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Abstract: The interactions between surfactants and a drag-reducing polymer were investigated at a
low polymer concentration of 500 ppm, using measurements of the rheology and surface activity of
surfactant-polymer solutions. A well-known drag-reducing polymer (anionic sodium carboxymethyl
cellulose) and five different surfactants (two anionic, two non-ionic, and one zwitterionic) were selected
for the interaction studies. The surfactant-polymer solutions were shear thinning in nature, and they
followed the power law model. The interaction between the surfactant and polymer had a strong effect
on the consistency index of the solution and a marginal effect on the flow behavior index. The surface
tension versus surfactant concentration plots were interpreted in terms of the interactions between
surfactant and polymer. The critical aggregation concentration (CAC) of the surfactant was estimated
based on the surface tension and rheological data. The CAC values of the same charge surfactants as
that of the polymer were found to be significantly higher than other combinations of surfactant and
polymer, such as non-ionic surfactant/anionic polymer, and zwitterionic surfactant/anionic polymer.

Keywords: polymer; surfactant; surfactant-polymer interaction; rheology; shear-thinning;
non-Newtonian; viscosity; surface tension

1. Introduction

Mixtures of polymers and surfactants are used in a variety of applications, such as drug
delivery [1–3], oil recovery [4], cosmetics, and more [5,6]. In general, the mixtures of polymers
and surfactants are used to control the rheology of the solution, and to manipulate surface adsorption
of the surfactant. The presence of a polymer in a solution may help to remove a surfactant from a
surface, or improve its adsorption at the surface. In many applications, a suitable rheology, such as
thickening of the solution or gelation of the solution, is required. The combination of surfactant and
polymer allows easy manipulation and control of the solution rheology. The interaction of surfactant
molecules with the polymer macromolecules can increase or decrease the solution viscosity due to
stretching or shrinking of polymer chains. The presence of polymer can also speed up the micellization
process, resulting in a decrease in the free surfactant concentration. This property is often exploited in
skin formulations, as any free surfactant molecules tend to harm the skin and cause irritation.

Mixtures of polymer and surfactant are also exploited to enhance frictional drag reduction in
the turbulent flow of liquids [7–9]. When a small quantity (in ppm) of soluble polymer (such as
sodium carboxymethyl cellulose) is added to a pipeline turbulent flow of liquids (such as water),
a significant reduction in friction, and hence pumping costs, is observed. This phenomenon of drag
reduction (DR) by polymeric additives has been utilized in the pipeline flow of liquids, wastewater
treatment, sludge technology, heating and cooling loops, hydraulic and jet machinery, biomedical
applications, and more [10–14]. The DR effect exhibited by polymers is explained in different ways.
According to some researchers [15–17], the addition of polymer to a liquid increases the elongational
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viscosity of the liquid, due to the resistance to stretching offered by the polymer chains. The increase in
elongational viscosity leads to an increase in the thickness of the buffer layer in turbulent flow, resulting
in a reduction of wall friction. According to some authors [18], polymer chains cause suppression
of turbulence, and consequently a decrease in turbulent drag reduction. The energy of turbulent
eddies (velocity fluctuations) is taken up by the polymer chains in the form of stretching of the
polymer chains. The stretched chains dissipate the stored elastic energy into heat upon relaxation
to equilibrium state. While drag reduction in a turbulent flow of liquids due to soluble polymers is
well established, only a handful of studies have been published on the synergistic effects of mixed
surfactant-polymer systems. Pal’s group [7–9] published several articles recently to demonstrate that
the addition of surfactant to polymer solution gives a significantly higher drag reduction effect when
compared with polymer alone. When anionic surfactant sodium dodecyl sulfate (SDS) is added to
non-ionic polymer polyethylene oxide (PEO), a percentage reduction in friction factor as high as 79 can
be achieved [8]. When cationic surfactant octadecyltrimethylammonium chloride (OTAC) is added
to non-ionic PEO, the drag reduction is enhanced [7]. One commonly encountered problem with
polymeric drag reducing additives is that they rapidly undergo mechanical degradation in a turbulent
flow field, and hence become ineffective as drag reducers. Mohsenipour and Pal [9] have shown that
the addition of surfactant to polymer solution not only intensifies the drag reduction effect, it also
increases the resistance of polymer molecules against mechanical (shear) degradation. According
to Mohsenipour and Pal [9], the coiled polymer molecules undergo faster mechanical degradation
compared with stretched polymer molecules. Thus, the study of surfactant-polymer interactions is
important in the formulation of effective drag reducing additives.

