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Abstract: Filled rubber has been extensively used in the repairing, retrofitting, and protecting of
civil infrastructures due to its superior physical and mechanical properties. However, effects of
large deformation and velocity impacts on the mechanical behavior of filled rubber are not well
recognized, one of the major challenges in the past investigations is that the material exhibits significant
nonlinearity and sensitivity to velocity. This paper presents a hyper-viscoelastic constitutive modeling
and experimental study to capture both the hyperelastic and viscoelastic behaviors of filled rubber
under large shear deformation and velocity impacts. Motivated by the micro-mechanism of filled
rubber, the constitutive modeling consists of an equilibrium element in parallel with an improved
Maxwell element to incorporate both nonlinear hyperelasticity and rate-dependent performance
governed by the readjustment and rearrangement of molecular chains in the material. A new strain
energy function is developed and the physical description of parameters in the strain energy function is
highlighted. The Clausius-Duhem inequality is employed to consider the thermodynamic consistency
of the model. Then, stress relaxation property and stress-strain response of filled rubber upon cyclic
shear loading with different strain rates (ranging from 0.08 to 12.0 s−1) are experimentally studied,
and some key observations are summarized. Subsequently, a “Gau-Poly” function is proposed based
on the experimental data to describe the viscoelastic property of filled rubber versus strain and strain
rate. Finally, stress-strain relationship and hysteretic area obtained from the experimental results were
compared with the numerical results of the model, good agreement was achieved and the capacity of
the model to accurately reproduce the mechanical behavior of filled rubber under a wide range of
deformation and velocity impacts was verified.

Keywords: filled rubber; constitutive modeling; hyper-viscoelastic; large deformation; velocity
impact; mechanical testing

1. Introduction

Filled rubber is an important class of materials due to its favorable flexibility, energy dissipation,
self-centering, and other properties [1,2]. It has been extensively employed in isolation bearings,
expansion joints, shock absorbers, and other civil engineering applications as a reliable method
to mitigate the effects of vibration and dynamic impacts on structures, such as highway bridges
and buildings [3–5]. The majority of these materials are filled with active fillers, such as carbon
black, to remarkably enhance the properties, including stiffness, strength, damping, and abrasion
resistance [6,7]. An illustration of the microstructure of a carbon black filled rubber is presented
in Figure 1, it shows that the material comprises a rubber matrix, fillers, and rubber-filler interface.
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The carbon black particles are randomly distributed in the rubber matrix and are clustered into
irregularly shaped aggregates with varying sizes and spacing. Moreover, these components further
consist of three-dimensional networks, which include a large number of randomly oriented molecular
chains with a broad range of lengths that are often cross-linked at junctions or become entangled
among themselves [8,9].
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Filled rubber-based structural devices are easily exposed to blast, earthquake, and other dynamic
impacts ranging from low to high strain rates [10]. Previous experimental studies have revealed
that the filled rubber has a complex nonlinear behavior under large deformation and high velocity
impacts [11]. The stress-strain response of filled rubber is highly dependent on deformation rate and
exhibits significant hysteresis upon cyclic shear loading, resulting in a series of undesired design
problems in engineering practices [12]. Although the bilinear hysteretic model is a widely employed
modeling approach, it excludes many of the advanced mechanical behaviors of filled rubber, such as
strong nonlinear and hardening properties, thus it would yield inaccurate design results [13]. Therefore,
the development of a high fidelity constitutive model of filled rubber under a wide range of strains
and strains rates is imperative and contributes to the numerical simulation during the design process.

Currently, several sophisticated models and numerical computation are available in the literature
to address different aspects of mechanical properties of filled rubber—e.g., Lion [14], Jankowski [15],
Li et al. [16], Gjorgjiev et al. [17], Sahu et al. [18], Khajehsaeid et al. [19], and more recently Mokhireva
et al. [20]. However, most available researches focused on the uniaxial tension or compression
tests of the material, whereas limited experimental works regarding simple shear deformation have
been reported, which essentially play an important role in analyzing the mechanical behavior of
rubber-based structural devices under seismic excitation in civil engineering. It was found that the
reasons are twofold: firstly, research interest in the shear deformation has merely grown in recent
years. Secondly, additional measurement difficulty is encountered when filled rubber is under more
challenging conditions like large deformation and high velocity impacts [21]. More importantly, those
models have a drawback in that their estimations are unsatisfactory under large strains and high
velocity circumstances. The viscosity effect of the material is roughly expressed via a Prony series
approach [22], yet the nature and physical basis of the behavior of filled rubber is not well recognized.

