski, R. Seismic Response of High-Rise Buildings Equipped
with Base Isolation and Non-Traditional Tuned Mass Dampers. Appl. Sci. 2019, 9, 1201. [CrossRef]
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38. Zając, B. Experimentally-analytical determination of material effort of polymer adhesive layer applied in
compound beams. Ph.D. Thesis, Cracow University of Technology, Cracow, Poland, 2008.

39. Foraboschi, P. Laminated glass columns. Struct. Eng. 2009, 87, 20–26.
40. Furtak, K.; Rodacki, K. Experimental investigations of load-bearing capacity of composite timber-glass

I-beams. Arch. Civ. Mech. Eng. 2018, 18, 956–964. [CrossRef]
41. Piekarczyk, M.; Grec, R. Application of Adhesive Bonding in Steel and Aluminium Structures. Arch. Civ. Eng.

2012, 58, 309–329. [CrossRef]
42. Schmidt, L.C. Vibration theory. In Analysis and Design of Foundations for Vibrations; Moore, P.J., Ed.; A.A.

BALKEMA: Rotterdam, The Netherlands; Boston, MA, USA, 1985.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.4028/www.scientific.net/KEM.488-489.347
http://dx.doi.org/10.3390/app7080808
http://dx.doi.org/10.3390/app8030400
http://dx.doi.org/10.4028/www.scientific.net/KEM.624.478
http://dx.doi.org/10.1016/j.acme.2018.02.002
http://dx.doi.org/10.2478/v.10169-012-0018-8
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Investigation on Plain and Composite Aluminium Beams with Polymer Layer 
	Experimental Study—Part 1 
	Experimental Setup 
	Experimental Results 
	Discussion of Results Obtained 

	Experimental Study—Part 2 
	Experimental Setup 
	Experimental Results 
	Discussion of the Results Obtained 


	Approach for Correction of Results 
	Conclusions 
	References