Surfactants consist of both hydrophilic (head) and hydrophobic (tail) groups. They can be
classified into four groups, depending on the charge of their head group: anionic, cationic, non-ionic,
and zwitterionic. If there is no charge group on its head, the surfactant is a non-ionic surfactant.
An ionic surfactant carries a net charge on the head group. If the charge is only of one kind (positive or
negative), the surfactant is called an anionic, or cationic, surfactant. If a surfactant contains a head
with two oppositely charged groups, it is termed a zwitterionic surfactant [19]. Surfactants are used
extensively in many industries such as food, cosmetics, detergents, paint, pharmaceuticals, petroleum,
and more. A rapid growth in the usage of surfactants is anticipated in the years to come. More recently,
surfactants have been used for environmental remediation, for the removal of various contaminants
from polluted soils and aquifer sediments [20–24]. Surfactants have also been found to be effective drag
reducers. Like polymers, surfactants can reduce frictional drag in a turbulent flow of liquids. However,
drag reduction by surfactants has not received as much attention as polymers, by comparison.

Polymer-surfactant interaction studies, dealing with polymer-surfactant aggregation, are usually
carried out at low surfactant concentrations [25–28]. The interaction of polymer and surfactant depends
on the types of polymer and surfactant, and the solution conditions [29,30]. The interactions between
polymer and surfactant can be broadly categorized into two groups: (a) electrostatic interactions, and (b)
hydrophobic interactions. The interactions between ionic polymers and oppositely charged ionic
surfactants are electrostatic in nature. The interactions between non-ionic polymer and ionic/non-ionic
surfactants are hydrophobic in nature [25,31,32]. In hydrophobic interactions, the interaction occurs
between the hydrophobic parts of the polymer and surfactant molecules.

When a surfactant is present in a polymer solution, the interaction of polymer and surfactant
molecules begins at a certain surfactant concentration called the “critical aggregation concentration”
(CAC). The CAC is usually lower than the critical micelle concentration (cmc) of the surfactant solution
alone [25,31–33]. The CAC is significantly lower than the cmc of the surfactant when electrostatic
interactions between an ionic polymer and an oppositely charged ionic surfactant are involved.
The CAC is close to the cmc in the case of hydrophobic interactions between non-ionic polymers and
ionic/non-ionic surfactants. While CAC reflects the onset of the interaction between polymer and
surfactant, there is another critical surfactant concentration, referred to as the polymer saturation point
(PSP), where the polymer chains become saturated with bound surfactant molecules or micelles [19,31].
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When the interactions between surfactant and polymer are weak, CAC and PSP values are usually
close to the cmc of the pure surfactant [19]. The critical concentrations (cmc, CAC, PSP) are often
determined by surface tension and electrical conductivity measurements. The plots of surface tension
and electrical conductivity show different break points as the surfactant concentration of the polymer
solution is increased [19].

When surfactant is introduced to a polymer solution, interactions between the surfactant and the
polymer lead to the formation of surfactant-polymer aggregates. Nagarajan [34] suggested a “necklace
model” to explain the aggregations between polymer and surfactant micelles. According to the “necklace
model”, the polymer macromolecule warps around the surfactant micelles. The polymer segments
penetrate into the polar head group of micelles, and protect the hydrophobic tails from contacting
water. The surfactant-polymer interactions can lead to the extension of polymer macromolecules.
The surfactant molecules interact with the polymer macromolecule at favorable sites, form micelles,
and open up and extend the coiled macromolecule. Thus, surfactant-polymer interactions can have a
strong influence on the rheological behavior of solutions, due to extension, shrinking, and bridging of
polymer macromolecules. Although a number of studies have been published on surfactant-polymer
interactions, the complex behavior of mixed additives in solutions is far from being well understood.