On the other hand, there is another approach to develop the constitutive model based on the
characteristics of microstructure of filled rubber and micro-mechanics owing to the fact that its
mechanical behavior is mainly governed by the different cross-linking networks in the material [23].
Tomita et al. investigated the monotonic and cyclic behavior of carbon black filled rubber through a
molecular-chain network model, but the time-dependent nature of the material is yet to be addressed [24].
Bergström et al. studied the microstructure of carbon black filled chloroprene rubber and concluded that
the mechanical response of filled rubber incorporates equilibrium and rate-dependent components [25].
Pouriayevali et al. investigated the relationship between the readjustment of the molecular chain in
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rubber and its stress relaxation property in the macro level. Based on this, they developed a relaxation
time model to describe the strain rate sensitivity of rubber material [26].

Following the argument of Bergström et al. and inspired by the micro-mechanical behavior
of filled rubber, the main objective of this study is to propose a constitutive model to capture both
hyperelastic and viscoelastic properties of filled rubber under extensive ranges of strains and strain
rates, especially attempting to consider the influence of fillers on altering the behavior of the material
and to develop the viscosity law in a thermodynamically consistent way. The first part of the model
comprised of a hyperelastic equation based on a newly developed strain energy function to represent
the rate-independent response. The other part of the model incorporated an improved Maxwell element
to consider the nonlinearity and rate-dependent response of filled rubber, multiplicative kinematics
decomposition of deformation gradient tensor into elastic and inelastic parts was conducted to correlate
the overstress tensor with strain rate. Besides, the Clausius-Duhem inequality was employed to
ensure the thermodynamic consistency [27], the Helmholz free energy was separately stored in the
above-mentioned two parts of the model, and an associated nonlinear viscosity coefficient was derived.
Subsequently, a strain-controlled mechanical testing program covering large deformation (200% shear
strain) and various velocity impacts (strain rate ranging from 0.08 to 12.0 s−1) was performed at room
temperature to investigate the stress-strain relationship of the material. Then, hyperelastic parameters
were identified straightforward based on the testing results and a “Gau-Poly” function was proposed
to describe the viscoelastic property of filled rubber versus strain and strain rate. Finally, numerical
results from the model were compared with experimental data.

2. Constitutive Modeling

Motivated by the micro-mechanism of filled rubber, a hyper-viscoelastic model is proposed
to incorporate its hyperelastic and viscoelastic characteristics. The model is decomposable in two
parallel parts, as depicted in Figure 2—part A is modeled by an equilibrium spring A to represent the
rate-independent equilibrium response, while part B is consists of a generalized Maxwell element to
describe the rate-dependent instantaneous response. It is an improvement on the traditional Maxwell
element to incorporate nonlinearity in both spring and dashpot elements, contributing to model the
rapid readjustments of short chains as well as the sluggish rearrangement and excessive entanglement
of long chains in the material.

Polymers 2019, 11, x FOR PEER REVIEW 3 of 18 

 

Based on this, they developed a relaxation time model to describe the strain rate sensitivity of rubber 
material [26]. 

Following the argument of Bergström et al. and inspired by the micro-mechanical behavior of 
filled rubber, the main objective of this study is to propose a constitutive model to capture both 
hyperelastic and viscoelastic properties of filled rubber under extensive ranges of strains and strain 
rates, especially attempting to consider the influence of fillers on altering the behavior of the material 
and to develop the viscosity law in a thermodynamically consistent way. The first part of the model 
comprised of a hyperelastic equation based on a newly developed strain energy function to 
represent the rate-independent response. The other part of the model incorporated an improved 
Maxwell element to consider the nonlinearity and rate-dependent response of filled rubber, 
multiplicative kinematics decomposition of deformation gradient tensor into elastic and inelastic 
parts was conducted to correlate the overstress tensor with strain rate. Besides, the Clausius–Duhem 
inequality was employed to ensure the thermodynamic consistency [27], the Helmholz free energy 
was separately stored in the above-mentioned two parts of the model, and an associated nonlinear 
viscosity coefficient was derived. Subsequently, a strain-controlled mechanical testing program 
covering large deformation (200% shear strain) and various velocity impacts (strain rate ranging 
from 0.08 to 12.0 s−1) was performed at room temperature to investigate the stress–strain relationship 
of the material. Then, hyperelastic parameters were identified straightforward based on the testing 
results and a “Gau-Poly” function was proposed to describe the viscoelastic property of filled rubber 
versus strain and strain rate. Finally, numerical results from the model were compared with 
experimental data. 

