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Abstract: Changes in the dimensions of lignocellulose nanofibrils (LCNFs) with different lignin
contents from betung bamboo (Dendrocalamus asper) by enzymatic hydrolysis using endoglucanase
(EG) were investigated. Lignin contents were adjusted from 3% to 27% by NaClO2/acetic acid
treatment, and LCNFs were prepared using a wet disk-mill (WDM). The dimensions of the LCNFs
significantly decreased with decreasing lignin content and increasing EG addition. With increasing
EG content, the average diameter of the LCNFs significantly decreased, even though they contained
parts of hemicellulose and lignin. The crystal structure showed the typical cellulose I structure in all
samples, but the intensity of the diffraction peak slightly changed depending on the lignin and EG
contents. The crystallinity index (CrI) values of the LCNFs increased a maximum of 23.8% (LCNF-L27)
under increasing EG addition, regardless of the lignin content. With the EG addition of three times
the LCNF amount, LCNF-L3 showed the highest CrI value (59.1%). By controlling the composition
and structure of LCNFs, it is expected that the wide range of properties of these materials can extend
the property range available for existing materials.

Keywords: lignocellulose nanofibril; enzymatic hydrolysis; endoglucanase; pretreatment

1. Introduction

Recently, lignocellulose nanofibril (LCNF) has been attracting attention in various research areas
due to its surface characteristics and impressive mechanical properties [1–9]. LCNF contains lignin and
hemicellulose and can be obtained from lignocellulose through a mechanical defibrillation process [4–9].
LCNF suspension has a relatively lower viscosity than holocellulose nanofibril (HCNF) and pure
cellulose nanofibril (PCNF) because of the presence of hydrophobic lignin; therefore, it might have
higher dispersibility and excellent affinity with hydrophilic and hydrophobic polymers [6]. It is highly
suitable for the utilization of LCNF to various functional composites [10]. In order to prepare LCNF
with high efficiency, a pretreatment process is essential because lignocellulose a has tight hierarchical
structure and biomass recalcitrance [5,11,12]. Enzymatic hydrolysis is considered an effective method
for adjusting the aspect ratio and reducing the dimensions of LCNFs [13–16].
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Enzymes work well under mild process conditions. The use of enzymes in the hydrolysis of
cellulose is therefore more effective than the use of inorganic catalysts. Cellulose biodegradation has
generally been considered to involve only three types of hydrolytic enzymes: endoglucanase (EG),
cellobiohydrolase (CBH), and β-glucosidase (BGL) [17–21]. EGs randomly cleave the internal β-1,
4-glucosidic links, CBHs act on the free ends of cellulose polymer chains, and BGLs hydrolyze cellobiose
and other water-soluble cellodextrins to glucose [22]. It is expected that the enzyme pretreatment can
loosen cell wall structure due to partial cellulose degradation, thereby improving the efficiency of
mechanical defibrillation into LCNF. Pääkkö et al. (2007) [23] obtained PCNF with well-controlled
diameters in the nanometer range and high aspect ratios by combining enzymatic hydrolysis and
mechanical shearing by high-pressure homogenization. They performed an enzymatic treatment with
endoglucanase before passing the pulp slurry through a microfluidizer. Such enzymatic hydrolysis is
less aggressive than acid hydrolysis, and it allows for the selective hydrolysis of the noncrystalline
cellulose, which facilitates mechanical disintegration [13,24,25].

However, up to now, most studies on the enzymatic hydrolysis of CNFs have focused on bleached
pulp or pure cellulose materials without lignin for starting materials. In this study, we investigated the
effect of enzymatic hydrolysis when using EG on the changes in the dimensions of LCNFs from betung
bamboo with different lignin contents.

2. Materials and Methods:

2.1. Materials

Betung bamboo was obtained from Arboretum in Bogor Agricultural University, Indonesia,
and cutter milled to a 0.2 mm size. Sodium chlorite (NaClO2) and acetic acid for delignification,
along with other chemicals, were guaranteed reagent grade from commercial suppliers and used
without further purification. EG (NS44019) with an enzyme activity of 4500 ECU/g was purchased
from Novozymes, Denmark. Sodium dihydrogen phosphate and disodium hydrogen phosphate
heptahydrate were purchased from Wako Pure Chemical Industries, Ltd. (Tokyo, Japan) and Nakarai
Chemicals, Ltd. (Tokyo, Japan), respectively.

2.2. Delignification

Holocellulose from betung bamboo was prepared using an NaClO2/acetic acid treatment described
in the literature [26,27]. Cutter-milled bamboo powder was suspended to be 1%, and delignification
was conducted at 70 ◦C for 1 h with the successive addition of 0.3 g of NaClO2 and 0.1 mL of acetic
acid per gram of oven-dried bamboo. A series of LCNFs with different lignin contents was prepared
by changing the reaction cycle (1, 2, 3, and 4 times) and the amounts of reagents used. The resulting
products were repeatedly washed with distilled water until the pH became neutral.

2.3. Preparation of LCNF

The delignified wood powders for LCNF were suspended at 0.5 wt% concentration.
The suspensions were subjected to mechanical defibrillation using a wet disk-mill (WDM)
(Supermasscolloider MKCA6-2, Masuko Sangyo Co. Ltd., Kawaguchi, Japan). The clearance between
the upper and lower disks was set to be 200 µm from the zero position, at which point the disks began
to rub, and the rotational speed was 1800 rpm. The operation was repeated for 8 passes. The total
milling time was recorded, and then the WDM time (min/kg) of each pass was calculated based on the
solid weight of LCNFs. The diameter of individual fibers was measured at least 300 times on each
sample by ImageJ software (National Institute of Health, Bethesda, MD, USA).

