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Abstract: Polycarbazole and its derivatives have been extensively used for the last three decades,
although the interest in these materials briefly decreased. However, the increasing demand for
conductive polymers for several applications such as light emitting diodes (OLEDs), capacitators or
memory devices, among others, has renewed the interest in carbazole-based materials. In this review,
the synthetic routes used for the development of carbazole-based polymers have been summarized,
reviewing the main synthetic methodologies, namely chemical and electrochemical polymerization.
In addition, the applications reported in the last decade for carbazole derivatives are analysed.
The emergence of flexible and wearable electronic devices as a part of the internet of the things could
be an important driving force to renew the interest on carbazole-based materials, being conductive
polymers capable to respond adequately to requirement of these devices.
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1. Introduction

Electrically conductive polymers are a highly demanded class of materials due to their
extended uses in electronic and optical devices or sensors, among others. These materials present
main advantageous properties of conventional polymers, such as solubility, mechanical flexibility,
non-expensive fabrication or processing, with conductivity levels that could be compared to those
of semiconductors or even metals. In 1977, Macdiarmid, Shirakawa and Heeger demonstrated that
chemical doping of polyacetylene (PA) resulted in a highly conducting material, with its conductivity
being eleven orders of magnitude higher than a pristine polymer. For this they were awarded with the
Nobel Prize in 2000 for their research on conductive polymers [1,2]. These materials have induced the
development of many applications, such as organic light emitting diodes (OLEDs) [3–6], organic field
effect transistors (OFETs) [7–11], dye-sensitized solar cells [12–16], photochromic dyes [17–21],
batteries [22–26], and electrocatalyst [27,28] or (bio)sensors [26,29–32]
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The term conductive polymer encompasses both organic molecules containing of alternating
simple (type σ) and double (type π) carbon bonds and/or conjugated aromatic nuclei on their skeleton.
This particularity, π-conjugated structure, allows the transfer of charges (electrons or holes) along
the macromolecular skeleton. The most commonly used conjugated polymers are poly(thiophene)
(PT) [33,34], poly(pyrrole) (PPy) [35], poly(p-phenylene) (PPP) [36], poly (p-phenylenevinylene)
(PPV) [37], and polyfluorene (PF) [38–41], with their structures summarized in Figure 1. In addition to
the processability inherent of many polymers, it is important to notice their ability to modulate their
conductivity by doping, which could vary from the isolation state (<10−10 S.cm−1), to the semiconductor
state (~10−5 S.cm−1), and even to the conductive material (>104 S.cm−1) near copper (5 × 105 S.cm−1).
Among electronic conductive polymers, polymers containing a carbazole ring (PCz) also present good
electrical and optical properties.
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benzene ring fused on either side of a central pyrrole ring (Figure 2) [43]. Carbazole represents an 
important class of heterocycles with several advantages. For example, a large variety of substituents 
can be easily introduced in the nitrogen atom and the aromatic framework can be substituted in 
positions 3 and 6, modifying the physicochemical properties. Carbazol-based polymers (PCz) have 
attracted increased attention over the last 50 years owing to their stability and higher redox potential 
compared to other conducting polymers [44]. Similarly, they present good electro- and photoactive 
properties because of their high hole transporting mobility and strong absorption in the UV spectral 
region [45]. These characteristics have extended the use of this kind of polymer in several 
applications, such as transistors [46,47], smart windows [48], light emitting diode [49–52], (bio)sensor 
[53–55], and photovoltaic devices [56,57]. 
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The field of the conductive polymers has exponentially increased since 1985. The growth of the 
last decade has been favoured by the increase in devices related to the internet of things (IoT). These 
types of devices require new materials capable of satisfying their high requirements, with conductive 
polymers being one of the most widely used materials for these devices [57–69]. Among the 
conductive polymers, polycarbazole derivatives have also received increasing attention. As can be 
observed in Figure 3, there is a relation between the increase on the number of publications related 
to conductive polymers (green) and the increase of publications based on polycarbazole derivatives 
(red). However, this increase has been significantly lower for the case of poly(N-vinylcarbazole) 
(black). 

Figure 1. The structure of some of the main conjugated polymers.

Carbazole (C12H9N), also named dibenzopyrrole or diphenylenimine, is an N-containig
heterocyclic compound discovered by Graebe and Glaser in 1872 [42]. Its structure consists of
two benzene ring fused on either side of a central pyrrole ring (Figure 2) [43]. Carbazole represents an
important class of heterocycles with several advantages. For example, a large variety of substituents
can be easily introduced in the nitrogen atom and the aromatic framework can be substituted in
positions 3 and 6, modifying the physicochemical properties. Carbazol-based polymers (PCz) have
attracted increased attention over the last 50 years owing to their stability and higher redox potential
compared to other conducting polymers [44]. Similarly, they present good electro- and photoactive
properties because of their high hole transporting mobility and strong absorption in the UV spectral
region [45]. These characteristics have extended the use of this kind of polymer in several applications,
such as transistors [46,47], smart windows [48], light emitting diode [49–52], (bio)sensor [53–55],
and photovoltaic devices [56,57].
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Figure 2. Structure of carbazole.

The field of the conductive polymers has exponentially increased since 1985. The growth of the last
decade has been favoured by the increase in devices related to the internet of things (IoT). These types of
devices require new materials capable of satisfying their high requirements, with conductive polymers
being one of the most widely used materials for these devices [57–69]. Among the conductive polymers,
polycarbazole derivatives have also received increasing attention. As can be observed in Figure 3,
there is a relation between the increase on the number of publications related to conductive polymers
(green) and the increase of publications based on polycarbazole derivatives (red). However, this increase
has been significantly lower for the case of poly(N-vinylcarbazole) (black).
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In recent years, it is important to highlight the work of Mario Leclerc et al. with several reviews
and book chapters focused on the synthesis of poly(3,6-carbazole) and poly(2,7-carbazole) derivatives
for plastic electronics and solar cells [70–74]. Considering the Scopus database, in a total of 17 reviews
(eight in the last 10 years) and rive chapters (four in the last 10 years) polycarbazole derivatives are
mentioned. Tables 1 and 2 summarize this information. However, in many of them, polycarbazole
derivatives are part of the publication, but such publications are not completely devoted to them, or the
publication is focused only on one type of derivative and/or application.

Table 1. Summary of the reviews on poly(carbazole)derivatives extracted from Scopus.

Authors Title Year Journal Cited Ref.

Houben J.L. et al.

Optically active vinyl polymers
containing fluorescent groups: 5.

Fluorescence properties of
poly(9-vinyl carbazole) and

optically active polymers containing
carbazole units

1978 Polymer 35 [75]

Murphy S.M. et al.

Polymer membranes in clinical
sensor applications. II. The design
and fabrication of permselective

hydrogels for
electrochemical devices

1992 Biomaterials 27 [76]

J.V.
Grazulevicius et al.

Carbazole-containing polymers:
synthesis, properties

and applications
2003 Progress in Polymer

Science 660 [77]

Morin J.-F. et al. Polycarbazoles: 25 years of progress 2005 Macromolecular Rapid
Communications 552 [74]
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Table 1. Cont.

Authors Title Year Journal Cited Ref.

Ding J. et al.
Highly efficient green-emitting

phosphorescent iridium dendrimers
based on carbazole dendrons

2006 Advanced Functional
Materials 290 [78]

Faridbod F. et al.

Developments in the field of
conducting and non-conducting
polymer based potentiometric

membrane sensors for ions over the
past decade

2008 Sensors 120 [79]

Boudreault
P.-L.T. et al.

Poly(2,7-carbazole)s and
related polymers 2008 Advances in Polymer

Science 61 [71]

Zou Y., Gendron
D. et al.

A high-mobility low-bandgap
poly(2,7-carbazole) derivative for

photovoltaic applications
2009 Macromolecules 220 [80]

Ates M. et al. Conducting polymer coated carbon
surfaces and biosensor applications 2009 Progress in Organic

Coatings 106 [81]

Beaupré S. et al.