2. Constitutive Modeling 

Motivated by the micro-mechanism of filled rubber, a hyper-viscoelastic model is proposed to 
incorporate its hyperelastic and viscoelastic characteristics. The model is decomposable in two 
parallel parts, as depicted in Figure 2—part A is modeled by an equilibrium spring A to represent 
the rate-independent equilibrium response, while part B is consists of a generalized Maxwell 
element to describe the rate-dependent instantaneous response. It is an improvement on the 
traditional Maxwell element to incorporate nonlinearity in both spring and dashpot elements, 
contributing to model the rapid readjustments of short chains as well as the sluggish rearrangement 
and excessive entanglement of long chains in the material. 

 

Figure 2. Illustration of the hyper-viscoelastic model. 

When loading rate is very slow, no stress is transferred through the dashpot, and the 
equilibrium spring A is the only source of stress tensor. Conversely, when an infinitely high rate is 
applied, the dashpot C does not have enough time to complete the relaxation processes—all the 
deformation is undergone by the intermediate spring B. These two boundary states, respectively, 
correspond to equilibrium and instantaneous responses of filled rubber, which can be described by 
hyperelastic equations based on the strain energy function. Between the limiting states, the behavior 

Equilibrium spring A

Dashpot C Intermediate spring B

Part A：
Rate-dependent

Part B：
Rate-independent

Figure 2. Illustration of the hyper-viscoelastic model.

When loading rate is very slow, no stress is transferred through the dashpot, and the equilibrium
spring A is the only source of stress tensor. Conversely, when an infinitely high rate is applied,
the dashpot C does not have enough time to complete the relaxation processes—all the deformation
is undergone by the intermediate spring B. These two boundary states, respectively, correspond to
equilibrium and instantaneous responses of filled rubber, which can be described by hyperelastic
equations based on the strain energy function. Between the limiting states, the behavior of the
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generalized Maxwell element is rate-dependent and the stress-strain behavior of the material is
governed by a hyper-viscoelastic constitutive law.

2.1. Hyperelasticity

Considering a particle located at position X in a material, when simple shear deformation is applied
on the body, as illustrated in Figure 3, new position x of the particle in the deformed configuration can
be described by the reference configuration as:

x1 = X1 + γX2

x2 = X2

x3 = X3

(1)

where γ is the amount of shear strain along the X1 direction.
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Figure 3. Reference and deformed configurations of simple shear deformation.

Using Equation (1), total deformation gradient tensor F in the finite strain kinematic framework is
defined as:

F = ∇x =


1 γ 0
0 1 0
0 0 1

 (2)

Further, the left Cauchy-Green deformation tensor B is obtained by:

B = FFT =


1 + γ2 γ 0
γ 1 0
0 0 1

 (3)

where FT is the transposed matrix of F.
If Equation (3) holds, the first, second, and third strain invariants of B are:

I1 = trB = 3 + γ2

I2 = 1
2

[
(trB)2

−

(
trB2

)]
= 3 + γ2

I3 = detB = 1
(4)

where tr(·) and det(·) are trace and determinant operators, respectively.
The bulk modulus of filled rubber is much greater than its shear modulus, suggesting that a

hypothesis of Poisson’s ratio ν= 0.5 is reasonable. Thus, applying isotropy and incompressibility yields:

detF= det FA= det FB= 1 (5)

S ≡ (detF)T = −p1 + SE (6)
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where S and T are weighted Cauchy and Cauchy stress tensors, respectively. Subscript E represents
the extra part of S. p is the hydrostatic pressure of S; 1 is a second-order identity tensor.

Following the framework of hyper-viscoelastic model, SE at any time is the sum of equilibrium
stress tensor Seq

E and over stress tensor Sov
E

:

SE = Seq
E + Sov

E (7)

The stress tensor is determined by the differentiation of strain energy function (SEF) with respect
to B:

Seq
E = 2

∂Weq

∂I1A
BA − 2

∂Weq

∂I2A
B−1

A (8)

Sov
E = 2

∂Wov

∂I1B
BB − 2

∂Wov

∂I2B
B−1

B (9)

where Weq and Wov represent the SEFs of equilibrium spring A and intermediate spring B, respectively.
I1A and I2A denote first and second invariants of BA in the equilibrium spring, respectively. I1B and I2B
are that of BB in the intermediate spring, respectively.

Since an appropriate SEF plays a crucial role in describing the mechanical behavior of filled
rubber, a large number of SEFs are developed and frequently utilized in the literature, such as the
Mooney-Rivlin model, Neo-Hookean model, Ogden model, and Yeoh model [28,29]. Although the
abovementioned models provide acceptable agreement with the experimental results in extension and
compression modes, several drawbacks of these models are revealed, especially the fact that they fail
to accurately reproduce the highly nonlinear stress-strain response of filled rubber under large shear
deformation and high velocity impacts [30]. Therefore, a new SEF should be developed based on the
mechanical characteristic of filled rubber under considered conditions in the study.

