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Abstract: Edible coatings are attractive strategies for blueberries postharvest preservation. In this
work, carvacrol/alginate coatings were developed for application on Andean blueberries. Coating
formulations were prepared based on blends of sodium alginate (2% w/v), carvacrol (0%, 0.03%,
0.06% or 0.09%), glycerol, and water and applied to the fruits by dip-coating. Then, the fruits were
immersed in a calcium batch to induce a crosslink reaction. Changes in the physicochemical and
microbiological characteristics of the blueberries were monitored during 21 days of storage at 4 ◦C.
Coated blueberries were better preserved throughout the 21 days of storage because of their lower
respiration rate and water loss, in comparison with the uncoated ones. Besides, the coatings enhanced
the appearance and the gloss of the fruits. Control fruits showed a significant decrease in the firmness,
while, in the coated fruits, this critical postharvest quality was preserved during the entire storage.
Coating formulations with 0.09% of carvacrol was the most effective in preventing mesophilic aerobic
bacteria and molds/yeasts growth on the fruits during the storage. Edible carvacrol/alginate coatings
can be considered as a useful alternative to complement the benefits of refrigerated storage by
delaying post-harvest spoilage of Andean blueberries.
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1. Introduction

Natural occurrent polymers (e.g., polysaccharides, proteins, and lipids) are appealing materials
for many foods, pharmaceutical, biomedical and cosmetic applications because are abundant,
biocompatible, non-toxic, and cheap. Between the wide variety of biopolymer applications,
the development of edible coatings for food preservation has proved to be an excellent alternative to
reduce food loss and waste and to improve food security [1].

Edible coatings are defined as food-grade blends of film-forming polymers plus solvents (generally
water and/or alcohol) and other additives (e.g., plasticizers, antioxidants, antimicrobials, among others),
which, when applied to a food’s surface by dipping or spraying, and then dried, produce an adherent,
protective, decorative, and/or functional thin solid films [2]. Several studies show that the application
of edible coatings in foods offer significant advantages because these improve their physical strength,
decrease the gas exchange between the food and the environment, reduce water and aroma loss,
delay color changes, and enhance the visual appearance of food product surfaces. Besides, coating with
extra functionalities has been formulated thought the addition of antibacterial, antifungal, and antiviral
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agents that yield an outer surface capable of inhibiting the growth of foodborne pathogens and spoilage
microorganisms [3,4].

Most of the commercially available edible coatings for fresh fruits and vegetables are based
on waxes. However, it has been stated that consumers prefer unwaxed foods because some do not
know why wax is used and link this material with health and environmental concerns [5]. Therefore,
several investigations have been made to develop new edible coatings based on odorless, tasteless,
and colorless natural polymers such as starch, chitosan, pectin, guar gum, and alginate, which do not
exhibit adverse effects on the food sensory quality [6].

Alginates are a family of linear binary copolymers of (1–4)-linked β-d-mannuronic acid (M)
and α-l-guluronic acid (G) monomers, which are naturally present in brown seaweed cell walls [7].
These are widely used in various industries (e.g., textile, agri-food, paper, cosmetic, biomedical,
and pharmaceutical) as gelling, stabilizing, and thickening agents. Alginates can be turned insoluble
through the cross-link with divalent or polyvalent cations such as Ca2+. This approach gives alginate
very rigid conformation and a stable structure unlike the alginate with monovalent cations [8].

Alginates are an appealing raw material for the development of edible coatings because of
their good film-forming properties and low permeability for fats, oils and, oxygen [9,10]. Moreover,
alginates gels have temperature-dependent swelling behavior and this allows the controlled release
of bioactive compounds [8]. Several studies show that alginate coatings have been highly effective
in the preservation of several fruits and vegetables including blueberry, tomato, peach, sweet cherry,
pineapples, and plums, among others [11–14]. In particular, alginate coatings supplemented with
natural preservatives like essential oils and phenolic compounds have proven to be effective in
inhibiting the growth of bacteria and fungi [9].

Carvacrol (5-isopropyl-2-methylphenol) is a bioactive isomeric monoterpenoid constituent of
essential oils from thyme and oregano herbaceous plants (Thymus vulgaris L. and Origanum vulgare L.,
Lamiaceae family) [15], which is highly recognized by its potent antibacterial activity against both
Gram-positive and Gram-negative bacteria [16,17]. It is considered generally recognized as safe (GRAS)
for consumption by the U.S. Food and Drug Administration and is currently used in the food industry
as a flavoring agent and in active food packaging applications [16].

There are few studies that deal with the effect of carvacrol-containing edible coatings on the
preservation of fresh and minimally processed fruit and vegetables. Some works have been carried
out about the development of carvacrol/biopolymer coating such as chitosan, starch, and zein [17–19].
Meanwhile, the development of alginate-based coatings with carvacrol has been few explored. Zapata
et al. studied the effect of coating based on sodium alginate and their blends with essential oils
(carvacrol, thymol, and eugenol) on the postharvest quality of sweet cherry fruits finding that coatings
were able to reduce the water loss and the respiration rate and to delay color changes and fruit
softening [10]. Peretto et al. have performed different studies dealing with the development of alginate
coating with carvacrol and methyl cinnamate for strawberry preservation [20–22]. They reported that
these coatings caused a significant reduction in visible decay and delay in the microbial spoilage of
strawberries. Moreover, coated strawberries showed lower weight loss and higher fruit firmness than
uncoated ones.