Solar-energy production and
energy-efficient lighting:
Photovoltaic devices and

white-light-emitting diodes using
poly(2,7-fluorene),

poly(2,7-carbazole), and
poly(2,7-dibenzosilole) derivatives

2010 Advanced Materials 187 [82]

Boudreault
P.-L.T. et al.

Polycarbazoles for
plastic electronics 2010 Polymer Chemistry 149 [70]

Dubey N., Leclerc
M.

Conducting polymers: Efficient
thermoelectric materials 2011

Journal of Polymer
Science, Part B:

Polymer Physics
252 [83]

Gendron D.,
Leclerc M.

New conjugated polymers for
plastic solar cells 2011 Energy and

Environmental Science 240 [84]

Grigoras A.G.
A review on medical applications of

poly(N-vinylcarbazole) and
its derivatives

2016

International Journal
of Polymeric Materials

and Polymeric
Biomaterials

2 [85]

Tan S.E., Sarjadi
M.S.

The recent development of
carbazole-, benzothiadiazole-, and

isoindigo-based copolymers for
solar cells application: A review

2017 Polymer
Science—Series B 7 [86]

Liguori R. et al.

Stereoregular polymers with
pendant carbazolyl groups:
Synthesis, properties and

optoelectronic applications

2018 Synthetic Metals 2 [87]

Ghorbani Zamani
F. et al.

Current trends in the development
of conducting polymers-based

biosensors
2019 TrAC—Trends in

Analytical Chemistry 18 [88]
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Table 2. Summary of the book chapters on poly(carbazole)derivatives extracted from Scopus.

Title Author Year Book Ref.

Light-emitting polymers
Perepichka, D.F.,
Perepichka, I.F.,

Meng, H., Wudl, F.
2006 Organic Light-Emitting

Materials and Devices [89]

Synthesis of Poly(2,7-carbazole)s
and Derivatives

Boudreault, P.-L.T.,
Morin, J.-F., Leclerc, M. 2010 Design and Synthesis of

Conjugated Polymers [71]

Conducting polymer-based
thermoelectric composites:

Principles, processing,
and applications

Yemata, T.A., Ye, Q.,
Zhou, H., (...),

Chin, W.S., Xu, J.
2017

Hybrid Polymer
Composite Materials:

Applications
[90]

Light-emitting polymers
Xun, S., Perepichka, D.F.,

Perepichka, I.F.,
Meng, H., Wudl, F.

2017
Organic Light-Emitting
Materials and Devices,

Second Edition
[91]

Miscellaneous Vinyl
Thermoplastics Gilbert, M. 2017 Brydson’s Plastics

Materials: Eighth Edition [92]

Considering the previous mentioned lacks, in this review, a global overview of the main
polycarbazole derivatives, focused in the last decade, and their applications are revised. The main
synthetic routes used for the development of carbazole-based polymers have been summarized in
two parts: chemical and electrochemical polymerization of carbazole and its derivatives. In addition,
the applications reported in the last years for carbazole-based polymers are reviewed (2010–2020).

2. Synthesis of Polymers

The synthesis and characterization of conducting polymers have become one of the most
important areas of the research in polymer and materials science. In general, conductive polymers
can be synthesized by different methods, with chemical polymerization (classical organic synthesis)
and electrochemical polymerization (electrochemical synthesis) being the most commonly used
processes. The following sections describe these two different synthesis techniques of polycarbazole
and its derivatives.

Carbazole presents several active positions (3,6-, 2,7-, and 1,8-positions), being the 3,6 postions
easier to polymerize. Poly(N-vinylcarbazole) and its derivatives has been highly studied since
decades, but in the last decade 3,6-carbazole derivatives have been intensively investigated.
Nevertheless, these derivatives present several limitations in their application due to their low
molecular weight and poor conjugation of the electrons in their structure. On the other hand,
the development of 2,7-carbazoles present better properties and applicability than the 3,6 due to
their extended conjugation and lower band gap [70]. Finally, poly(1,8-carbazole) derivatives are
the less developed derivatives, and poly(1,8-cabazole) is less planar compared to 3,6 and 2,7 [93,94].
However, this property makes these derivatives more suitable for the electrets of photoresponsive
organic field-effect transistor memory applications [46].

2.1. Chemical Polymerization of Carbazoles and Its Derivatives

Chemical polymerization of carbazole has been carried out in the presence of oxidizing agents
such as ammonium persulphate ((NH4)2S2O8) (APS), ferric chloride (FeCl3), and potassium dichromate
(K2Cr2O7). The structure and properties of the obtained polymer are strongly dependent on the
concentration, the catalyst (oxidizing agent), and the solvent [74]. The chemical synthesis takes place
by oxidation-reduction reactions that are accompanied by a change in the number of electrons in the π

system. The first studies on the oxidation of carbazole were published by Branch and Tucker [95–97].
Although the most commonly used dopants are FeCl3 or I2, these oxidants can promote polymer
aggregation and, as consequence, important problems on the device production. To overcome this
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drawback Aoai et al. [98] described a photodoping method based on the use of triaylsulfonium or
diaryliodonium salts as PAG (photo acid generator).

The mechanism proposed for the synthesis of PCz (or poly(3,6-cabazole)) is presented in Figure 4.
As depicted in Figure 4, first, carbazole monomer is oxidized by a single electron transfer forming the
cation radical. Then more stable dicarbazyl dimer is produced as a result of the coupling of two cation
radicals and the loss of two protons. Regarding the regiochemistry, the polymerization process takes
place at 3 or 6 positions. The reactivity of 1 and 8 positions is probably prevented by the rigid structure
of carbazole heterocycle.
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In order to guarantee de oxidation of the carbazole core, and so, polymerization process,
a minimum electronic density has to be ensured in the starting monomer. Consequently, strong
electron-withdrawing substituents in the aromatic framework do not benefit the reaction.

Shakir and co-workers [100], reported one of the first attempt to obtain a new conductive
nanocomposite of polycarbazole (PCz) with titanium dioxide (TiO2) nanoparticles. This composite
was successfully synthesized by in-situ chemical polymerization in the presence of different amounts
of nanosized TiO2 using ammonium persulfate (APS) as oxidizing agent, in 1:1 molar ratio (Cz:APS),
in dichloromethane at room temperature for a period of 24 h (Figure 5). It is important to notice that, in
a first step, the different solutions of TiO2 nanoparticles were added dropwise to the monomer solution
under constant stirring, this step allows the carbazole absorption on the surface of the nanoparticles
before its polymerization. Creamy coloured solutions were obtained which later transformed into
greenish black sediments. The characterization results revealed that the polymerization of PCz had
been achieved on the surface of the TiO2 nanoparticles indicating strong interaction between PCz and
TiO2 nanoparticles. The same approach was also carried out by Baig et al. [101] for the synthesis of
zirconium (IV) phosphate/polycarbazole nanocomposites.
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It is important to notice that this nanocomposite presents antimicrobial properties. The antibacterial
activity was in vitro evaluated against Staphylococcus aureus, Staphylococcus epidermidis, Proteus mirabilis,
and Escherichia coli. Shakir et al. reported an improvement in the antimicrobial activity for the PCz/TiO2

Nanocomposite compared to TiO2.
The first work on the chemical synthesis of unsubstituted polycarbazole and the formation

of hollow microspheres based on this polymer was reported by Gupta and Prakash in 2010 [102].
Interfacial polymerization of carbazole was carried out using ammonium peroxodisulfate (1.2 M)
as oxidizing agent in dichloromethane at room temperature. After 12 h of polymerization, dark
green polycarbazole films were obtained with a yield of 50% ± 2%. During this interfacial
polymerization, three-dimensional hollow spheres of polycarbazole of various diameters in the
range of a few micrometers were obtained. The growth of these spheres was observed using scanning
electron microscopy (SEM) and atomic force microscopy (AFM) techniques at different time intervals.
These hollow microspheres are grown in the carbazole micelles formed in the interface. That is,
monomer micelles are formed in the reaction solution at the interface due to the agitation (mechanical
or thermal) [102,103]. The polymerization begins inside the micelles and they act as a template for
the polycarbazole, being the size of the micelle dependant on the reaction conditions (temperature,
concentration, stirring rate, etc.).