Generally, the SEF is expressed as the sum of two functions associated with I1 and I2 [31,32],

W(I1, I2) =

∫
f (I1) dI1 +

∫
g(I2) dI2 (10)

where

f (I1) =
∂W
∂I1

; g(I2) =
∂W
∂I2

(11)

In order to ensure the proposed SEF is capable of representing the basic situations of filled
rubber, it must satisfy the following requirements. Firstly, the SEF should vanish for the undeformed
configuration of filled rubber.

W(I1=3) = 0 (12)

Secondly, the SEF and obtained stress tensors approached infinity when filled rubber is subjected
to infinite deformation.

lim
γ→+∞

W = +∞ (13)

lim
γ→+∞

∂W
∂I1

= +∞ (14)

Moreover, a good SEF should have a simple mathematical structure with minimal number of
parameters to describe the essential features of the material and to ensure the easy application. Based
on these considerations, a five-constant polynomial SEF is proposed in Equations (15) and (16) to
consider the “S” shaped strong nonlinear behavior of filled rubber associated with the complex entropic
rearrangement of molecular chains in the material.

Weq = C1
eq(I1A − 3) + 2

3 C2
eq(I1A − 3)

3
2 + 1

2 C3
eq(I1A − 3)2 + 2

5 C4
eq(I1A − 3)

5
2

+C5
eq

3 (I1A − 3)3 (15)
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Wov = C1
ov(I1B − 3) + 2

3 C2
ov(I1B − 3)

3
2 + 1

2 C3
ov(I1B − 3)2 + 2

5 C4
ov(I1B − 3)

5
2

+C5
ov

3 (I1B − 3)3 (16)

where Ceq
i (i = 1~5) are responsible for the material parameters of equilibrium stress, while Cov

i (i = 1~5)
are those of overstress.

It is seen that the proposed SEF is also a particular case of the well-known Rivlin’s expression:

W(Rivlin) =
∞∑

i=0, j=0

Ci j(I1 − 3)i(I2 − 3) j (17)

When small deformation like initial linear range is applied on filled rubber, the SEF is simplified as:

W(Small deformation) = C1(I1 − 3) (18)

Noting that the Neo-Hookean model is calculated by the material chain density n, Boltzman’s
coefficient k, and absolute temperature T [33], which is shown in Equation (19)

W(Neo−Hookean) =
1
2

nkT(I1 − 3) (19)

The Neo-Hookean model is based on the statistical thermodynamics of molecular chains in the
material, proceeding to compare Equation (18) and Equation (19) leads to:

C1 =
1
2

nkT (20)

therefore, the physical meaning of parameters in the SEF is highlighted, C1 is related to parameters of
n, k, and T.

On the other hand, the behavior of filled rubber under large deformation is mainly dominated
by the parameters C4 and C5 in the proposed SEF. From the perspective of the microstructure of the
material, large deformation involves a greater proportion of molecular chains and is determined by
their limiting extensibility.

In addition, it should be noted that ignoring I2 in the proposed SEF may induce some but not
significant errors in describing the advanced aspect like poynting-type effect in rubber material [34],
it suffices to illustrate the core concept in the study.

Substituting Equation (15) into Equation (8), the hyperelastic relation for the shear component of
equilibrium stress tensor is given by:

τeq = 2(Ceq
1 γA + Ceq

2 γ
2
Asgn(γA) + Ceq

3 γ
3
A + Ceq

4 γ
4
Asgn(γA) + Ceq

5 γ
5
A) (21)

sgn(γ) =


+1 ; γ > 0
0 ; γ = 0
−1 ; γ < 0

(22)

where Ceq
i (i = 1~5) are rate-independent material parameters.

Substitution of Equation (16) into Equation (9) yields the shear component of overstress tensor:

τov = 2(Cov
1 γB + Cov

2 γ
2
ovsgn(γB) + Cov

3 γ
3
B + Cov

4 γ
4
Bsgn(γB) + Cov

5 γ
5
B) (23)

where Cov
i (i = 1~5) are rate-dependent material parameters.
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2.2. Hyper-Viscoelastic

As discussed previously, between the two limiting states (i.e., very slow and fast loading rates),
the Maxwell element can be decomposed within the framework of a multiplicative kinematics
decomposition of F [35], as shown in Equation (24) and Figure 4.

F = FBFC (24)

where FB and FC represent the deformation gradient tensors of spring B and dashpot C, respectively.
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Following Equation (24), the left Cauchy-Green deformation tensors of intermediate spring B and
dashpot C are deduced, respectively.