The Andean blueberry (Vaccinium meridionale Swartz) is a delicatessen fruit with high economic
value and several health benefits, which grows in the Andean region of South America at 2300–3300 m
above sea level (m.a.s.l.). This fruit is rich in bioactive compounds such as anthocyanins, flavonoids,
and phenolic acids which have been identified as responsible for its antioxidant, cardioprotective,
antiproliferative, and anti-inflammatory properties [23,24]. However, the Andean blueberry is a
perishable fruit that decays rapidly during postharvest exhibiting weight loss, softening, color changes,
and microbial growth. Therefore, there is a need to overcome these difficulties through the application
of safe and environmentally friendly postharvest technologies for its preservation such as edible
coatings. In our previous study, the effect of coatings based on starches and alginate/nanocellulose
blends on the postharvest preservation of Andean blueberries was reported for the first time [6,25].
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It was found that alginate coatings exhibited better performance on the weight loss reduction and
the fruit firmness, in comparison with starch ones. In the current work, novel antimicrobial alginate
edible coatings were developed and applied to fresh Andean blueberries in order to preserve their
quality during postharvest storage. Coated and uncoated fruits were monitored during 21 days of
refrigerated storage in terms of their pH, titratable acidity (%), soluble solids content, respiration
rate, color, firmness, weight loss, phenolic compounds content, fungal decay, and microbial growth.
To the best of our knowledge, this is the first report of the development of antimicrobial alginate-edible
coatings with carvacrol for postharvest preservation of wild Andean blueberries.

2. Materials and Methods

2.1. Materials

Andean blueberries (Vaccinium meridionale Swart) maturity stage 5 (100% dark purple) were
obtained in Ráquira (Boyacá, Colombia) at 2150 m.a.s.l. The berries were examined previous to its
use to separate fruits with physical, mechanical, or microbial damages. The fruits were washed and
disinfected with a 100 mg L−1 chlorine solution.

Carvacrol (98% purity), sodium hydroxide, and calcium chloride were purchased from
Sigma-Aldrich (St. Louis, MO, USA). Sodium alginate was kindly donated by Saporiti (Buenos
Aires, Argentina). Glycerol was purchased from J. T. Baker (Phillipsburg, NJ, USA) and Tween
80 was purchased from Loba Chemie (Mumbai, India). Folin-Ciocalteu reagement was purchased
from Panreac (Barcelona, Spain) and gallic acid was purchased from Merck (Darmstadt, Germany).
All chemicals used were of analytical grade.

2.2. Preparation of Coating Solutions

Coating solutions with and without carvacrol (CVR) were prepared as described in a previous
work [25]. Alginate solutions were made by dissolving sodium alginate powder (2% w/v) in distilled
water while heating at 70 ◦C under constant stirring until the mixture became clear. After cooling,
glycerol (30% w/v dry weight basis) was added as a plasticizer to the sodium alginate solution and
stirred for 15 min. For the preparation of alginate/CVR formulations, carvacrol was added to the
alginate/glycerol blends at concentrations of 0.03%; 0.06% and 0.09% w/v, based on the studies of
antimicrobial activity in vitro reported by Santos et al. [17]. Tween 80 was added to all alginate/CVR
blends in amounts proportional to CVR (0.003%; 0.006% and 0.009% w/v, respectively) to assist
dispersion. All mixtures were homogenized at 20,000 rpm for 3 min using an Ultra Turrax T25
homogenizer (IKA® WERKE, Staufen, Germany), degassed using a vacuum pump, and cooled to
room temperature before the application on the fruits.

2.3. Characterization of Edible Coatings

The surface solid density (SSD) was estimated as an indicator of the coating’s average thickness.
Andean blueberries were covered as indicated in Section 2.3 and their surface solid density (g/m2) was
estimated with the following equation [4,25]:

SSD = [ MCA·Xs/As], (1)

where MCA is the mass of the coating solution adhered to the fruit surface (g); XS is the mass fraction
of solid in the coating solution and AS is the surface area of Andean blueberries (m2). The average
sample surface area (As) was estimated by considering each blueberry as a sphere. Samples were
weighed before and after coating to determine the mass of the coating solution adhered to the fruit
surface (MCA). The non-coated sample was used as a control.

To characterize the coatings to water solubility, water vapor permeability and chemical
conformation, films were performed by casting according to Medina-Jaramillo et al. [25]. Each coating
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solution was poured into polypropylene plates and dried at 50 ◦C for 24 h. Then, dried films were
peeled from the plates, submerged in a gelling bath of calcium chloride solution (1% w/v) for 30 min,
cleaned with distilled water, and air-dried at room temperature. All films were conditioned at room
temperature into desiccators containing a supersaturated solution of sodium bromide (RH~57%) for
48 h before characterization studies.