The broad objective of this work was to explore the interactions between different surfactants
and a polymer, with frictional drag reduction in turbulent flows as the final application. To that end,
a well-known drag reducing polymer, anionic sodium carboxymethyl cellulose, was selected for the
interaction studies. Sodium carboxymethyl cellulose has received widespread attention in the literature
due to its excellent drag reduction performance and shear resistance [35]. The interactions of the
selected polymer with five different surfactants (two anionic, two non-ionic, and one zwitterionic) were
investigated through studies of the rheology and surface activity of surfactant-polymer solutions. To the
best of our knowledge, the interactions between sodium carboxymethyl cellulose and the surfactants
selected in this work have not been reported before in the literature. As drag reduction by polymeric
additives usually occurs at very low concentrations of polymer (of the order of ppms), the polymer
concentration was fixed at a low value of 500 ppm (0.05 wt%) in the surfactant-polymer interaction
experiments. At this low concentration of polymer, that is 0.05 wt%, the only rheological property
that can be measured accurately is the shear viscosity. Any other rheological property (for example,
viscoelastic properties, such as storage modulus or normal stresses), if at all possessed by such a dilute
polymer solution, was expected to be too small to be detected accurately in a standard rheometer. Thus,
the rheological measurements of polymer and surfactant-polymer solutions carried out in this work
were restricted to shear viscosity measurements over a range of shear rates.

2. Experimental Work

2.1. Materials

The polymer used in this work was Aqualon CMC (referred to as simply CMC). Aqualon
CMC is purified sodium carboxymethyl cellulose. The chemical structure of CMC is shown in
Figure 1. CMC is an anionic water soluble polymer, used extensively in applications related to food,
pharmaceuticals, cosmetics, personal care, paper, and many more industries. It is often used as a
rheology modifier or thickener to improve the stability of suspension and emulsion type products. It is
manufactured by Ashland Inc., Covington, KY, USA. CMC is produced by reacting alkali cellulose with
sodium monochloroacetate under strictly controlled conditions. It has a minimum purity of 99.5%.
The molecular weight of CMC is approximately 700,000, and the degree of substitution is 0.7.

Five different surfactants were investigated for the interaction experiments. They are described in
Table 1. Deionized water was used as a solvent for the polymers.
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Table 1. Different surfactants investigated in this work.

Trade Name Chemical Name or Structure Type of Surfactant and
Additional Information

Industrial Uses
and Manufacturer

Alfonic 1412-3
Ethoxylate

Ethoxylated alcohol,
CH3(CH2)xCH2(OCH2CH2)3OH
where ‘x’ varies between 10 and 12

Non-ionic, liquid, no salt
present, 100% active, critical
micelle concentration (cmc)
of 48.2 mg/L, surface tension

of 21.7 mN/m above cmc.

Used in liquid detergents, hard
surface cleaners, and other

industrial cleaning formulations.
Additionally used as a wetting
agent, emulsifier, and degreaser.

It is manufactured by Sasol
Chemicals, Houston, TX, USA

Aromox DMC Dimethylcocoalkylamine oxide

Non-ionic, liquid, Amine
oxide −38 to 43%,

Amine−1.5% max, peroxide
0.34% max, surface tension

of 30 mN/m above cmc.

Used as a thickener. It is
manufactured by AkzoNobel,

Amsterdam, Netherlands

Stepwet DF-95
Sodium Lauryl Sulfate based
surfactant; CH3 (CH2)10 CH2

OSO3 Na

Anionic, solid powder,
minimum 93% active,

sodium lauryl sulfate >93%,
sodium sulfate <3.5%,
sodium chloride < 2%

Used as a wetting agent. It is
manufactured by Stepan

Company, Northfield, IL, USA

Stepanol WA-100
Sodium Lauryl Sulfate based
surfactant; CH3 (CH2)10 CH2

OSO3 Na

Anionic, solid powder,
sodium lauryl sulfate

97–100%, sodium sulfate
0.56%, sodium chloride

0.025%, 97.59% active, cmc
of 389 mg/L, surface tension

of 36.3 mN/m above cmc.