A similar procedure was followed by Sangwan et al. [99], in their work the effects of surfactants and
their concentration on interfacial polymerization of carbazole was studied. Three surfactants of different
nature such as nonionic Tween 20 (TW20), cationic hexadecyltrimethylammonium bromide (CTAB),
and anionic sodium dodecyl sulphate (SDS) were used for different micelle formation. Ammonium
persulfate (APS) was used as oxidizing agent, being the polymerization performed in dichloromethane
(DCM) at 25 ◦C for 24 h.

The reported SEM images revealed several PCz morphologies depending on the surfactant type
and concentration. As it could be observed at Figure 6, macroporous honeycomb (Figure 6b), connected
hollow spheres (Figure 6c), and smaller hollow spheres (Figure 6d) when using TW20, CTAB and SDS,
respectively. On the other hand, for the system with no surfactant, the particle shapes are typically
hollow sphere structures (Figure 5a). In addition, the electrical conductivity of the different PCz were
measured being 1.72 ± 0.06 × 10−4, 2.62 ± 0.79 × 10−3, 2.16 ± 1.79 × 10−5 and 2.72 ± 0.32 × 10−6 S.cm−1,
for PCz, PCz/TW20, PCz/CTAB and PCz/SDS, respectively. In this case, the maximum electrical
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conductivity was achieved for PCz/CTAB formulation. They observed that the electrical conductivity
depends of the packaging capacity of the PCz particles. The particle size obtained was 3213 ± 944,
1182 ± 327, 2068 ± 455, and 2841 ± 835 nm for PCz, PCz/TW20, PCz/CTAB, and PCz/SDS, respectively.
That is, a smaller particle size provides higher packing that provides higher surface area for electron
transfer. PCz/CTAB presented the highest conductivity due its high packaging. However, in the case
of neutral surfactant, even if the particle size was small, the surface seems to be not adequate to obtain
good electrical conductivity compared to other formulations. Moreover, the materials were doped with
HClO4 at different ratios. Overall, an important increase on the electrical conductivity was observed
for all the materials. Moreover, it is important to notice the maximum value obtained for PCz/CTAB
doped at 1:50 PCz:HClO4, in which the electrical conductivity reached 11.3 ± 0.36 S.cm−1.
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In 2011, Gupta et al. [104], reported the fabrication of PCz/gold nanoparticles nanocomposite by
chemical synthesis using gold (III) chloride hydrate (HAuCl4) as an oxidizing agent by two different
techniques: emulsion and interfacial polymerization. In the proposed mechanism, the synthesis of both
PCz and gold nanoparticles undergoes in cooperation, Au+3 is reduced to Au0, whereas, the monomer is
oxidized, that is, gold nanoparticles are formed simultaneously to the PCz polymerization. The product
was obtained as a green powder with 85% and 75% yields for emulsion and interfacial polymerization,
respectively, after 24 h of polymerization in dichloromethane. It is interesting to notice that UV–Vis
spectra and Fourier-transform infrared (FTIR) spectra revealed the charge transfer between the
polymer matrix and nanoparticles and interaction (Figure 7), indicating that this metal-polymer hybrid
nanomaterial had improved technologically useful properties for molecular electronics system.

In addition, others oxidizing agents, such as anhydrous ferric chloride (FeCl3), have been also
used in the synthesis of PCz. Polycarbazole was synthesized with FeCl3 oxidation in chloroform at
room temperature for 24 h. A green precipitate was collected, and washed in order to remove the
Fe moieties, being the polymerization yield 80% ± 2% [105]. However, despite an intensive cleaning
of the resulting product, iron moieties are still present in the polymer. The hypothetical interaction
between iron and polymer could be based on two different assumptions. So, metallic moieties could
be trapped in bulk polymer or cationic ions could be coordinated with the nitrogen of the carbazole.
On the other hand, these moieties could affect positively to this polymer properties since this PCz
presents higher affinity for proton that could be related to the presence of Fe ion. Due to this proton
affinity, PCz with iron moieties could be used in sensors [105].



Polymers 2020, 12, 2227 9 of 33
Polymers 2020, 12, x FOR PEER REVIEW 8 of 33 

 

 
Figure 7. (I) FT-IR spectra obtained of (1) pure PCz (2) PCz–Au nanocomposite (by emulsion) and (3) 
PCz–Au nanocomposite (by interfacial polymerization). (II) UV–Visible spectra of A) Pure PCz, B) 
PCz–Au nanocomposite (by emulsion) and C) PCz–Au nanocomposite (by interfacial 
polymerization). Inset: Zoom for small peak due to the gold particles (600–620 nm) and broad 
absorption band onward 750 nm. Reprinted with permission from Gupta et al. [104]. Copyright (2012) 
Wiley. 

In addition, others oxidizing agents, such as anhydrous ferric chloride (FeCl3), have been also 
used in the synthesis of PCz. Polycarbazole was synthesized with FeCl3 oxidation in chloroform at 
room temperature for 24 h. A green precipitate was collected, and washed in order to remove the Fe 
moieties, being the polymerization yield 80% ± 2% [105]. However, despite an intensive cleaning of 
the resulting product, iron moieties are still present in the polymer. The hypothetical interaction 
between iron and polymer could be based on two different assumptions. So, metallic moieties could 
be trapped in bulk polymer or cationic ions could be coordinated with the nitrogen of the carbazole. 
On the other hand, these moieties could affect positively to this polymer properties since this PCz 
presents higher affinity for proton that could be related to the presence of Fe ion. Due to this proton 
affinity, PCz with iron moieties could be used in sensors [105]. 

A comparative study in terms of the structural, thermal, morphological, and electrochemical 
properties of polycarbazole (PCz) synthesized by controlled interfacial polymerization using two 
different oxidizing agents, ammonium persulfate (APS) and potassium permanganate (KMnO4) has 
been reported by Kumar et al. [106]. The polymerization was carried out in the dark at room 
temperature in dichloromethane for 24 h, with good yields for PCz–APS and PCz–KMnO4, 82% and 
75%, respectively. In this work, electrochemical impedance spectroscopic studies of both polymers 
were carried out in order to analyse their charge-transfer properties in the vicinity of modified 
PCz/glassy carbon (GC) and PCz/ Pt electrodes. Two supporting electrolytes were used in this study, 
namely 0.1 M tetraethylammoniumtetrafluoroborate (TEATFB) and 0.1 M tetraethylammonium-p-
toluene sulfonic acid (TEA-p-TSA). Figure 8 shows the EIS response obtained for this study, in the 
form of a Nyquist plot. The comparison between the synthesized polymers indicates that PCz–APS 
presents better electron transfer kinetics compared to PCz–KMnO4 at either electrode (GC) or (Pt).  
  

Figure 7. (I) FT-IR spectra obtained of (1) pure PCz (2) PCz–Au nanocomposite (by emulsion) and (3)
PCz–Au nanocomposite (by interfacial polymerization). (II) UV–Visible spectra of (A) Pure PCz, (B)
PCz–Au nanocomposite (by emulsion) and (C) PCz–Au nanocomposite (by interfacial polymerization).
Inset: Zoom for small peak due to the gold particles (600–620 nm) and broad absorption band onward
750 nm. Reprinted with permission from Gupta et al. [104]. Copyright (2012) Wiley.

A comparative study in terms of the structural, thermal, morphological, and electrochemical
properties of polycarbazole (PCz) synthesized by controlled interfacial polymerization using two
different oxidizing agents, ammonium persulfate (APS) and potassium permanganate (KMnO4)
has been reported by Kumar et al. [106]. The polymerization was carried out in the dark at room
temperature in dichloromethane for 24 h, with good yields for PCz–APS and PCz–KMnO4, 82% and
75%, respectively. In this work, electrochemical impedance spectroscopic studies of both polymers were
carried out in order to analyse their charge-transfer properties in the vicinity of modified PCz/glassy
carbon (GC) and PCz/ Pt electrodes. Two supporting electrolytes were used in this study, namely
0.1 M tetraethylammoniumtetrafluoroborate (TEATFB) and 0.1 M tetraethylammonium-p-toluene
sulfonic acid (TEA-p-TSA). Figure 8 shows the EIS response obtained for this study, in the form of a
Nyquist plot. The comparison between the synthesized polymers indicates that PCz–APS presents
better electron transfer kinetics compared to PCz–KMnO4 at either electrode (GC) or (Pt).Polymers 2020, 12, x FOR PEER REVIEW 9 of 33 

 

 
Figure 8. EIS responses, in form of Nyquist plots, for PCz–APS and PCz– KMnO4 in the presence of 
0.1 m TEATFB and 0.1 m TEA-p-TSA in acetonitrile at different electrodes: (I) GC and (II) Pt. 
Reprinted with permission from Kumar et al. [106]. Copyright (2015) Wiley. 