Water vapor permeability (WVP) tests were carried out at room temperature following the ASTM
E96/ASTM E96M-16 method. Film samples were sealed over a circular opening of 4 × 10−4 m2 in a
permeation cell, containing calcium chloride. Then, the cells were placed in desiccators conditioned
with sodium chloride saturated solution (75% RH). Changes in the weight of the cell were recorded to
the nearest 0.0001 g and plotted as a function of time, and the slope of each line was calculated by
linear regression. WVP (g Pa−1 s−1 m−1) was calculated as follows:

WVP = (WVTR/P·RH) d (2)

where WVTR is the water vapor transmission rate calculated as the ratio between the slope of the
straight line (g/s) and the cell area(m2); P is the saturation vapor pressure of water (Pa); RH is the
relative humidity in the desiccator, and d is the film thickness (m).

The water solubility of the samples was assayed as reported in a previous work [26]. Film samples
were weighed and submerged into a volume of distilled water (pH = 6.0) at room temperature
(22–25 ◦C) for 24 h. Later, the water was removed, and the samples were dried at 1050 ◦C until constant
weight. The mass loss during dissolving in water was calculated.

FTIR analysis was performed in a FT-IR 4100 spectrometer (Jasco, Hachioji, Tokyo, Japan) equipped
with attenuated total reflectance (ATR) module. The samples were placed on the ATR accessory and
then were analyzed under transmission mode, taking 64 scans per experiment with a resolution of
4 cm−1.

2.4. Application of Edible Coatings

A total mass of 7.5 kg of Andean blueberries was randomly divided into five groups (control,
alginate, alginate/CVR 0.03%, alginate/CVR 0.06%, and alginate/CVR 0.09%), each group containing
1.5 kg of fruit. The blueberries were coated by immersion in the coating-forming blends for 90 s,
drained of excess coating and submerged in a gelling bath of calcium chloride solution (1% w/v) for
30 min. Then, the coated fruits were cleaned with distilled water, and air-dried at room temperature.
Control samples (without coating) were prepared by immersion in distilled water and air-dried at
room temperature. These uncoated fruits were kept under the same storage conditions as the treated
ones, for comparison [25].

2.5. Evaluation of Quality Attributes of Andean Blueberries along Storage

The coated and uncoated Andean blueberries were packed in polyethylene terephthalate (PET)
trays with perforated vents and stored for 21 days. Evaluations of quality attributes were performed at
0, 7, 14, and 21 days of refrigerated storage (4 ◦C and 90% RH). For every sampling time, three trays
containing 125 g (~250 units) of Andean blueberries were prepared.

2.5.1. Color Attributes

Color was measured using a tristimulus Minolta colorimeter (Konica-Minolta CR-10, Osaka,
Japan) and was reported in CIELab parameters (L*, a* and b* values), where L* was used to denote
lightness, a* redness and greenness, and b* yellowness and blueness. Hue angle values was calculated
using the following equation:

Hue angle = tan−1(b∗/a∗), (3)
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2.5.2. Respiration Rate

Respiration rate was measured as reported Medina-Jaramillo [25]. Approximately 120 g of
Andean blueberries was placed for 30 min at 25 ◦C inside hermetically sealed 2 L flasks. Then, the CO2

concentration was determined using an infrared analyzer (LabQuest®2 Model LQ2-LE, Beaverton, OR,
USA). The results were expressed in mg kg−1 s−1.

2.5.3. Weight Loss

Weight loss of the Andean blueberries during storage was determined by weighing all fruit trays
at the beginning of the storage and every day of analysis. The weight loss (% W) was calculated with
the following equation:

% W =

(
m0 −mf

m0

)
× 100, (4)

where mf is the weight at each time and m0 the initial weight of each sample.

2.5.4. Soluble Solids Content, pH, and Titratable Acidity (%)

The soluble solids content was measured in the fruit juice using an Atago refractometer model
PR 101 (Atago CO., Tokyo, Japan) and expressed as Brix (AOAC 932.12). Fruit samples were crushed
using a blender and filtered through filter paper to obtain the fruit juice.

The pH of the fruit samples was assessed using a digital pH meter (Oakton Instruments, Vernon
Hills, IL, USA) (AOAC 981.12).

Titratable acidity (%) was determined by titration with 0.1 N NaOH up to pH 8.2, using 0.5 g of
sample in 10 mL of distilled water (AOAC 942.15). The results were expressed as citric acid percentage.

2.5.5. Firmness Analysis

Firmness was determined using a digital Force Gauge PCE-FM200 (Southampton, UK) equipped
with a 6 mm diameter stainless steel probe. Firmness was defined as the maximum force (N) to disrupt
the tissue at the penetration time used (5 s) [27]. The results were expressed as an average of at least
five measurements.