BB = FBFT
B (25)

BC = FCFT
C (26)

After taking the material time derivative of BB and FB, we have

.
BB =

.
FBFT

B + FB
.
F

T
B (27)

.
FB =

d(FF−1
C )

dt
= LFB − FBLC (28)

where L is the total velocity gradient tensor and LC is the corresponding velocity gradient tensor of
dashpot C, which are derived as

L =
.
FF−1 (29)

LC =
.
FCF−1

C = DC + WC (30)

where
DC =

1
2
(LC + LT

C) (31)

WC =
1
2
(LC − LT

C) (32)

Substituting Equations (28)–(32) into Equation (27), the following equation is derived.

.
BB = −2FBDCFT

B + BBLT + LBB (33)
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For an isothermal viscoelastic process, the second law of thermodynamics in the form of the
Clausius-Duhem inequality requires that [36]

SE · L−
.
ψ ≥ 0 (34)

where ψ is the Helmholtz free energy.
According to the hyper-viscoelastic model, it is noted that the energy can be only stored in spring

A and B, thus, ψ has the following form:

ψ = Weq(I1A) + Wov(I1B) (35)

Taking the material time derivative of ψ, the rate of free energy is expressed as:

.
ψ =

∂Weq

∂I1A

.
I1A +

∂Wov

∂I1B

.
I1B (36)

considering
.
I1A = 1 ·

.
BA;

.
I1B = 1 ·

.
BB (37)

thus, Equation (36) can be rewritten as:

.
ψ =

∂Weq

∂I1A
1 ·

.
BA +

∂Wov

∂I1B
1 ·

.
BB (38)

On the other hand, according to Equation (24) and Equation (29), the velocity gradient tensor can
be decomposed into:

L =
.
FF−1 = LB + FBLCF−1

B (39)

Considering Equation (7), SE is the sum of Seq
E and Sov

E , thus

SE · L = (Seq
E + Sov

E ) · L = Seq
E · L + Sov

E · LB + (FBSov
E F−1

B ) ·DC (40)

where
Seq

E · L = tr(Seq
E

.
BAB−1

A − Seq
E BALTB−1

A ) = (B−1
A Seq

E ) ·
.
BA − Seq

E · L (41)

thus
Seq

E · L =
1
2
(B−1

A Seq
E ) ·

.
BA (42)

By the analogy with Equation (42), the second term on the right side of Equation (40) becomes:

Sov
E · LB =

1
2
(B−1

B Sov
E ) ·

.
BB (43)

Substituting Equations (38)–(43) into Equation (34), the inequality function can be transformed into:

(
1
2
(B−1

A Seq
E ) −

∂Weq

∂I1A
1) ·

.
BA + (

1
2
(B−1

B Sov
E ) −

∂Wov

∂I1B
1) ·

.
BB + (FBSov

E F−1
B ) ·DC ≥ 0 (44)

With the definition of equilibrium stress tensor and overstress tensor expressed in Equations (8) and (9),
Equation (44) is reduced to the following equation, implying that the power between overstress tensor
and velocity gradient tensor of dashpot C should be non-negative.

(FBSov
E F−1

B ) ·DC ≥ 0 (45)
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For an arbitrary process, the simplest sufficient condition satisfying Equation (45) is:

DC =
1
η

FBSov
E F−1

B ; η > 0 (46)

where η is a positive viscosity coefficient.
For the sake of computational simplicity, the validity of Equation (46) is equivalent to the following

equation [35]:

DC =
1
η

{
FT

BSov
E FT

B
−1
−

1
3

[
tr
(
Sov

E

)]
1
}

(47)

operating on the inelastic intermediate configuration, we have:

FBDCFT
B =

1
η

BB
(
Sov

E

)D
(48)

where superscript D is the deviatoric component of overstress tensor Sov
E

.
Substituting Equation (48) into Equation (33) yields:

.
BB = BBLT + LBB −

2
η

BB
(
Sov

E

)D
(49)

Overall, a thermodynamically consistent hyper-viscoelastic constitutive model is established from
a combination of two classes of equations. The first corresponds to the limiting states of the material
defined by Equations (21)–(23). The second is linked to the rate-dependent response of the material
and associated with part B in the model.

3. Mechanical Testing Program

3.1. Specimen Preparation and Test Setup

Commercially available nitrile rubber was chosen as the base rubber and carbon black N330
was employed as the reinforcing filler to fabricate the specimens. According to the ISO 1827:2007
standard [37], Figure 5 shows the quadruple-lap shear specimen which comprises of four filled rubber
layers and rigid steel blocks, the rubber layers are glued to the steel blocks by adhesive material to
prevent sliding on the contacting surfaces.Polymers 2019, 11, x FOR PEER REVIEW 10 of 18 
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Figure 5. Illustration of the quadruple-lap shear specimen.