2.2. Electropolymerization of Carbazole and Its Derivatives 

Conductive polymers could be directly synthesized in their doped conductive form from their 
monomer by an anodic or cathodic reaction. However, anodic polymerization is still the most widely 
used method. This method offers several advantages, it does not require the addition of catalyst in 
the electrolytic medium, so it could be considered a clean method and it does not require passage 
through a halogenated substrate (direct grafting of polymer on a substrate). Generally, this technique 
consists on the deposition of a polymer film by oxidation, that is, an anodic polymerization on the 
surface of an electrode of noble metal (gold, platinum) or other conductive materials such as glassy 
carbon or ITO (indium tin oxide) (Figure 9) [77,107,108]. 

On the other hand, cathodic polymerization is less implemented than the anodic oxidation 
method. It consists of two successive electrochemical reactions, followed by a chemical reaction that 
requires a catalyst such as nickel [109]. The material deposited on the electrode is obtained in the 
neutral state, therefore non-conductive, which could inhibit the reaction and requires to regenerate 
the active surface by doping the polymer [110–112]. 

Films obtained by electrochemical polymerization are films with better-defined and controlled 
properties and structure. The electrochemical polymerization has been widely used in recent years 
for the synthesis of insulating or semi-conductive polymers. This technique presents several 
advantages, such us homogeneity, relative ease of processing, and obtaining films with controllable 
and reproducible thickness and structure. It is also important to notice that these polymer thin films 
are usually difficult to prepare due to their low solubility in solvents [113]. 

 

Figure 8. EIS responses, in form of Nyquist plots, for PCz–APS and PCz– KMnO4 in the presence of
0.1 m TEATFB and 0.1 m TEA-p-TSA in acetonitrile at different electrodes: (I) GC and (II) Pt. Reprinted
with permission from Kumar et al. [106]. Copyright (2015) Wiley.



Polymers 2020, 12, 2227 10 of 33

2.2. Electropolymerization of Carbazole and Its Derivatives

Conductive polymers could be directly synthesized in their doped conductive form from their
monomer by an anodic or cathodic reaction. However, anodic polymerization is still the most widely
used method. This method offers several advantages, it does not require the addition of catalyst in the
electrolytic medium, so it could be considered a clean method and it does not require passage through
a halogenated substrate (direct grafting of polymer on a substrate). Generally, this technique consists
on the deposition of a polymer film by oxidation, that is, an anodic polymerization on the surface of an
electrode of noble metal (gold, platinum) or other conductive materials such as glassy carbon or ITO
(indium tin oxide) (Figure 9) [77,107,108].

On the other hand, cathodic polymerization is less implemented than the anodic oxidation method.
It consists of two successive electrochemical reactions, followed by a chemical reaction that requires a
catalyst such as nickel [109]. The material deposited on the electrode is obtained in the neutral state,
therefore non-conductive, which could inhibit the reaction and requires to regenerate the active surface
by doping the polymer [110–112].

Films obtained by electrochemical polymerization are films with better-defined and controlled
properties and structure. The electrochemical polymerization has been widely used in recent years for
the synthesis of insulating or semi-conductive polymers. This technique presents several advantages,
such us homogeneity, relative ease of processing, and obtaining films with controllable and reproducible
thickness and structure. It is also important to notice that these polymer thin films are usually difficult
to prepare due to their low solubility in solvents [113].
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Electrochemical oxidation of carbazole proceeds in a similar way to chemical oxidation but seems
to be more selective. The first and most significant study on the electrochemical oxidation of carbazole
was published by Ambrose and Nelsonin in 1968 [115].

Ates and Özyılmaz [49] conducted systematic study of corrosion performance of polycarbazole
(PCz) and PCz derivatives. In their study, films of PCz, and two nanocomposites of nanoclay and zinc
nanoparticles were developed. Films were chemically and electrochemically deposited on a stainless
steel (SS304), and their anticorrosive properties were tested against 3.5% NaCl solution by EIS and
potentiodynamic polarization curves. Carbazole was electropolymerized by chronoamperometric
technique on an SS304 electrode for 3600 s in an oxalic acid/acetonitrile solution. In addition,
the chemical polymerized carbazole was carried in acetonitrile using cerium ammonium nitrate (CAN)
as initiator for 6–8 h at room temperature. This study showed that PCz, PCz/nanoclay and PCz/nanoZn
films obtained using chemical method coated on SS304 electrodes displayed better corrosion protection
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performance compared to the films obtained by the electrochemical method. For chemically technique,
PCz films, the highest protection efficiency (PE = 99.81%) has been obtained.

Srivastava et al. [51] reported PCz electropolymerization and deposition on ITO-coated glass.
A study of polycarbazole films prepared on the different metal contacts, such as Aluminium, Copper,
and Tungsten, was also carried out for the fabrication of Schottky diodes. PCz was synthesized by
oxidative polymerization of carbazole in dichloromethane and as an oxidant tetrabutylammonium
perchlorate (TBAP) in an electrochemical workstation. The polymerization of carbazole requires a low
anodic potential (1.3 V) to be oxidized. The electrodeposition was prepared in a similar way. The metal
contact was deposited in a previously fabricated PCz/Ito films by vacuum thermal evaporation
deposition. Authors reported the fabricated diodes presented reasonably good performance rating
parameters, showing the ITO/PCz/W device exceptionally good barrier height (0.95) and reverse
saturation current density (J0) of 1.312 × 10−13 A/cm2.

To the best of our knowledge, only few samples of PCz and biopolymer composites have been
reported until date. Kayan et al. [107] reported a study in which a polycarbazole/chitosan composite
(PCz/Chi) films were successfully synthesized. The synthesis was carried out by using electrochemical
polymerization by depositing on a Pt disk electrode by cyclic voltammetry after 5 cycles in the
range of 0.0 V to +1.6 V in acetonitrile solution and 0.1 M lithium perchlorate as a supporting
electrolyte. The composites were obtained by a similar procedure, adding solution of chitosan at
different concentrations. Authors reported an increase the electrical conductivity of the films increase
with the presence of chitosan. On the other hand, EIS measurements indicated that small amount of
chitosan could enhance films conductivity by easing electron transfer.

2.3. Polymerization of N-Substitution Carbazoles

Poly(N-vinylcarbazole) (PVK) is one of the most interesting polymers based on N-substituted of
carbazole due to its wide applications and its excellent thermal stability, doping behaviour, and UV
durable property [77,107,108]. However, PVK present poor processability due to the π−π electron
system along its backbone reducing its stability versus oxidation, which reduces the conductivity
of the polymers [116,117]. In order to reduce these disadvantages, carbazole-based monomers have
been modified. The substitution at N-position with a wide variety of functional groups could provide
carbazole derivatives with improved properties such as solubility, better thermal stability, electrical,
photoelectric, ion exchange and other physicochemical properties [118,119]. The improvement on their
properties wides the applicability of these materials [120,121].

The polymerization N-vinylcarbazole (NVK) was reported for the first time by Reppe and
co-workers in 1934 [122]. N-vinyl carbazole polymerization (NVK) is extensively investigated
and many methods have been used, such as free radical [123], cationic polymerization [124],
anionic polymerization [125], atom transfer radical polymerization (ATRP) [126], reversible additional
fragmentation chain transfer (RAFT) polymerization [127], nitroxide-mediated polymerization
(NMP) [128], charging transfer [129], electrocuting [129], solid state polymerization [130],
and organometallic-mediated radical polymerization [131].