2.5.6. Total Polyphenols Content

For the determination of the total polyphenols content, aqueous extracts of the fruits were prepared.
Blends of crushed fruits (3 g) and distilled water (100 mL) were placed in a thermostatic bath at 50 ◦C
for 30 min. Once obtained, the extracts were cooled and filtered.

Total polyphenols content was determined by the Folin–Ciocalteu method [28,29]. Briefly, 400 µL
of fruit aqueous extract was mixed with 2 mL of Folin–Ciocalteu reagent (1:10 diluted). Then, 1.6 mL of
sodium carbonate (7% w/v) was added to each sample. After 30 min, the absorbance was measured at
760 nm using a spectrophotometer (X-ma 1200 Human Corporation, Loughborough, UK). The results
were expressed as gallic acid equivalents (GAE) per gram of fresh fruit.

2.5.7. Microbiological Analysis

The determination of aerobic mesophilic bacteria was done according to ISO 4833-1: 2013
standard [30]. To count molds and yeasts, the assay was done according to ISO 21527-1,2: 2008
standard [31]. Briefly, a known amount of each sample was aseptically taken and homogenized
with sterile peptone water. Then, decimal dilutions of homogenate and sterile peptone water were
performed. For the determination of aerobic mesophilic bacteria, 100 µL of each dilution were plated
onto plate count agar and the plates were incubated for 2 days at 35 ◦C. For molds and yeasts, 100 µL
of the dilutions were spread onto potato dextrose agar and the plates were incubated for 5 days at
25 ◦C. After incubation, colonies were counted and the results were expressed in log colony-forming
units per gram (log10 CFU. g−1).
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2.5.8. Fruit Decay Evaluation

The external appearance of each fruit and the presence of macroscopic fungal growth were visually
evaluated during storage period. Fruits which showed surface mycelial development or bacterial
lesions were considered as decayed. Three different tests were performed each in duplicate. Results
were expressed as the percentage of decayed fruit.

2.6. Sensory Evaluation

Sensory quality of control and coated Andean blueberries with alginate and alginate/CVR
0.09% was evaluated using a hedonic test. Ninety-eight people, aged between 18 and 60 years old,
were randomly recruited from the city of Duitama (Colombia). Fruit samples were prepared 1 day
before the day of the sensory study, stored at a 4 ◦C refrigerator after processing, and then warmed up
to ambient temperature at the day of test before serving to consumers. Fruit samples were placed in
plastic cups labeled with 3-digit random numbers. The consumers were asked to evaluate the overall
acceptability, appearance, color, taste, texture, and odor using a 9-point hedonic scale (1 = dislike
extremely, 5 = neither like nor dislike, and 9 = like extremely).

2.7. Statistical Analysis

The statistical analysis was performed using Minitab v. 16 statistical software (State College, PA,
USA). Analysis of variance (ANOVA) and Tukey’s pairwise comparisons were carried out using a level
of 95% confidence. The experiments were performed at least in triplicate, and the data were reported
as mean ± standard deviation.

3. Results and Discussion

3.1. Coating Characterization

Thickness plays an important role in the coating functionality because it is related to the transport
properties of the material [32]. It has been reported that the incorporation of additives in the coatings
could affect their thickness [32]. In the current work, the surface solid density (SSD) was estimated as
an indicator of the coating’s average thickness. Alginate coatings without carvacrol showed SSD values
of 3.7 g/m2; while all coatings with carvacrol showed SSD values of 3.3 g/m2 (i.e., lower thickness than
alginate coating), regardless of the carvacrol concentration used. This slight SSD decrease caused by
the carvacrol addition could suggest a good homogeneity and compatibility of the coatings. SSD values
between 1.0 and 1.8 g·m−2 have been reported for blueberries (Vaccinium corymbosum) covered with
carrageenan coatings [4].

The low concentrations of carvacrol added (0.03%, 0.06%, and 0.09%) did not cause changes in
the water vapor barrier properties of the alginate coatings. In this sense, all systems showed similar
water vapor permeabilities (5 × 10−9 g s−1 m−1 Pa−1). Rojas-Grau, et al. [33] when worked with
alginate–apple puree films containing higher concentration (0.1% and 0.5%) of plant essential oils
(oregano, lemongrass, and cinnamon) and oil compounds (carvacrol, citral, and cinnamaldehyde)
reported that these did not modify the WVP of the films. Besides, the different concentrations of
carvacrol used did not have a significant effect (p < 0.05) on the water solubility of the coatings and all
systems showed high-water resistance (water solubility below 1%). Tapia et al. stated that alginate
films have a resistance to being dissolved in water and, therefore, have the potential for coating high
moisture fresh foods [34].