Used as a foaming agent and
mouth dispersant in dentifrices.
Used in powdered formulations,

such as hand cleaners and
powdered baths. Can be used in

liquid hand soaps and
shampoos. It is manufactured

by Stepan Company, Northfield,
IL, USA

Amphosol CG

Cocamidopropyl Betaine (CAPB);
CAPB is a fatty acid amide

consisting of a long hydrocarbon
chain at one end and a polar

group at the other.

Zwitterionic consisting of
both quaternary ammonium

cation and a carboxylate,
aqueous liquid, 30% active

(30% CAPB), surface tension
of 29.3 mN/m above cmc.

Used as a humectant, foam
booster, antistatic agent,

viscosity builder. Used in
bubble baths, hand soaps, hair
conditioners, cleansing creams

and lotions, cream rinses,
shower gels, shampoos. It is

manufactured by Stepan
Company, Northfield, IL, USA

2.2. Procedures

Solutions of pure polymer (CMC) and mixtures of surfactant and polymer were prepared at room
temperature. For pure polymer solutions, the CMC concentration was varied from 100 to 2000 ppm.
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For solutions of mixtures of surfactant and polymer, the concentration of polymer was fixed at 500 ppm,
but the concentration of surfactant was varied. All solutions were prepared using deionized water as
the solvent. The additives were added slowly to the deionized water while maintaining gentle mixing
until the additives were dissolved. The rheology and surface activity of each solution was studied.

A coaxial cylinder viscometer (Fann 35A/SR 12 viscometer, Fann Instrument Company, Houston,
TX, USA) was used to obtain the shear stress versus shear rate data at room temperature (23 ± 2 ◦C).
The inner cylinder (bob) of the viscometer was stationary and the outer cylinder (rotor) was rotated at
a known speed (rpm). The rotor radius was 1.8415 cm and the bob radius was 1.7245 cm. The bob
height was 3.8 cm and the shear gap, in which the fluid was sheared, was 0.117 cm. From the dial
reading versus rpm data, the shear stress and shear rate were calculated. The shear stress versus dial
reading relation (calibration) was obtained using the known viscosity standards. The shear rate at the
surface of the bob was calculated from the following equation:

.
γ =

2N
1− S−2N Ω (1)

where
.
γ is shear rate, N is the slope of ln(Ω) versus ln(τ) data, S is the ratio of rotor to bob radii

(S = 1.0678), τ is the shear stress, and Ω is the rotor speed in rad/s.
The surface tension measurements were carried out using a CSC Du Nouy ring tensiometer

(model no 70535, CSC Scientific Company, Fairfax, VA, USA). To measure the surface tension, the Du
Nouy ring was placed below the surface of the liquid, and the ring was pulled upward through the
surface of the liquid. The force required to detach the ring from the surface of the liquid was measured
precisely, and converted to surface tension. The surface tension of each solution was measured twice
and the average value was calculated. The measurements were highly reproducible. The difference
between the two measurements was negligible (<0.3 mN/m). The surface tension measurements of
some liquid samples were also carried out using the ADSA (Axisymmetric Drop Shape Analysis)
method. The values obtained by the Du Nouy ring method and the ADSA method were in close
agreement with each other.

3. Results and Discussion

3.1. Rheological Behavior and Surface Activity of Solutions of Anionic Polymer CMC

Figure 2 shows the viscosity versus shear rate (Figure 2a) and shear stress versus shear rate
(Figure 2b) plots for solutions of anionic polymer CMC, for different values of polymer concentration.
All polymer solutions are shear-thinning, in that the viscosity decreases with the increase in shear rate.
The viscosity increases with the increase in polymer concentration at any given shear rate. Interestingly,
the shear stress versus shear rate plots are straight lines on a log–log scale indicating the polymer
solutions follow the power law behavior:

τ = K
.
γ

n (2)

where τ is shear stress,
.
γ is shear rate, K is consistency index, and n is flow behavior index. As the plots

of shear stress versus shear rate are parallel, the flow behavior index, n, is nearly constant independent
of the polymer concentration.