More recently, Marimuthu and Murugesan [132] reported an efficient and facile polymerization of
N-vinyl carbazole (NVK). 1,4-bis (triethyl methyl ammonium) benzene dibromide (TEMABDB) was
used as multi-site phase transfer catalyst (MPTC) and potassium peroxydisulphate (PDS) as water
soluble initiator at 40 ± 2 ◦C in two phase system (cyclohexane/water) with ultrasound condition
(45 kHz/550 W) and silent. The polymerization rate for this system was significantly increased when
ultrasound was used.

Frau et al. [133] reported the development of a conjugated polymer network (CPN) based on PVK
to fabricate anticorrosion coatings. Electrochemical deposition on steel and ITO substrates by both
potentiostatic and potentiodynamic methods were used. Anodic oxidation of the carbazole functional
groups was used to prepare a cross-linked macromolecular structure (Figure 10). The electrodeposition
of a PVK in dichlorometane was carried out on a potentiostat with a Pt wire as a counter electrode,
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nonaqueous Ag/AgCl electrode (0.1 M in acetonitrile) as a reference electrode, and, finally, steel or ITO
films as working. A step of 1.2 V for 1000 s was induced for the potentiostatic deposition, whereas
potentiodynamic deposition was carried out by cycling the potential between 0 and 1.4 V and a rate of
50 mV s−1 for 20 cycles. Morphological studies indicted a higher roughness on the substrates after
a potentiostatic deposition compared to potentiodynamic deposition. In addition, the EIS results
demonstrated that the PVK coating present good ion transport blocking properties, according to
accelerated corrosion tests. Moreover, they showed efficient corrosion resistance on steel coupons used
as a model metal substrate.
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Selection of the appropriate monomer and the right polymerisation techniques are crucial
considerations for materials with excellent gas-uptake capacities. In this context, conjugated
microporous polymers (CMP) have arisen as very promising type of microporous organic polymers
(MOP). Huang et al. [134] reported two simple strategies (name in their work as path (1) and path (2)) for
the preparation of CMPs based on N-vinyl carbazole derivatives. Four different derivatives (P1 to P4)
were synthesised by combining both free radical polymerization and oxidative FeCl3 polymerization
(Figure 11). The oxidative polymerization was performed at ambient temperature in chloroform using
FeCl3 as oxidizing agent for 24 h. On the other hand, the free radical polymerization was carried
out by using 2, 2′-azobisisobutyronitrile (AIBN) as initiator in toluene at 70 ◦C for 6 h. The effects of
synthetic methods and sequences on the performance as CMP were evaluated. The BET surface area of
the polymers was determined. In path 1, the BET obtained for P2 (878.46 m2 g−1) was significantly
higher than that of P1 (68.65 m2 g−1). However, in path 2, the values obtained for both polymers were
similar, being 621.18 m2 g−1 and 660.62 m2 g−1 for P3 and P4, respectively. The gas uptake results
evaluated for the absorption of carbon dioxide (CO2), methane (CH4), and hydrogen suggested that
P2 presents the best performance, that is, path 1 was the most appropriate method to obtain N-vinyl
carbazole-based CMPs.
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In recent years, graphene has attracted tremendous attention due to its properties and versatility,
being used in ON and OFF for memory devices or conducting nanocomposites, among others [135].
Santos et al. [136] reported the preparation thin films of poly(N-vinylcarbazole)-GO (PVK-GO)
nanocomposites via electrodeposition by cyclic voltammetry (CV) on bare ITO by repeatedly scanning
the potential between 0 to 1500 mV at a scan rate of 10 mVs−1 for 50 cycles. The nanocoposite was
crosslinked due to the electropolymerization process of the carbazole side groups of PVK. This improved
the stability of the nanocomposites to several solvents such as 2-pyrrolidone and N-methylpyrrolidone,
close to 30 days.

Similarly, Wang et al. [137] synthesized poly(9-vinylcarbazole)/silver nanocomposites by in situ
formation of silver nanotubes and networks formed at the air–water interface via the reduction of Ag+

ions. The structures of the silver nanotubes were strongly dependent of the experimental conditions
such as temperature.

The stability of the redox states is the most suitable property for an electro-active polymer to
be useful in building new electrochromic device [138–141]. Furthermore, the ability of a material to
demonstrate a significant colour shift is important to electrochromic applications. Kocaeren [142]
reported the synthesis of carbazole derivatives with electrochemical and electrochromic properties to
be used electrochromic devices (ECDs). Firstly, bis-4-(9H-carbazol-9-yl) phenyl-3,4-diyloxy thiophene
(B1) was synthesized from the reaction of 4-(9H-carbazol-9-yl) phenol and 3,4-dibromo thiophene in
the presence of potassium carbonate (K2CO3) in tetrahydrofuran (THF). After that, the polymer of
B1 was deposited onto an ITO-glass surface by oxidative electrochemical polymerization (Figure 12).
The electropolymerization was performed on a potentiostat in acetonitrile, using Pt wire as counter
electrode, Ag wire as reference electrode and ITO as working electrode, scanned from +0.3 to +1.4 V.
The presence of the polymer was evidence due to the increase of a peak in a cyclic voltammetry at
0.95 V. It is important to notice that the polymer film presents a blue colour between 1.0 and 1.4 V
due to its oxidation, whereas its colour turns into a light yellow between 0.5 and 0.9 V owning to its
reduction. The maximum absorbance wavelengths were 320 and 670 nm. This carbazole derivative,
which presents high stability, could be used in electrochromic devices (ECDs) according to redox
stability measurements.Polymers 2020, 12, x FOR PEER REVIEW 13 of 33 
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Figure 12. The performed polymer synthesis: (a) Synthesis of bis-4-(9H-carbazol-9-yl)
phenyl-3,4-diyloxy thiophene (B1). (b) Electrochemical synthesis of P(B1). Reproduced with permission
from [142]. Copyright (2015) Elsevier.



Polymers 2020, 12, 2227 14 of 33

Another example of electrochromic carbazole derivative was synthetized by Hsiao and
co-worker [143]. In their study, two previously synthesized carbazole-based monomers were successfully
electrodeposited and polymerized onto the ITO electrode by electropolymerization. 4,4′-di(carbazol-
9-yl)-4”-methoxytriphenylamine (TPA-2Cz) and 3,6-di(carbazol-9-yl)-N-(4-methoxyphenyl)carbazole
(PhCz-2Cz). The electropolymerization onto an ITO (working electrode) of the monomers was carried
out with a polymer and 0.1 M Bu4NClO4 solution in dichloromethane and ITO as working electrode
by several cycles between 0 and 1.4 V at a scan rate of 50 mV s−1. P(PhCz-2Cz) (Figure 13a) present a
blue-green colour in its maximum oxidation state around 1.28 V. This film changes to yellow (1.07 V)
and finally, colourless at 0.0 V. Similarly, P(TPA-2Cz) presents a brown colour at its fully oxidized state
and dark green colour at semi-oxidized states.Polymers 2020, 12, x FOR PEER REVIEW 14 of 33 
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The same strategy was used in other work of Hsiao and Lin [141] in which poly(amide-carbazole)
and poly(imide-carbazole) were used for the development of two series of diamide-cored carbazole
dendrons (6CzR-DA) and diimide-cored carbazole dendrons (6CzR-DI). These monomers series
were synthesized from condensation reactions of 3,6-di(carbazol-9-yl)-N-(4-aminophenyl)carbazole
(NH2-3Cz) with aromatic dicarboxylic acids and tetracarboxylic dianhydrides, respectively. Similar to
their previous work, these polymer films showed good electrochemical and electrochromic properties.
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Yang and co-workers [144] performed a study on induced oxidative polymerization of
1,3,6,8-tetrakis(4-(9H-carbazol-9-yl) phenyl)pyrene (L) with FeCl3 as oxidant in anhydrous chloroform
for 24 h at 60 ◦C. This process resulted in the formation of the bulk polymer (Figure 14), being a highly
luminescent conjugated microporous polycarbazole derivative (CK-CMP).
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Figure 14. The synthesis of CK-CMP proposed by Yang et al. in their work. Reproduced with
permission from [144]. Copyright (2019) Elsevier. L: 1,3,6,8-tetrakis(4-(9H-carbazol-9-yl) phenyl)pyrene,
CK-CMP: conjugated microporous polycarbazole derivative.