Fourier transform infrared spectrometry of all coatings was performed to study the interactions
between carvacrol and alginate (Figure 1). IR spectra of alginate and alginate/carvacrol samples
showed characteristic bands of calcium alginate at 3248 cm−1 (O–H stretching), 1591 cm−1 (asymmetric
stretching vibration of C–O bond of COO– group) and 1413 cm−1 (symmetric stretching vibration of
C–O in COO– group). The peak at 1028 cm−1 corresponds to the antisymmetric stretch of C–O–C and
the peak at 818 cm−1 is characteristic of mannuronic acid residues [35]. Besides, in the alginate/CVR
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coatings the carvacrol characteristics signals were probably overlapped by other spectrum signals.
This behavior was probably due to both the very low molar ratio of carvacrol in the coatings and the
lack of covalent bonds between carvacrol and alginate.
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reported in strawberries coated with chitosan-oleic acid [36] and with alginate-carvacrol [20]. At the 
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3.2. Effect of Edible Coatings on Andean Blueberries

Images of Andean blueberries with and without coatings are shown in Figure 2 and the behavior
of the color attributes of the fruits during storage are shown in Figure 3.
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Figure 2. Images of Andean blueberries without and with alginate and alginate/carvacrol coatings:
(a) control; (b) alginate; (c) alginate/CVR 0.03%; (d) alginate/CVR 0.06% and (e) alginate/CVR 0.09%.

Uncoated fruits showed lower lightness (L*) (i.e., a darker color) than coated ones; while not
statically significant differences were found between the lightness obtained for the fruits coated with
alginate and alginate-carvacrol (alginate/CVR 0.03%; alginate/CVR 0.06% and alginate/CVR 0.09%)
during the storage (Figure 3A). This appearance improvement could be due to that the smoother
surface of the coated fruits caused a greater visible light reflection [6,36]. Similar behaviors have been
reported in strawberries coated with chitosan-oleic acid [36] and with alginate-carvacrol [20]. At the
beginning of the storage, Andean blueberries have a characteristic dark purple color with a hue angle
of 263 for the uncoated fruits (Figure 3B). After 7 days of storage, these fruits showed a slight decrease
in the hue angle (254), and then maintaining this parameter—almost unchanged—until the end of
storage (Figure 3B). Zapata et al. [37] observed a reduction in the hue angle in sweet cherries during
the refrigerated storage and it was attributed to the advance of the ripening process of the fruits.



Polymers 2020, 12, 2352 8 of 17

All coated Andean blueberries (alginate; alginate/CVR 0.03%; alginate CVR 0.06% and alginate/CVR
0.09%) showed higher hue angles at the beginning and during the entire storage than the uncoated
ones (Figure 3B). Besides, the hue angle of the coated fruits was maintained almost unchanged until
the end of storage. Therefore, it can be stated that these coatings delayed the color changes of the fruits.
The main color pigments in Andean blueberries are cyanidin and delphinidin glycosides [38]. Several
authors have reported that during the storage, color changes could occur due to oxidations and/or
condensation reactions of anthocyanins with other phenolic compounds [39,40]. In coated fruits, it has
been postulated that color changes could be delayed because coatings cause oxygen depression, retard
the anthocyanin synthesis associated to the postharvest ripening process and prevent the release of
cellular fluids containing enzymes and substrates of browning [12,41].
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The changes in the respiration rate of Andean blueberries with and without edible coatings
during storage are shown in Figure 4. At the beginning of the assay, the respiration rate of the coated
samples was slightly lower than the uncoated samples. After 7 days of storage, the fruits uncoated
and coated with alginate without carvacrol showed increases of 70% and 50% in their respiration rate,
respectively; while, in the fruits coated with alginate/CVR 0.03%, alginate/CVR 0.06% and alginate/CVR
0.09% the respiration rate was maintained almost unaltered. In the following 7 days, all samples
showed an increase in their respiration rate. Besides, it was noted that from the day 7 of storage the
respiration rate of fruits coated with alginate/CVR decreased in the following order: alginate/CVR
0.03% < alginate/CVR 0.06% < alginate/CVR 0.09%. At the end of the storage, the Andean blueberries
coated with alginate and alginate/CVR 0.03% showed a lower respiration rate than the uncoated fruits,
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and no significant differences were found between those and alginate/CVR 0.06 and alginate/CVR
0.09 samples (p > 0.05). The decrease in the respiration rate of fruits and vegetables caused by the
application of edible coatings has been reported by several studies [42]. It has been stated that edible
coatings based on carbohydrates, such as alginate, increase the skin resistance to gas diffusion because
they produce a tightly packed, ordered hydrogen-bonded network structure which leads to blocking
the pores on the fruit surface and causes a modified internal atmosphere of relatively high CO2 and low
O2 which decreases the intensity of physiological processes [10,42,43]. This effect has been improved
with the supplementation of the edible coatings with essential oils such as the carvacrol because
these additives improve the coating adherence on the fruit surface [10]. However, during storage,
component volatilization could occur and it could cause a reduction in the gas barrier properties of the
edible coatings. This could have been the reason why the respiration rate of the fruits coated with
alginate/CVR 0.06 and alginate/CVR 0.09 increased towards the end of storage.
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Table 1 shows the behavior of the weight loss of Andean blueberries with and without edible
coatings. All systems showed an increase in their weight loss until the end of the storage. However,
this parameter was significantly delayed for the coated fruits with and without carvacrol (alginate,
alginate/CVR 0.03%, alginate/CVR 0.06% and alginate/CVR 0.09%). At 21-days of storage, the fruit
coated with alginate showed a decrease in the water loss of around 36%, with respect to the uncoated
fruits; while, the fruits with alginate/CVR showed a decrease of around 52%, regardless of the carvacrol
concentration. The greater water loss of uncoated fruits was probably due to an increase in the fruit
metabolic activity which led to greater transpiration and respiration rate [37]. While, in the other
fruits, the water vapor barrier provided by the alginate coatings delayed the water loss, mainly when
carvacrol which is a hydrophobic terpene was added. These findings were consistent with previous
studies in which the application of alginate and alginate-carvacrol coatings minimize the water loss
from fresh berry fruits such as strawberries and cherries [20,44].
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Table 1. Behavior of the weight loss of Andean blueberries fruits without and with alginate or
alginate/carvacrol coating during storage.