Figure 6 depicts the geometrical sizes of the filled rubber and steel block in the specimen.
Each rubber layer has the following dimensions: 25 mm length, 20 mm width, and 4 mm thickness,
the length and width are much greater than the thickness to restrict end rotation of rubber layers
during the shear deformation and ensure homogeneous strain under high loading rate condition.
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Figure 6. Geometrical sizes of the filled rubber and steel block. (unit: mm).

As presented in Figure 7, a servo-hydraulic MTS 831 elastomer testing machine was employed to
provide required loading schemes and measure the corresponding shear force. The quadruple-lap
shear specimen was mounted on the apparatus by the upper and lower grips, specified displacement
was applied at the top steel block to allow it move freely in the vertical direction with a wide range
of strain rates from 0.08 s−1 to 12.0 s−1. The filled rubber deforms under simple shear deformation
while the steel blocks are assumed to be undeformed in the tests. In order to remove the Mullins effect
and obtain a relatively stable state of stress-strain curves of the specimens, they were subjected to ten
cycles with a maximum shear strain of 200% before the formal tests. All the tests were performed at
room temperature.Polymers 2019, 11, x FOR PEER REVIEW 11 of 18 
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3.2. Stress Relaxation and Cyclic Shear Tests

To assess the stress relaxation behavior of filled rubber, generally speaking, a prescribed step strain
is exerted on the specimen and holds for a period ranging from 20–60 min to complete various forms
of molecular chain readjustments in the material and reach a relatively stable state. Then, the holding
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period results in an asymptotical reduction in the stress to approximately one third or less of the stress
at the beginning of relaxation, implying that the stress achieves an equilibrium state [38]. Once the
holding period was finished, the procedure was repeated by increasing the strain amplitude.

In this study, the specimens were successively loaded to strain levels of 25%, 75%, 125%, 175%,
and 200%, and held for 1200 s during each step. Figure 8 shows the stress relaxation results of filled
rubber, a time shift of 150 s was introduced in the figure to highlight the comparison. It was observed
that, during each holding step, the stress undergoes a rapid decrease at the very beginning of the
process, almost 50% of the stress relaxation occurs in the first 5 s. Then, the stress gradually converges
to a limit value, accompanied by the occurrence of rearrangement of microstructure in the filled rubber.
At the end of the holding step, the stress at the termination point was identified as the approximation
of equilibrium stress.
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Figure 8. Shear stress obtained from the stress relaxation tests.

As shown in Figure 9, cyclic shear tests consist of saw-tooth wave displacement excitation with
fully reversed cycles of loading at a maximum strain of 200% to consider general cases of filled
rubber-based structural devices used in civil engineering projects. Six different strain rates, including
0.08, 0.4, 0.8, 4.0, 8.0, and 12.0 s−1 were employed to investigate the cyclic mechanical performance
of filled rubber under various velocity impacts, covering most typical dynamic scenarios that filled
rubber undergoes during earthquake excitations. Among the loading rates, the strain rate = 12.0 s−1

was used as the approximation and alternative solution of the theoretical instantaneous response to
calibrate the material parameters associated with the intermediate spring B owing to the fact that an
infinitely fast rate was inaccessible because of the limitation of testing machine.
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Figure 10 presents the cyclic shear test results of filled rubber, it is clearly found that the stress-strain
responses not only exhibit pronounced nonlinearity with respect to small, moderate, and large strains,
but also are very sensitive to the loading rate—specifically, the strain rate dependence is more obvious
in the loading process than the unloading process. For any given strain level in the positive loading
procedure, the shear stress shows a significant increasing trend when the loading rate increases from
0.08 to 12.0 s−1. More specifically, the maximum shear stress in the case of strain rate = 0.08 s−1 is
1.94 MPa, while that of strain rate = 12.0 s−1 is 2.86 MPa, the corresponding increment of the stress is
47.4%. These unique phenomena can be attributed to the presence of high amount of fillers which alter
the microstructure of the material and eventually result in a viscoelastic behavior in the filled rubber.
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In addition, geometric dimensions of the specimens were examined after the tests. It was observed
that the filled rubber specimens almost retain their original geometric dimensions (i.e., the residual
strains are negligible) after the loading tests, indicating the observed phenomenon is amenable to
description by the proposed hyper-viscoelastic model.

4. Parameter Identification

The identification for the model parameters consists of two procedures, the first is related to the
hyperelastic parameters and the second focuses on the viscoelastic parameters.