Soganci et al. [48] reported a novel method for electropolymerization a disulfide-linked N-alkyl
substituted carbazole derivative. 1,2-bis[6-(9-carbozol-9-yl)hexyl]disulfane (CS) monomer was
synthetized in this work (Figure 15) and then, electropolymerized using cyclic voltammetry and ITO as
working electrode. The electropolymerization process of CS monomer was performed comparatively
in the BFEE (Boron trifluoride diethyl etherate) containing solution and BFEE-free electrolytic solutions.
This material presents interesting electrochromic properties that could be potentially used in smart
window applications, due to the high optical contrast value and stability obtained in BFEE compared
to other N-alkyl substituted carbazole appeared in literature.
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Figure 15. Electrochemical polymerization of 1,2-bis[6-(9-carbozol-9-yl)hexyl]disulfane proposed by
Soganci et al. Reproduced with permission from [48]. Copyright (2018) Elsevier.

Duran et al. [145] successfully deposited a poly(N-methyl carbazole) (PNMeCz) coating on
stainless steel type 304. The film was deposited by electropolymerization of N-methyl carbazole
(NMeCz) monomer in acetonitrile solution containing tetrabutylammonium perchlorate using cyclic
voltammetry and stainless steel as working electrode. The film was electrodeposited applying a
potential between +0.5 and +1.7 V with a rate of 50 mV/s during 15 cycles. The resistance to the
corrosion was evaluated, demonstrating these films presented good anticorrosion properties.
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Elkhidr and co-workers [146], synthesized and studied different electrochemical and
optical properties for three carbazole derivatives with different substitution at N-positions,
methanol (carbazol-9-yl-methanol), carboxylic acid (carbazol-9-yl- carboxylic acid) and cyanoethyl
(carbazol-9-yl-cyanoethyl). Polymeric films of these derivatives were obtained (PCz−OH, PCz−COOH,
and PCz-CN, respectively) by the electropolymerization on ITO substrate by repetitive cyclic
voltammetry. The electropolymerization was carried out on a potentiostat-galvanostat system,
with tree electrodes; the working electrode was ITO, whereas platinum and silver wires were used
as counter and pseodoreference electrodes, respectively. A potentiodynamic electropolymerization
was performed between +0.0 to +1.6 V with a scan rate of 100 mV/s. The monomer solutions
containing NaClO4-LiClO4 electrolyte dissolved in acetonitrile. Polycarbazole presents high solubility
problems, being almost insoluble in most of inorganic solvent and soluble in only few organic solvents.
However, the polycarbazole derivatives reported in this work showed a good solubility in common
organic solvents such as dimethyl sulfoxide (DMSO), N-methyl-2-pyrrolidone (NMP), tetrahydrofuran
(THF), and dimethylacetamide (DMAC). The colour variations induced by the redox switching of the
carbazole derivatives during the electrochemical process are summarized in Figure 16, where L is
the luminance or brightness, a is hue and b is the saturation using the International Commission on
Illumination (CIE) system.Polymers 2020, 12, x FOR PEER REVIEW 16 of 33 
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Qin et al. [147] reported the successful synthesis of conjugated network based on poly(ethylenoxide)
grafted carbazole. In their study, first poly(N-epoxypropyl carbazole) (PEPC) was obtained by
anionic ring-open polymerization of N-epoxypropyl carbazole (EPC) using potassium hydroxide and
18-crown-6 in toluene at 90 ◦C for 12 h. After obtaining PEPC, a conjugated network was fabricated by
electrodeposition of poly[poly(N-epoxypropyl carbazole)] (PPEPC). The electropolymerization was
carried put in a potentiostat using Pt wire as counter electrode and stainless steel and Pt sheets as
working electrodes on which the polymer was deposited. A scheme of the complete synthetic process
carried out in this work is depictured in Figure 17. The synthesized PPEPC showed favourable thermal
stability and strong mechanical properties, and can be easily bent or cut into different forms.
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3. Application

The carbazole based molecules have emerged as important core fragments with highly
interesting biological activity. Its derivatives present several advantageous properties such as
antimicrobial, antitumor, antioxidant, anti-inflammatory, and pancreatic lipase inhibition properties [43].
In addition to biological activities, these molecules also present opto-electronic, electrochemical,
and electrical properties when polymerized, being their main applications such as photovoltaic devices,
electroluminescent displays, batteries, bio(sensors), etc.

PVK presents adequate levels of photoconductivity to be used is electrophotography, being used
by IBM in its Copier I series in 1970. In addition, poly(N-vinylcarbazole) has been widely used as a
host material in OLEDs. PVK presents a high energy blue-emissive singlet excited state and could acts
as electron donor and hole transporting material. However, since it is not a conjugated polymer its
transport is carried out by radical cation hopping among the discrete carbazole units [77]. Since them,
many research have been focus on the development of 3,6 disubstitued carbazoles, taking advantage
of the high reactivity of 3,6 positions [148]. In this context, linear and hyperbranched 3,6-carbazole
derivatives present excellent redox activity, photorefractive and nonlinear optical properties [106,149].
These properties make them good candidates as materials for organic light-emitting diodes (OLEDs).
However, as has been previously mentioned, they present several limitations such as their reduced
conjugation of electrons and low molecular weight. On the other hand, 2,7-carbazole-based polymers
are usually more linear, this improves their organization and the extension of the conjugation length,
construing to a lower band gap [150]. These properties are especially interesting for the development
of organic field effect transistors (OFETs), bulk-heterojunction (BHJ) solar cells, thermoelectric [84,149].

It is important to notice that synthetic pathway could condition the potential applications. That is,
chemical synthesis is more interesting for those applications in which bulk materials are needed, or a
control over the morphology is required. In addition, the electropolymerization is more suitable to
planar applications in which a coating or a thin film is required [102,151].

In this section, some of the last applications of above-mentioned potential fields of N-carbazole
containing polymers are described.
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3.1. Light Emitting Diode Application

Organic light emitting diodes (OLEDs) made from polymers have attracted increasing interest
since the group led by Richard Friend in 1992 [37] reported the emission of light from a semiconducting
polymer sandwiched between two contacts and connected to a battery. In the Figure 18, an example of
an OLED system could be observed [152]. OLEDs are arising as one of the most used technologies in
full-colour displays and as an environmentally friendly lighting source. The present excellent colour
quality, and they are cost-effective and mercury-free [153].
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Figure 18. Example of a cross section of a polymer LED. Modified from [152] MDPI 2014 (CC by 3.0).

One to the first examples of PVK based OLED was reported by Hebner et al. [154]. They fabricated
OLEDs with low turn-on voltages by ink-jet printing using PVK luminescence films with dyes coumarin
6. Low-molar-mass carbazole-based derivatives for organic light emitting diodes have been reviewed by
Krucaite and Grigalevicius [155] in a recent study. They concluded that carbazole based materials could
be used as hole transporting materials, emitting materials, thermally activated delayed fluorescence
emitters and host materials for phosphorescent dopants and organic light emitting diodes.

A polymer used as light-emission material must meet two basic characteristics, electrical
conductivity (semiconductive polymer) and high photoluminescence (PL) efficiency [156]. Among these
materials, carbazol-based materials benefit from the wide bandgap of carbazole as well as its remarkable
thermal, photochemical, and chemical stability. Especially, the relatively high triplet energy level of
carbazole makes it an appealing candidate to design hosts for wide bandgap triplet emitters such
as blue dopants [157]. In addition, the substituted carbazoles could cover the range of visible lights
from blue to green colour due to the modification of the carbazole backbone with different moieties.
For example, the introduction of 3(9)-aryl carbazoles and 3,6-diaryl substituted derivatives were
very effective as the host materials for blue (EQE < 24%), green (EQE < 20%) and red (EQE < 19%)
phosphorescent organic light emitting diodes [155].