Figure 3 shows the variations of consistency index, K, and flow behavior index, n, with the
increase in polymer concentration. While the flow behavior index, n, decreases only marginally with
the increase polymer concentration, the consistency index, K, shows a large increase with the increase
in polymer concentration. The variation of K with the CMC concentration can be described by a linear
relationship, as shown in the figure.

The surface tension versus polymer concentration plot is shown in Figure 4. The CMC polymer
solutions exhibit negligible surface activity as the surface tension is close to that of water, and there is
no dependence of surface tension on the polymer concentration.
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3.2. Effect of Anionic Surfactant (Stepwet DF-95) on the Rheological Behavior and Surface Activity of Solutions
of Anionic Polymer CMC

The influence of the anionic surfactant (Stepwet DF-95) on the viscosity of the anionic polymer
(CMC) solutions at a fixed polymer concentration of 500 ppm is shown in Figure 5. The viscosity of the
solution decreases with the increase in the surfactant concentration at any given shear rate. In addition,
all solutions are shear-thinning. The flow curves (viscosity versus shear rate plots) at different surfactant
concentrations are almost parallel to those of the pure polymer solution. The solutions followed the
power law model (Equation (2)). The variations of consistency index, K, and flow behavior index, n,
with the surfactant concentration are shown in Figure 6.
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With the increase in the surfactant concentration, the flow behavior index, n, increases marginally,
indicating that the solutions become less non-Newtonian. However, the consistency index, K, shows a
large decrease with the increase in the surfactant concentration. Clearly the variations in K and n reflect
a strong interaction between the surfactant molecules and polymer macromolecules. The presence of
same charge (anionic) surfactant molecules in the solution does not provide a favorable environment for
the anionic polymer chains to extend as much as in the absence of surfactant molecules. The repulsion
between the same charge surfactant molecules and polymer chains causes shrinking of the polymer
chains, resulting in a decrease in the consistency index, K, and an increase in the flow behavior index, n.

The effect of surfactant concentration on the surface tension of surfactant-polymer solutions
at a fixed polymer concentration of 500 ppm is shown in Figure 7. With the increase in surfactant
concentration, the surface tension decreases rapidly and then levels-off at high surfactant concentration
(>500 ppm). The surface tension versus surfactant concentration plot shows two break points.
The first break point, corresponding to CAC (critical aggregation concentration), occurs at a surfactant
concentration of about 100 ppm, and the second break point corresponding to PSP (polymer saturation
point concentration) occurs at a surfactant concentration of about 500 ppm. The surface tension behavior
is consistent with the K and n plots of Figure 6. The consistency index, K, and the flow behavior index,
n, undergo significant changes around 80–100 ppm surfactant concentration, and they level off around
500 ppm surfactant concentration.

3.3. Effect of Anionic Surfactant (Stepanol WA-100) on the Rheological Behavior and Surface Activity of
Solutions of Anionic Polymer CMC