4.1. Hyperelastic Parameters

Parameters of equilibrium stress were directly identified by minimizing the error between the
stress relaxation test results and simulated results associated with Equation (21). It should be noted that
Ceq

5 was initially taken to be equal to zero because the first four items on the right side of Equation (21)
were sufficiently to fit the stress relaxation results of filled rubber. While the parameter calibration for
overstress was based on three steps, firstly, the case of strain rate = 12.0 s−1 in the cyclic shear tests
was selected considering the approximation of infinitely fast rate. Then, the overstress was extracted
from the total stress by subtracting the equilibrium stress. Finally, parameters could be estimated in
accordance with Equation (23). By applying nonlinear least-squares method, the identified parameters
are listed in Table 1.

Table 1. Parameters of equilibrium stress and overstress (unit: MPa).

Stress Tensor C1 C2 C3 C4 C5

Equilibrium stress 0.899 −1.146 0.678 −0.127 0
Overstress 2.484 −5.623 6.263 −3.075 0.548
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4.2. Viscoelastic Parameters

Figure 11 presents the experimental and fitted results of the viscosity coefficient. In particular,
the experimental results are first focused—it is easily observed that the viscosity coefficient is positively
correlated with the strain rate. For a specified strain level, the viscosity coefficient is increased with
the increment of strain rate—this variation is more pronounced in high rate conditions (i.e., strain
rate > 0.8 s−1). While, for a given strain rate, it is also seen that the viscosity coefficient achieves the
maximum value at moderate strain levels, whereas the value is decreased at small and large strains.
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Therefore, it is concluded that the viscosity coefficient η is closely related to the strain rate v and
strain γ (i.e., η = η (γ, v)), this phenomenon is also experimentally demonstrated for styrene butadiene
rubber by Fatt et al. [39]. Motivated by the experimental results, a fitting function is introduced to
characterize how the viscosity coefficient was affected by the strain and strain rate. In this function,
a Gaussian function of γ and v was implemented in conjunction with a second-order polynomial
function of v to develop an accurate and robust model for the reproduction of multi-dependent behavior
of η, which is called “Gau-Poly” function and expressed in the following form:

η = {z0 + A exp[−0.5(
γ− xc

w1
)

2
− 0.5(

v− yc

w2
)

2
]} × (b + cv + dv2) (50)

where parameters z0, A, xc, w1, yc, and w2 in the Gaussian function govern the multi-dependence of η,
while the rest of the parameters b, c, and d are served to describe the strong variation of η with strain
rate. It is noted that xc, w1, and b are non-unit parameters.

The parameter identification of viscosity coefficient was done by the following double
sub-processes. Firstly, the rate-dependent characteristic of filled rubber was temporarily neglected
under a special condition of strain rate = 0.08 s−1 and it was reasonable to deem that the η was
only determined by the Gaussian function in this case [40]. Once the parameters belonging to the
Gaussian function were determined, the second step was conducted to identify the rest parameters by
approximating the rate-dependent variation in η. This arises from the fact that the viscosity coefficient
is nonlinearly proportional to the strain rate. The identified parameters and their units are summarized
in Table 2—reasonable agreement between the experimental and fitted results is shown in Figure 11,
demonstrating that the function has a good generalization ability to predict the variation in viscosity
coefficient with varying strains and strain rates.
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Table 2. Parameters of viscosity coefficient.

z0 (MPa·s) A (MPa·s) xc w1 yc (s−1) w2 (s−1) b c (s) d (s2)

0.346 1.559 1.090 0.551 6.607 6.030 4.194 3.779 0.052

5. Model Application, Validation, and Discussion

In this section, numerical results of the proposed model are compared with the experimental tests
to validate how it works in predicting the mechanical behavior of the material.

5.1. Monotonic Shear Tests and Model Predictions

To validate the applicability of the proposed constitutive model in predicting the rate-dependent
and nonlinear properties of filled rubber, monotonic shear tests with three levels of strain rates,
including 0.08, 0.8, and 8.0 s−1 were simulated, roughly corresponding to slow, moderate, and high
velocity scenarios. By incorporating the proposed model in a MATLAB software code, Figure 12
presents the comparison of experimental results and model predictions. It is seen that the numerical
simulations can accurately reproduce the stress-strain response of filled rubber—a good agreement
including a rapid stiffness growth at vary small strain amplitudes and rate-dependent performance for
different strain rate cases is obtained. Among all the loading schemes, the discrepancy is within the
range of 6% and mainly exists at very small strains, resulting from the fact that the fillers substantially
increase the initial stiffness of filled rubber.Polymers 2019, 11, x FOR PEER REVIEW 15 of 18 
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5.2. Cyclic Shear Tests and Model Predictions

Figure 13 shows the comparison of experimental results and model predictions for the cyclic shear
tests with two levels of strain rates, including 0.4 and 4.0 s−1—coherent agreement in terms of the
stress-strain responses of the material between the experimental and numerical results is observed in
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both cases, indicating the favorable capacity and reliability of the proposed model in predicting the
rate-dependent and cyclic behavior of filled rubber. Notably, the proposed model presents an error in
small deformations. For instance, the stress predicted by the model was approximately 7% greater
than that of experimental results at appropriately 40% shear strain in the case of strain rate = 4.0 s−1.
It should be noted that the error merely exists in local regions and is not enlarged after the initial
deformation. The reasons for this discrepancy are twofold: one is that the strain energy function of
model yields a less satisfactory agreement with the strong nonlinear behavior of the material at small
strains; the other is the appropriation of the viscosity coefficient.