Weight Loss (%)

Storage Time (Days) Control Alginate Alg/CVR 0.03% Alg/CVR 0.06% Alg/CVR 0.09%

7 4.4 ± 0.2 a 2.7 ± 0.5 b 3.0 ± 0.9 b 2.8 ± 0.6 b 3.3 ± 0.5 b

14 8.1 ± 1.6 a 4.9 ± 0.8 b 6.3 ± 1.1 b 6.3 ± 0.7 b 6.2 ± 0.4 b

21 15.2 ± 1.0 a 9.7 ± 2.0 b 7.4 ± 1.2 b 7.3 ± 0.6 b 7.3 ± 0.4 b

Different letters within the same row indicate statistically significant differences (p < 0.05).

Concerning soluble solids content, titratable acidity and pH, the fruits with and without the
coating did not show significant changes in these parameters thought the storage obtaining values
around 16.5 ◦Brix, 2.2% and 2.5, respectively (i.e., edible coatings did not affect negatively these fruits
characteristics). Similar results have been reported by other authors for Andean blueberries [24].

The firmness behavior of Andean blueberries with and without edible coatings during storage
is shown in Figure 5. The application of the coatings generated a slight increase in the firmness of
the fruits compared to the control ones during the entire refrigerated storage. Uncoated fruit showed
similar firmness until day 7 of storage. After this period, these fruits showed a decrease in this
parameter probably due to the softening caused by the increase in their metabolic and enzymatic
activity [45]. In the case of the coated fruits with and without carvacrol, the softening was delayed and
the fruit maintained their firmness from the initial time until the end of the storage. This behavior
agrees with the lower values of respiration rate (i.e., lower metabolic activity) observed for the coated
samples (Figure 4). It has been reported that both the effective gas barrier properties of alginate
edible coatings and the use calcium chloride for polymers crosslinking, contribute to the reduction in
metabolic activity of fruits and helped to maintain better fruit firmness [20,46]. Chiabandro et al. [45]
reported that the use of alginate edible coating applied on blueberries showed beneficial effects on
firmness retention during 45 days of storage and this was attributed to the retarded degradation of
components responsible for structural rigidity of the fruit such as insoluble pectin and proto-pectin.

Polymers 2020 10 of 17 

 

Table 1. Behavior of the weight loss of Andean blueberries fruits without and with alginate or 
alginate/carvacrol coating during storage. 

Weight Loss (%)  
Storage Time (Days) Control Alginate Alg/CVR 0.03% Alg/CVR 0.06% Alg/CVR 0.09% 

7 4.4 ± 0.2 a 2.7 ± 0.5 b 3.0 ± 0.9 b 2.8 ± 0.6 b 3.3 ± 0.5 b 
14 8.1 ± 1.6 a 4.9 ± 0.8 b 6.3 ± 1.1 b 6.3 ± 0.7 b 6.2 ± 0.4 b 
21 15.2 ± 1.0 a 9.7 ± 2.0 b 7.4 ± 1.2 b 7.3 ± 0.6 b 7.3 ± 0.4 b 

Different letters within the same row indicate statistically significant differences (p < 0.05). 

Concerning soluble solids content, titratable acidity and pH, the fruits with and without the 
coating did not show significant changes in these parameters thought the storage obtaining values 
around 16.5 °Brix, 2.2% and 2.5, respectively (i.e., edible coatings did not affect negatively these fruits 
characteristics). Similar results have been reported by other authors for Andean blueberries [24].  