Figure 8 shows the influence of anionic surfactant (Stepanol WA-100) on the viscosity of anionic
polymer (CMC) solutions at a fixed polymer concentration of 500 ppm. The effect of Stepanol WA-100
on the viscosity of CMC polymer solution is similar to that of surfactant Stepwet DF-95. The solution
viscosity decreases with the increase in the surfactant concentration and the solutions are shear-thinning.
The solutions followed the power law model (Equation (2)). The variations of consistency index, K,
and flow behavior index, n, with the increase in surfactant concentration are shown in Figure 9.
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With the increase in the surfactant concentration, the flow behavior index, n, remains constant,
equal to that of pure CMC solution, until the surfactant concentration of 200 ppm is reached. With further
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increase in surfactant concentration, the value of n increases, indicating that the solutions become
less non-Newtonian. The consistency index, K, is nearly constant up to the surfactant concentration
of about 80 ppm. With further increase in surfactant concentration, K undergoes a large decrease.
The variations in K and n reflect a strong interaction between the surfactant molecules and polymer
macromolecules at high surfactant concentrations. A similar behavior was observed in the case of
Stepwet DF-95 surfactant. As explained earlier, the presence of the same charge (anionic) surfactant
molecules in the solution does not provide a favorable environment for the anionic polymer chains
to extend as much as in the absence of surfactant molecules. Consequently, the consistency index, K,
decreases, and the fluid tends to become Newtonian.
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Figure 10 shows the effect of surfactant (Stepanol WA-100) concentration on the surface tension
behavior of surfactant-polymer solutions at a fixed polymer (CMC) concentration of 500 ppm. With the
increase in surfactant concentration, the surface tension decreases rapidly and then levels-off at
high surfactant concentration (>500 ppm). From the surface tension versus surfactant concentration
plot, it appears that the CAC is approximately 80 ppm where we observe the first break in surface
tension-surfactant concentration plot. The PSP (polymer saturation point) where the surface tension
tends to level off is 500 ppm. Note that these observations are consistent with the K and n plots shown
in Figure 9. The values of K and n are nearly constant up to a surfactant concentration of about 80 ppm.
At higher surfactant concentrations, K decreases and n increases until the surfactant concentration
reaches 500 ppm.

3.4. Effect of Non-ionic Surfactant (Alfonic 1412-3 Ethoxylate) on the Rheological Behavior and Surface
Activity of Solutions of Anionic Polymer CMC

The influence of non-ionic surfactant (Alfonic 1412-3 Ethoxylate) on the viscosity of anionic polymer
(CMC) solutions at a fixed polymer concentration of 500 ppm is shown in Figure 11. All solutions are
shear-thinning. The viscosity of the solution decreases with the increase in the surfactant concentration



Polymers 2020, 12, 2302 11 of 20

at any given shear rate. The flow curves (viscosity versus shear rate plots) at different surfactant
concentrations are almost parallel to each other, indicating the same degree of shear thinning. Figure 12
shows the variations of consistency index, K, and flow behavior index, n. The flow behavior index, n,
of the solution is not affected by the addition of surfactant. Note that the value of n for pure CMC
solution at 500 ppm CMC is 0.675. However, the consistency index, K, drops by a significant amount
upon the addition of surfactant to the polymer solution. Most of the drop in K occurs at low surfactant
concentrations, of up to about 10 ppm. With further increase in surfactant concentration the value of K
remains nearly constant. The decrease in the consistency index with the addition of surfactant is clearly
indicative of surfactant-polymer interaction. It appears that the surfactant molecules aggregate on the
polymer chains, and thereby reduce intra-repulsion between the same (negative) charges present on
the polymer chain. The reduction of intra-repulsion causes shrinking of polymer chains, and hence a
decrease in consistency.
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The effect of surfactant (Alfonic 1412-3 Ethoxylate) concentration on the surface tension behavior
of surfactant-polymer solutions is shown in Figure 13 at a fixed polymer (CMC) concentration of
500 ppm. With the increase in the surfactant concentration, the surface tension decreases much more
rapidly when compared with the other surfactants. Most of the drop in surface tension occurs within
the surfactant concentration range of 0–10 ppm. Clearly the non-ionic surfactant, Alfonic 1412-3
Ethoxylate, is much more surface active compared with the other surfactants. The surface tension
tends to level off when surfactant concentration exceeds 70 ppm. From the surface tension versus
surfactant concentration plot, it appears that the CAC is approximately 10 ppm where we observe the
first break in surface tension-surfactant concentration plot. The PSP (polymer saturation point) where
the surface tension tends to level off is about 70 ppm.
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3.5. Effect of Non-ionic Surfactant (Aromox DMC) on the Rheological Behavior and Surface Activity of
Solutions of Anionic Polymer CMC