Polymers 2019, 11, x FOR PEER REVIEW 15 of 18 

 

       
(a) Strain rate=0.08 s-1                  (b) Strain rate=0.8 s-1 

 
(c) Strain rate=8.0 s-1 

Figure 12. Comparison of monotonic shear tests and model predictions. 

5.2. Cyclic Shear Tests and Model Predictions 

Figure 13 shows the comparison of experimental results and model predictions for the cyclic 
shear tests with two levels of strain rates, including 0.4 and 4.0 s−1—coherent agreement in terms of 
the stress–strain responses of the material between the experimental and numerical results is 
observed in both cases, indicating the favorable capacity and reliability of the proposed model in 
predicting the rate-dependent and cyclic behavior of filled rubber. Notably, the proposed model 
presents an error in small deformations. For instance, the stress predicted by the model was 
approximately 7% greater than that of experimental results at appropriately 40% shear strain in the 
case of strain rate =4.0 s−1. It should be noted that the error merely exists in local regions and is not 
enlarged after the initial deformation. The reasons for this discrepancy are twofold: one is that the 
strain energy function of model yields a less satisfactory agreement with the strong nonlinear 
behavior of the material at small strains; the other is the appropriation of the viscosity coefficient.  

        
        (a) Strain rate=0.4 s-1                             (b) Strain rate=4.0 s-1 

Figure 13. Comparison of cyclic shear tests and model predictions. Figure 13. Comparison of cyclic shear tests and model predictions.

Considering the hysteretic behavior (i.e., energy dissipation capacity) of the filled rubber plays
a crucial role in civil engineering, the hysteretic area (unit of the area is ignored for simplicity) of
stress-strain curves of the specimens obtained from Figure 13 was calculated and is given in Table 3
for a further comparison. It is found that the predicted hysteretic area is in good agreement with the
experimental results, the relative error for both cases is within 5%. Overall, the agreement is sufficiently
to substantiate that the proposed model is capable of yielding a reasonable description in engineering
practices when a filled rubber-based structural device is incorporated.

Table 3. Hysteretic area obtained from experimental results and model predictions.

Case Experimental Results Model Predictions Relative Error

Strain rate = 0.4 s−1 4.65 4.83 +3.87%
Strain rate = 4.0 s−1 5.46 5.73 +4.94%

6. Conclusions

This paper presented a micro-mechanism-based hyper-viscoelastic constitutive model to describe
the behavior of filled rubber under large shear deformation and various velocity impacts. Parameters
in the model were identified by conducting experimental tests and the accuracy of the model was
verified by comparing the experimental and numerical results. Major conclusions can be summarized
as below:

1. The constitutive model comprises two parts: the first captures the equilibrium and instantaneous
responses of filled rubber; the second incorporates the decomposition of the deformation gradient
tensor to correlate the overstress tensor with strain rate. The proposed model covers a wide range
of conditions, including small to large shear deformations as well as low to high velocity impacts
that the filled rubber is expected to undergo in engineering practices.

2. Considering the similar nature (i.e., nonlinear hyperelasticity) of equilibrium and instantaneous
responses of filled rubber, a newly-developed polynomial strain energy function is applied for
equilibrium and intermediate springs in the constitutive model. The proposed strain energy
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function has a relatively simple mathematical formulation and its parameters are related to the
physical description of the material molecular network.

3. A “Gau-Poly” function isproposed to capture the nonlinear viscosity coefficient in the
constitutive model, three-dimensional plot of the experimental and fitted results of the viscosity
coefficientshows that the “Gau-Poly” function has a good generalization ability to predict the
variation in viscosity coefficient with extensive ranges of strains and strain rates.

4. The accuracy of the proposed constitutive model was verified by comparing the experimental
tests and numerical simulation. A reasonable agreement between the experimental and numerical
results substantiated the validity of the proposed model. The model not only fills a theoretical
gap by developing an advanced model of filled rubber, but also supplies an appropriate choice to
engineers to describe the behavior of filled rubber under the considered conditions. In the future,
it is expected that the model can be implemented in finite element codes as a novel user-defined
model to facilitate the numerical simulation when designing structural devices that incorporate
such materials.
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