The firmness behavior of Andean blueberries with and without edible coatings during storage 
is shown in Figure 5. The application of the coatings generated a slight increase in the firmness of the 
fruits compared to the control ones during the entire refrigerated storage. Uncoated fruit showed 
similar firmness until day 7 of storage. After this period, these fruits showed a decrease in this 
parameter probably due to the softening caused by the increase in their metabolic and enzymatic 
activity [45]. In the case of the coated fruits with and without carvacrol, the softening was delayed 
and the fruit maintained their firmness from the initial time until the end of the storage. This behavior 
agrees with the lower values of respiration rate (i.e., lower metabolic activity) observed for the coated 
samples (Figure 4). It has been reported that both the effective gas barrier properties of alginate edible 
coatings and the use calcium chloride for polymers crosslinking, contribute to the reduction in 
metabolic activity of fruits and helped to maintain better fruit firmness [20,46]. Chiabandro et al. [45] 
reported that the use of alginate edible coating applied on blueberries showed beneficial effects on 
firmness retention during 45 days of storage and this was attributed to the retarded degradation of 
components responsible for structural rigidity of the fruit such as insoluble pectin and proto-pectin.  

0 7 14 21
6

7

8

9

10

11

12

13

14

Fi
rm

ne
ss

 (N
)

Storage time (days)
 

Figure 5. Behavior of the Andean blueberry firmness during storage. Control (■), alginate (●), 
alginate/CVR 0.03% (▲), alginate/CVR 0.06% (▼), alginate/CVR 0.09% (♦). 

The behavior of the mesophilic aerobic and molds/yeasts grown on Andean blueberries with 
and without alginate or alginate/carvacrol coatings during refrigerated storage is shown in Figure 6. 
In the first 14 days of storage, uncoated fruits showed mesophilic aerobic bacteria count ranging from 
3.4 to 3.8 log CFU g−1 (Figure 6A). After this time, the total colony counts of these samples increased 

Figure 5. Behavior of the Andean blueberry firmness during storage. Control (�), alginate (•),
alginate/CVR 0.03% (N), alginate/CVR 0.06% (H), alginate/CVR 0.09% (�).

The behavior of the mesophilic aerobic and molds/yeasts grown on Andean blueberries with and
without alginate or alginate/carvacrol coatings during refrigerated storage is shown in Figure 6. In the
first 14 days of storage, uncoated fruits showed mesophilic aerobic bacteria count ranging from 3.4 to
3.8 log CFU g−1 (Figure 6A). After this time, the total colony counts of these samples increased by about
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1.8 log cycles. The coated fruits with alginate, alginate/CVR 0.03%, and alginate/CVR 0.06% showed a
more similar mesophilic aerobic bacteria count than control samples during the first 14 days of the
assay (Figure 6A). At the end of storage, these coated samples maintained their total colony counts
unaltered (~3.8 log CFU g−1). The application of alginate coatings with carvacrol at 0.09% (alginate/CVR
0.09%) had a marked effect in reducing the population of mesophilic aerobic bacteria as compared
to the other samples. At initial time, the fruits coated with alginate/CVR 0.09% showed mesophilic
aerobic bacteria count <2 log CFU g−1 (Figure 6A). Then, a gradual increase in the microbial count
was observed reaching values as high as 3.3 log CFU g−1 (i.e., the effectiveness of carvacrol decrease
during the storage time). It has previously been reported that the use of alginate coating did not
exert significant effects on the mesophilic aerobic bacteria count and that the supplementation of these
coatings with carvacrol is a useful strategy to render antimicrobial activity [47]. Several mechanisms
have been proposed for explaining the antibacterial activity of carvacrol including the disruption
of bacterial membrane leading to bacterial lysis and leakage of intracellular contents resulting in
death [16]. Other proposed mechanisms of antibacterial action include the inhibition of efflux pumps,
prevention in the formation and disruption of preformed biofilms, inhibition of bacterial motility, and
inhibition of membrane ATPases [16]. Sun et.al. [18], when studying the effect of a chitosan coating
with carvacrol on blueberries, found that the coatings maintained fruit firmness and reduced microbial
growth on the fresh fruit during storage mainly when carvacrol dosages higher than 0.1% were used.
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The application of edible coating based on alginate, alginate/CVR 0.03% and, alginate/CVR 0.06
did not exert significant effects on the yeasts and molds count of Andean blueberries. These samples
showed similar yeast/mold levels than the uncoated fruits along the storage (3.0–4.0 log CFU g−1)
(Figure 6B). The fruits coated with alginate/CVR 0.09% showed yeasts and molds count <2 log CFU g−1

at the beginning of storage (Figure 6B). Then, the effectiveness of carvacrol decreases, and a gradual
increase in the yeast and mold levels of these samples was observed reaching values as high as 3.0 log
CFU g−1. From the shelf life point of view, it has been reported that in non-thermal processed fruits the
maximum acceptable yeast count is 6 log CFU g−1 [48]. In this sense, all samples can be considered
as safe for consumption, and their shelf life was not limited by yeast count during the entire period
of storage.