Figure 14 shows the influence of non-ionic surfactant Aromox DMC (Dimethylcocoalkylamine
oxide) on the viscosity of anionic polymer (CMC) solutions at a fixed polymer concentration of 500 ppm.
The solutions are shear thinning and the flow curves are nearly parallel to each other. Interestingly the
flow curve for pure polymer solution falls below the flow curves of some of the surfactant-polymer
solutions. The power law constants (K and n) are plotted in Figure 15. The flow behavior index, n,
is nearly the same as that of the pure polymer solution until the surfactant concentration of about
80 ppm. With further increase in surfactant concentration, n falls below the pure polymer solution
value. The consistency index, K, of surfactant-polymer mixture falls above the value of the pure
polymer solution until a surfactant concentration of 30 ppm is reached. With increase in surfactant
concentration from 50 to 120 ppm, the consistency index increases, and peaks at about 120 ppm.
From these observations, it appears that the CAC (critical aggregation concentration) is well below
50 ppm, where the surfactant begins to interacts with the polymer molecules. The interaction of
surfactant molecules with the polymer chains causes extension of the polymer chains, resulting in an
increase in the value K. The PSP (polymer saturation point) is approximately 120 ppm, where a peak
in the consistency index is observed.

The surface tension behavior of polymer (CMC) + surfactant (Aromox DMC) solutions is shown
in Figure 16, at a fixed polymer (CMC) concentration of 500 ppm. With the increase in the surfactant
concentration, the surface tension decreases as expected. Most of the drop in surface tension occurs
within the surfactant concentration range of 0–150 ppm. The surface tension versus surfactant
concentration plot shows a first plateau in the surfactant concentration range of approximately 30 to
120 ppm. From 120–150 ppm, the surface tension drops significantly and then it tends to level off

(second plateau) at a higher surfactant concentration. Thus, the CAC and PSP values are approximately
30 ppm and 120 ppm, respectively. These observations are consistent with the consistency behavior of
surfactant-polymer mixtures.
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3.6. Effect of Zwitterionic Surfactant (Amphosol CG) on the Rheological Behavior and Surface Activity of
Solutions of Anionic Polymer CMC

The influence of zwitterionic surfactant (Amphosol CG) on the rheological behavior of
surfactant-polymer solutions is shown in Figure 17. All solutions are shear thinning. The flow curve
(viscosity versus shear rate) of the surfactant-polymer mixture solution generally falls below that of
the pure polymer solution (CMC, 500 ppm), except at low concentrations of surfactant. The power-law
constants (K and n) are plotted in Figure 18. The flow behavior index, n, is nearly the same as that of
the pure polymer solution, throughout the surfactant concentration range. The consistency index, K,
of the surfactant-polymer mixture is higher than that of the pure polymer solution at low surfactant
concentrations of up to about 30 ppm. At higher surfactant concentrations, the consistency index, K,
of the surfactant-polymer mixture falls significantly below that of the pure polymer solution. Thus,
at low surfactant concentrations, the surfactant molecules cause extension of polymer chains, and at
high surfactant concentrations, higher than 50 ppm, the interaction of surfactant molecules with the
polymer chains results in shrinking of the polymer chains.

Figure 19 shows the surface tension behavior of polymer (CMC) + surfactant (Amphosol CG)
solutions at a fixed polymer (CMC) concentration of 500 ppm. With the increase in the surfactant
concentration, the surface tension decreases rapidly up to a surfactant concentration of 20 ppm.
With further increase in surfactant concentration, the surface tension decreases gradually up to
a surfactant concentration of about 120 ppm, and then levels off. Thus, the critical aggregation
concentration (CAC) is about 20 ppm, where the break in surface tension versus concentration plot is
observed and the surfactant molecules begin to associate with the polymer chains. The polymer chains
are saturated with the surfactant molecules at surfactant concentrations above 120 ppm. The consistency
index, K, also becomes nearly constant above 120 ppm surfactant (see Figure 18).
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polymer, CMC, and zwitterionic surfactant, Amphosol CG, with the increase in surfactant concentration,
at a fixed polymer concentration of 500 ppm.
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3.7. Discussion

Table 2 summarizes the approximate CAC and PSP values of different surfactants, estimated from
the surface tension versus surfactant concentration plots and rheological information. The critical
micelle concentrations (cmc) of some of the pure surfactants are also shown. Interestingly, the CAC
values for the same charge surfactant as polymer (that is, anionic surfactant/anionic polymer) are high
(>80 ppm), as expected due to repulsion between surfactant and polymer molecules. Likewise, the PSP
concentrations are high (500 ppm) for the same charge surfactants as polymer. For non-ionic and
zwitterionic surfactants, the CAC values are small in the range of 10–30 ppm. It should also be noted
that CAC values are significantly lower than the cmc of pure surfactants whose cmc values are known.