Syutkin et al. [158] reported the synthesis of chalcones with carbazole substituents, being
some of them capable to react with guanidine sulphate to produce 2-amino-4,6-diarylpyrimidines.
This compound could form a stable coloured conjugated polymer films on the surface of a working
electrode under conditions of cyclic voltammetry, being promising materials for the design of light
emitting diode.
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Hsiao et al. [141] reported the construction of electrochromic devices based on carbazole derivatives
(poly(3,6-di(carbazol-9-yl)-N-(4-nitrophenyl)-carbazole) (P(NO2-3Cz) and poly(3,6-di(carbazol-9-yl)-
N-(4-aminophenyl)carbazole) (P(NH2-3Cz)) electrodeposited on ITO substrates. In their study,
single-layer electrochromic cells were fabricated, sandwich-type device (Figure 19a), to evaluate
the potential application of this films in electrochromic devices. The sandwich type device was
fabricated with a gel electrolyte spread on polymer-coated ITO substrate on side of the electrode,
being closed by electrodes. In addition, the possible leakages were prevented by applying epoxy resin
seal. The P(NO2-3Cz)-based device presents a slightly yellowish colour in its neutral form (0.0 V),
and the intensity of the colour increased until darker yellow when the potential vas increased until
2.3 V (Figure 19b). However, the films turned in to a blue colour when the potential reached +3.0 V.
The reversibility of this behaviour was successfully demonstrated, achieving the initial light-yellow
colour when the potential was removed. On the other hand, the colouring and the potential peaks of
the P(NH2-3Cz) film were slightly different depending on the substitution (Figure 19c).
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3.2. Electrochemical Capacitors

Supercapacitors are considered as an energy storage system, electrochemical energy in this case,
with an important future as an alternative to other classical methods. Considering their power and
energy density, these can be located between batteries and traditional dielectric capacitors [159].
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According to energy storage mechanism and electrode materials, the main electrochemical
capacitors (EC) could be categorized in three families: carbon-based ultracapacitors, metaloxides-based
supercapacitors, and conductive polymers based supercapacitors [160]. Polymer-based capacitators
could be considered as crucial materials for the development of many high-power electrical
systems [161]. Conductive polymers present good electrical conductivity, large specific power,
simple synthesis and low cost. This properties have increase the interest on these materials as a
promising materials for capacitors compared to expensive and toxic metal oxides, and carbon-based
electrode materials [162–164]. Among these conductive polymers, carbazol-based polymers are often
complementary parts of the active electrode material in capacitors. That is, when an electric field is
applied ions are transfer in and out of the polymer backbone from the electrolyte over the course of the
redox process [165]. This process occurs due to excellent attributes of hole transport, relatively high
specific capacity, excellent atmospheric stability, in addition to their physical and electronic properties,
such as surface morphology, thickness, electrical conductivity, internal resistance, and durability, which
directly affect the performance of super capacitors [166]. However, the redox reaction could reduce the
stability of the polymer inducing its degradation [167].

Ates and Uludag [168] reported the synthesis and study of the properties of a capacitator
based on poly(9H-Carbazole-9-Carbothioic Dithioperoxyanhydride) (P(2CS2Cz)). P(2CS2Cz) was
electrodeposited on a glassy carbon electrode (GCE) by cyclicvoltamentry. After the deposition,
the capacitance of the films at different concentrations were evaluated, being the low frequency
capacitance 0.52 mF cm−2 ([2CS2Cz] = 0.25 mM) and double layer capacitance 571µF ([2CS2Cz] = 1 mM).

Wang et al. [169], have synthesized three porous polycarbazole networks from poly(4,6-
tri(9H-carbazol-9-yl)-1,3,5-triazine) (PTCT), poly(4,4′,4”-tri-9-carbazolyltriphenylamine) (PTCA),
and poly(4,4′-bis(9H-carbazol-9-yl)biphenyl) (PBCP) by a chemical oxidative polymerization.
The capacitive properties and their capacity for CO2 storage were also studied. These polymers
present a charge/discharge rate of 8 s that could be considered as a fast, and a electrochemical capacity
of 558 F g−1. In addition, the porous network synthesized in this study presents a nanometric pore size,
around 1nm, and large surface area, 1280 m2 g−1. These characteristics, added to their nitrogen-rich
structure, enables an efficient CO2 capture, being of 20.4 wt% at 1 bar and 0 ◦C. The use of carbazole
based materials as conjugated microporous polymer was also reported by Huang et al. [134].

Recently, Duran et al. [170] studied the supercapacitive performance poly(carbazole) films
electrodeposited on stainless steel (SS) by using 0.1 M supporting electrolyte of lithium perchlorate (LP),
sodium perchlorate(SP) and tetrabutylammonium perchlorate (TBAP) in acetonitrile to form PCz(LP),
PCz(SP) and PCz(TBAP), respectively. The specific capacitance values obtained for the SS/PCz(LP),
SS/PCz(SP) and SS/PCz(TBAP) systems were 133, 64, and 9 F g−1, respectively. Authors claimed that
PCz(LP) could be considered as adequate material for supercapacitor applications.

3.3. Biosensor Applications

Conducting polymers have also successfully employed in biosensor applications [171].
Pernites et al. [53] developed a novel chemosensitive ultrathin films based on carbazole derivatives.
The sensoring devices were based on electropolymerized molecular imprinted polymers (E-MIP)
capable to detect three drugs, naproxen, paracetamol, and theophylline. The molecular imprinting
enables a tailor-made specificity. In this case, the sensor is capable to recognize the selected drugs with
a high selectivity, being in situ evaluated by surface plasmon resonance (SPR). Among, the different
monomers used in this study author reported that bifunctional monomers containing –COOH and
–OH functional groups were most effective for the imprinting process. Moreover, authors claimed that
this method could be a promising approach for sensors fabrication. Figure 20 summarizes the E-MIP
based sensor fabrication reported in this study.
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potential wash at 0.4 V (versus Ag/AgCl). (b) ESPR in situ set-up for electropolymerization and
and (c) SPR sensing of the imprinted guest molecule using. Reproduced with permission from [53].
Copyright (2011) Elsevier.

Novel fluorescent and conductive hollow microspheres based on aniline and carbazole
derivatives were successfully synthesized by Chenga and co-workers [172]. The poly(aniline-co-
3-amino-9-ethyl-carbazole) (PAC) obtained by oxidative copolymerization with APS was used as
effective fluorophore. The sensoring capacity of the materials were evaluated for two types of analyte,
namely nitro-based explosives and Cu2+ cations, with the reported detection limits of the material
being 5 µM and 5 nM, respectively. Tested analytes decreased the fluorescence with the increase of their
concentration, as can be observed in Figure 21 where the results obtained for nitrobenzene detection
are shown.Polymers 2020, 12, x FOR PEER REVIEW 21 of 33 

 

 
Figure 21. (a) Study of fluorescence emission quenching of PAC/ethanol dispersion at different 
nitrobenzene/ethanol solutions; (b) Stern-Volmer plot between F/F0 and nitrobenzene concentration. 
Reproduced with permission from [172]. Copyright (2019) Elsevier. 

Shakir et al. reported the development of PCz/TiO2 nanocomposite with good antibacterial 
activity, which presents also good capability for sensing ammonia. The evaluation of its capability 
for ammonia sensing was carried out by measuring resistivity changes on exposure to ammonia 
vapours. The nanocomposite showed a relatively fast response toward aqueous ammonia in the 
range of 0.25–1 M at room temperature (Figure 22). 

 
Figure 22. Effect on the resistivity of PCz/TiO2 nanocomposite on exposure to different concentrations 
of ammonia with respect to time. Reprinted with permission from Shakir et al. [100]. Copyright (2014) 
American Chemical Society. 

3.4. Photovoltaic Devices Applications 

Solar cells or photovoltaic devices capable to convert the solar energy into electric energy are 
under continuous development pushes by the need of greener electric sources. In this context, Li et 
al. [54], in addition to other authors [173–177], described in their review that carbazole-based 
polymers and copolymers could be considered among the most promising materials for highly 
efficient organic solar cells. 