Visual inspection is particularly important for bacterial rots and mold contamination and spoilage.
It has been reported that yeasts and molds are considered the main spoilage agents due to the low pH
of most fruits [47]. The decay of Andean blueberries with and without edible coatings was evaluated
during storage (Figure 7). In general, all the fruits showed a gradual increase in the decay during
the entire storage. However, the uncoated fruits showed a higher decay rate than the coated ones
(alginate, alginate/CVR 0.03%, alginate/CVR 0.06%, alginate/CVR 0.09%). At end of the storage period,
all coatings applied significantly reduced the apparition of decay signs in the Andean blueberries in
comparison with the uncoated ones. This inhibitory effect was much more noted in the fruits coated
with alginate/CVR 0.06% and alginate/CVR 0.09%. Similar behavior had reported several authors and
it has been attributed to that coatings create a modified atmosphere on fruit surface that may inhibit
microbial growth during postharvest storage, resulting in a lower amount of decayed fruits [47].
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Figure 7. Changes in Andean blueberry decay incidence during storage. 

The changes in Andean blueberry polyphenol content during storage are shown in Figure 8. At 
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GAE/g) to those reported in the literature [23]. As expected, the fruits coated with alginate/carvacrol 
(alginate/CVR 0.03%, alginate/CVR 0.06%, and alginate/CVR 0.09%) showed higher polyphenol 
content than control and alginate coated fruits. This increase was attributed to that the presence of 
carvacrol, which is a monoterpenic phenol, contributed to the total polyphenol content of the fruit. 
Similarly, Yuan et al. [49] reported an increase in the polyphenol content and the antioxidant activity 
of chitosan films when they were combined with carvacrol. Along with the storage, the behavior of 
the polyphenol content of the fruits with and without edible coatings did not follow a common 
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The changes in Andean blueberry polyphenol content during storage are shown in Figure 8.
At the initial timepoint, control and alginate coated fruits showed similar polyphenols content (~4.5 mg
GAE/g) to those reported in the literature [23]. As expected, the fruits coated with alginate/carvacrol
(alginate/CVR 0.03%, alginate/CVR 0.06%, and alginate/CVR 0.09%) showed higher polyphenol content
than control and alginate coated fruits. This increase was attributed to that the presence of carvacrol,
which is a monoterpenic phenol, contributed to the total polyphenol content of the fruit. Similarly,
Yuan et al. [49] reported an increase in the polyphenol content and the antioxidant activity of chitosan
films when they were combined with carvacrol. Along with the storage, the behavior of the polyphenol
content of the fruits with and without edible coatings did not follow a common pattern and was
different for each one. Uncoated fruits showed a significant decrease in their polyphenol content after
15 days of storage, while the coated samples showed similar or higher polyphenol concentrations
compared to that at the initial time, indicating that the coatings were able to prevent polyphenol loss in
Andean blueberries. Alvarez et al. [47] observed a similar behavior in the polyphenol concentration
with the application of alginate and chitosan coatings enriched with dietary fibers on blueberries
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during 18 days of storage at 5 ◦C. The fluctuations in the polyphenol content may be related to the
tendency of polyphenols to undergo polymerization reactions [50].
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It has been reported that the incorporation of natural antimicrobial agents into edible coatings
could change the original flavors of foods due to the strong flavors associated with them [46]. Therefore,
the evaluation of the sensory characteristic of the new coated Andean blueberries is very important to
make sure consumer acceptability is not compromised. Several authors have reported that samples
can be considered acceptable when they received scores higher than or equal to five [51]. Scores below
five indicated that the samples were disliked by the consumers [51]. Figure 9 shows the effect of
the application of alginate coatings without and with carvacrol on the sensory attributes of Andean
blueberries. All samples received scores higher than five indicating good consumer acceptability.
It can be observed that the fruits coated with alginate showed similar sensory characteristics than
uncoated ones indicating that the edible coating did not modify the sensory attributes of the fresh fruit.
While the alginate/CVR 0.09% coatings had a significant effect on the overall acceptability, taste, texture,
and odor of the fruits. Despite the low concentration of carvacrol used, some consumers detected a
residual aromatic herbal taste which diminished the sensory acceptance of these samples (Figure 9).
Concerning attributes of appearance and color, unimportant differences were found in comparison
with the control fruits and those coated with alginate.
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Figure 9. Radar chart representing mean scores of the sensory analyses for control and coated Andean 
blueberries. Control (■), alginate (●), alginate/CVR 0.09% (♦). 

4. Conclusions 

Alginate coatings supplemented with carvacrol proved to be an effective postharvest treatment to 
prevent Andean blueberry water loss, softening and, microbial decay. Moreover, these coatings were 
useful for enhancing the polyphenol content of the fruits. These are important results since these 
attributes are closely related to consumer acceptance. The coating formulation containing 0.09% of 
carvacrol proved to be the most effective in improving the postharvest quality and delayed mesophilic 
bacteria and yeasts/molds grown during 21 days of refrigerated storage. Besides, these samples were 
ranked above the limit of consumer sensory acceptability. Therefore, the application of these edible 
coatings may be an interesting approach to preserve fresh fruit quality and to improve the 
microbiological safety of Andean blueberries during postharvest storage. More studies are necessary to 
validate the coating performance on Andean blueberries and other fruits at the industrial scale. 
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to validate the coating performance on Andean blueberries and other fruits at the industrial scale.
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