Table 2. Summary of approximate values of CAC and PSP for different surfactants.

Surfactant Polymer CAC in ppm PSP in ppm Surfactant Critical Micelle
Concentration (cmc)

Anionic (Stepwet DF-95) Anionic CMC 100 500 Not available

Anionic
(Stepanol WA-100) Anionic CMC 80 500 390 mg/L ≈ 390 ppm

Non-ionic
(Alfonic 1412-3 Ethoxylate) Anionic CMC 10 70 48.2 mg/L ≈ 48.2 ppm

Non-ionic
(Aromox DMC) Anionic CMC 30 120 Not available

Zwitterionic
(Amphosol CG) Anionic CMC 20 120 Not available

The interactions between CMC and different surfactants are summarized in Table 3, where the
symbol “S” refers to surfactant, “P” refers to polymer, the superscripts refer to the charge on the species
(0 for neutral, − for negative charge, and + for positive charge).
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Table 3. Summary of interactions between polymer and surfactants.

Surfactant Polymer Surfactant -Polymer
Combination Comments

Anionic (Stepwet DF-95) Anionic (CMC) S− P−

Strong interaction observed
between surfactant and polymer

based on consistency index;
consistency decreases upon

addition of surfactant

Anionic
(Stepanol WA-100) Anionic (CMC) S− P−

Strong interaction observed
between surfactant and polymer

based on consistency index;
consistency decreases upon

addition of surfactant

Non-ionic
(Alfonic 1412-3 Ethoxylate) Anionic (CMC) S0 P−

Weak interaction observed between
surfactant and based on

consistency index; consistency
decreases upon addition

of surfactant

Non-ionic
(Aromox DMC) Anionic (CMC) S0 P−

Moderate interaction observed
between surfactant and polymer

based on consistency index;
consistency increases upon

addition of surfactant

Zwitterionic
(Amphosol CG) Anionic (CMC) S+- P−

Weak interaction observed between
surfactant and polymer based on

consistency index; consistency
decreases upon addition

of surfactant

4. Conclusions

The interactions between the polymer and the surfactants were explored experimentally using
rheology and surface tension measurements. The polymer studied was anionic sodium carboxymethyl
cellulose (CMC). The surfactants studied were: anionic Stepwet DF-95, anionic Stepanol WA-100,
Non-ionic Alfonic 1412-3 Ethoxylate, Non-ionic Aromox DMC, and Zwitterionic Amphosol CG. Based
on the experimental work, the following conclusions can be made:

• The interactions between anionic surfactants and an anionic polymer are strong in terms of
the consistency index. The consistency index decreases with the addition of surfactant to the
polymer. However, the CAC values of anionic surfactants are significantly higher than the other
combinations of surfactant and polymer investigated.

• The interactions between the following combinations of surfactant and polymer are weak in
terms of the consistency index: non-ionic surfactant Alfonic 1412-3 Ethoxylate/anionic polymer
CMC, and zwitterionic surfactant Amphosol CG/anionic CMC. The consistency index generally
decreases with the addition of surfactant to polymer.

• The interactions between the non-ionic surfactant, Aromox DMC, and the anionic polymer,
CMC, are moderate in terms of the consistency index. However, in this case, the consistency
index increases with the addition of surfactant to the polymer, indicating an increase in the
hydrodynamic size of the polymer molecules. Thus, this combination of surfactant and polymer
is promising from a drag reduction point of view.

• The CAC values of anionic surfactants and anionic polymer are in the range of 80–100 ppm.
• The CAC values of other combinations of surfactants (non-ionic, zwitterionic) and anionic polymer

are in the range of 10–30 ppm.
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• For the surfactants of known critical micelle concentration (cmc), the CAC values were found to
be significantly lower than the cmc.
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