Fujita and Michinobu [178] synthesized a carbazole-based conjugated polymer as donor–
acceptor type alternating copolymers. Different type of poly(1,8-diethynylcarbazole) were 
synthesized and their fluorescence and electrochemical properties were evaluated being adequate to 

Figure 21. (a) Study of fluorescence emission quenching of PAC/ethanol dispersion at different
nitrobenzene/ethanol solutions; (b) Stern-Volmer plot between F/F0 and nitrobenzene concentration.
Reproduced with permission from [172]. Copyright (2019) Elsevier.



Polymers 2020, 12, 2227 22 of 33

Shakir et al. reported the development of PCz/TiO2 nanocomposite with good antibacterial
activity, which presents also good capability for sensing ammonia. The evaluation of its capability
for ammonia sensing was carried out by measuring resistivity changes on exposure to ammonia
vapours. The nanocomposite showed a relatively fast response toward aqueous ammonia in the range
of 0.25–1 M at room temperature (Figure 22).
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3.4. Photovoltaic Devices Applications

Solar cells or photovoltaic devices capable to convert the solar energy into electric energy are under
continuous development pushes by the need of greener electric sources. In this context, Li et al. [54],
in addition to other authors [173–177], described in their review that carbazole-based polymers and
copolymers could be considered among the most promising materials for highly efficient organic
solar cells.

Fujita and Michinobu [178] synthesized a carbazole-based conjugated polymer as donor–acceptor
type alternating copolymers. Different type of poly(1,8-diethynylcarbazole) were synthesized and
their fluorescence and electrochemical properties were evaluated being adequate to be used as a
p-type semiconductor in solar cells. Synthesized poly(1,8-carbazole)s were used in the preparation
of bulk-heterojunction photovoltaic cells, photoconversion efficiency (PCE) of the cells was between
0.05% and 0.24%. Similarly, Qin and co-workers [179] synthesized a series of conjugated polymers with
carbazole as the donor unit or benzothiazole as the acceptor unit to be used in solar cells presenting a
PCE between 5.8% and 0.43%.

3.5. Memory Device Applications

In addition to the other possible applications, conducting polymers could be also used in the
development of advanced memory devices due to their donor-acceptor (D-A) properties [136,180].
These D-A polymers present an electrically bistable behavior, this characteristic being highly desirable
for memory devices. In addition, they present other characteristics that make them highly interesting,
tailor-made structures, namely low-cost, processability (mainly in solution), and three-dimensional
stacking capability [181]. In donor−acceptor (D-A) conjugated polymer systems, the charge transfer
between donor and acceptor moieties could be controlled by the strength and ordering of donor and
acceptor groups. These parameters play a critical role in enhancing electrically bistable switching
behavior [182,183]. The most efficient way to enhance the intrinsic local packing of materials is to
increase the planarity of the polymer main chain, which in turn can generate tight p–p stacking,
because the fused ring structures are much flat than the conjugated “single” bond [184]. In general,
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the incorporation of different electron acceptors into conjugated polymeric donors significantly affects
the memory properties [185]. The p-type conductive polymers could be employed as the donor
materials and then they are mixed with a kind of commercial acceptor material [176]. Among them,
the poly(N-alkyl-2,7-carbazole)s based D-A copolymers presents wide potential owning to their
excellent hole-transporting property and good stability of the carbazole units [186].

Hahm et al. [187] synthesized several poly(2,7-carbazole) derivatives (Figure 23) and successfully
studied their electrical memory properties. In order to evaluate their memory characteristics, a memory
device was fabricated (Figure 23). First, aluminium was deposited on glass substrates by electron beam
sputtering, then the different polymer substrates were deposited and, finally, additional aluminium
electrodes were deposited on the top thermal evaporation. All tested polymers/aluminum sandwich
type devices presented similar dynamic random-access memory (DRAM). They present ON/OFF
current ratios between 105 and 109. Considering the obtained results these materials could be suitable
for the production of low-cost programmable DRAM devices with a high-performance and capable to
operate under very low power consumption.
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permission from [187]. Copyright (2011) American Chemical Society.

Similar system was reported by Zhang and co-workers [188]. In their study, they described
a write-once, read-many-times (WORM) memory effect in sandwich type devices fabricated by
using different carbazole derivatives, aluminum, and ITO. These poly(carbazole)-based polymers
present a characteristic donor–trap–acceptor (D-T-A) structure and an electrical bistability due to
the field-induced charge-transfer interactions. The results indicated that the devices could present a
non-volatile non-erasable memory behaviour.

Structural and electrical characterization of a block copolymers based unipolar non-volatile
memory device were fabricated by Kang et al. [189]. In this study, a crucial factor was to adjust the
block ratio of poly(9-(4-vinylphenyl)carbazole)-b-poly(2-vinylpyridne) (PVPCz-b-P2VP) copolymer in
order to present a lamellar structure that could induce a unipolar switching behavior. This switching
property was highly interesting for the fabrication Aluminum/PVPCz-b-P2VP/indium tin oxide (ITO)
based memory devices (Figure 24). The memory behavior studies of these devices revels a good
endurance cycling, around to 190 cycles, and a high ON/OFF ratio, higher than 104.
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4. Conclusions and Future Perspective

Polycarbazole and its derivatives have been extensively used for long time. This review describes
the synthesis and applications of carbazole-based materials on the last 10 years. However, as can be
observed by the increase in the number of publications in the field of conductive polymers, there is
an increasing demand for conductive polymers in several applications, such as light emitting diodes
(OLEDs), capacitators, or memory devices, among others. This demand has renewed the interest on
carbazole-based materials.

Considering the synthesis of carbazole-based polymers, the electrochemical polymerization has
revealed the most employed methodology since many applications requires of a thin film of conductive
polymer and this technique is highly suitable for film development. On the other hand, several
research works have focused their attention to the development of new carbazole-based monomers
with complex structures in order to improve or tailor the properties of these materials, and thereby
increasing their potential applications. The variation in the structure of the carbazole derivatives could
improve their processability and solubility, but also increase the conjugation length of the electrons
through their structure, or vary their opto-electrical properties. In this context, it is important to
highlight the emergence of flexible and wearable electronic devices as a part of the internet of the things
(IoT). In fact, the carbazole-based materials could have a promising future. The need for conductive
polymers capable to respond adequately to highly demanding requirements (mechanical or conductive,
among others) could encourage the development of new carbazole-based materials.

Induced by the emergence of the internet of the things, flexible and wearable electronic devices
have attracted great interest in the last years. These devices have gradually emerged in daily life due to
their lightweight, the ability to attach onto clothes, or easy skin attachment potential, and their ability to
withstand mechanical deformation. Among their applications, one could highlight portable displays,
human activity monitoring sensors, and self-powered devices. The high physicochemical requirements,
such as high electrical conductivity, good tensile strength, high flexibility, and light weight, fast
oxidation/reduction reaction kinetics have distinguished CPs as excellent candidates. Carbazole based
polymers are promising for constructing flexible energy harvesting and storage devices.
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166. Yiğit, D.; Güllü, M. Capacitive properties of novel N-alkyl substituted poly(3,6-dithienyl-9H-carbazole)s as
redox electrode materials and their symmetric micro-supercapacitor applications. Electrochim. Acta 2018, 282,
64–80. [CrossRef]

167. Snook, G.A.; Kao, P.; Best, A.S. Conducting-polymer-based supercapacitor devices and electrodes.
J. Power Sources 2011, 196, 1–12. [CrossRef]

168. Ates, M.; Uludag, N. Poly(9H-Carbazole-9-Carbothioic Dithioperoxyanhydride) Formation and Capacitor
Study. Int. J. Polym. Mater. Polym. Biomater. 2015, 64, 755–761. [CrossRef]

169. Wang, H.; Cheng, Z.; Liao, Y.; Li, J.; Weber, J.; Thomas, A.; Faul, C.F.J. Conjugated Microporous Polycarbazole
Networks as Precursors for Nitrogen-Enriched Microporous Carbons for CO 2 Storage and Electrochemical
Capacitors. Chem. Mater. 2017, 29, 4885–4893. [CrossRef]
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