2.4. Enzymatic Hydrolysis by EG

For enzymatic hydrolysis, the LCNF suspensions were diluted to 0.1 wt% suspensions (50 mL) with
a phosphate buffer. The phosphate buffer was prepared according to the literature [28]. Stock solutions
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of monobasic and dibasic sodium phosphate (0.2 M) were obtained from sodium dihydrogen phosphate
and disodium hydrogen phosphate heptahydrate, respectively. The two types of solutions were
thoroughly mixed by magnetic stirring for 30 min at room temperature. The EG was added into the
LCNF suspensions with ratios of 1/1, 1/2, and 1/3 (LCNF/EG). Then, the mixture was sonicated for 2 h
and stirred overnight at 30 ◦C. This process was repeated two times. The mixtures were centrifuged at
a speed of 10,000 rpm, and the resulting supernatants were separated.

2.5. Characteristics

Characterization was performed using the supernatants after the centrifugation of the LCNFs
before and after enzymatic hydrolysis. Polarizing optical microscopy (POM, Nikon Optiphot-Pol,
Nikon Corp., Tokyo, Japan) and TEM (JEM-2000EX, JEOL, Japan) were used to observe the morphology
of the hydrolyzed products. To observe TEM images, a drop of a diluted bamboo LCNF suspension was
deposited on a carbon-coated grid and allowed to dry at room temperature. The length and diameter
of individual LCNFs were measured at least 50 times from POM images and TEM images, respectively.

The crystalline characteristics of LCNFs were determined using XRD (RINT 2000, Rigaku
Corporation, Tokyo, Japan). For X-ray analyses, disks that were 1 cm in diameter, 0.8 mm in
thickness, and 0.1 g in weight were prepared from the freeze-dried samples. Ni-filtered Cu Kα

radiation (λ = 0.1542 nm) was employed at an accelerating voltage of 200 kV and a current of 40 mA.
The diffracted intensity (I) was determined in the 2θ range of 5◦–40◦ at a rate of 2◦/min. The crystallinity
index (CrI) was calculated using Segal’s method (formula (1)) [29].

Crystallinity index(%) =
(I200 − Iamor)

I200
× 100 (1)

where I200 is the crystalline intensity and Iamor is the amorphous intensity.

3. Results and Discussion

3.1. Lignin Contents of LCNFs

The lignin content was adjusted by NaClO2/acetic acid delignification. The lignin content
decreased from 27% to 3% with increasing NaClO2/acetic acid repetition. Depending on the lignin
content of the LCNFs, the sample names were denoted as LCNF-L27, -L23, -L18, -L9, and -L3, as shown
in Table 1. Kumar et al. (2013) [27] reported that NaClO2/acetic acid delignification for 8 h applied to
a range of cellulosic biomass types (switchgrass, poplar, corn stover, and pine sawdust) removed more
than 90% of the lignin. They adjusted the lignin content of hinoki cypress by using NaClO2/acetic
acid delignification with different reaction times. They reported that with increasing reaction time
(0, 10 min, 4 h, 7 h, and 8 h), the lignin content decreased from 27.2% to 6.5%, whereas the composition
of the constituent sugars of hemicellulose was not significantly changed.

Table 1. Sample codes of lignocellulose nanofibrils (LCNFs) with different lignin content degrees.

Sample Code LCNF-L27 LCNF-L23 LCNF-L18 LCNF-L9 LCNF-L3

Lignin contents (%) 27 23 18 9 3

3.2. Morphology and Size of Insufficiently Defibrillated Products

Products that were insufficiently defibrillated because of their less enzymatic hydrolysis or
mechanical defibrillation, which are considered to be micrometer scale, could be observed in the
low-magnification setting of the optical microscope. Figure 1 shows polarizing optical micrographs of
insufficiently defibrillated products obtained from LCNFs with different lignin contents after enzymatic
treatment using different EG contents. With decreasing lignin content, the size of fibers was significantly
decreased. The dimension and occurrence frequencies of the insufficiently defibrillated products were
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significantly decreased with increasing EG contents. In particular, the fibers of micron-scale were
hardly observed in EG-treated LCNF-L9 and LCNF-L3 at ratios of 1/2 and 1/3 (LCNF/EG), respectively.
The effect of lignin and EG contents on the length distribution of the insufficiently defibrillated
products is described in Figure 2. In the all samples, the length of the insufficiently defibrillated
products was reduced, and their distributions of length became narrower with decreasing lignin
content and increasing EG content. This phenomenon was more distinct in the LCNFs with lower
lignin contents. The average lengths measured from polarizing optical micrographs are summarized
in Table 2. The fiber length was drastically reduced by EG additions. In the case of LCNF-L27,
the fiber length decreased from 118.6 to 71.4 mm by addition of EG. Henriksson et al. (2007) [25]
prepared CNF from bleached wood sulphite pulp via an enzymatic treatment using EG, acid hydrolysis,
and high-pressure homogenization. They reported that the fiber length was reduced by addition of EG,
and the extent of fine material increased. It was considered that the addition of an enzyme promoted
the fiber delamination and thus improved the finer morphology.
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Figure 2. Diameter distribution of the insufficiently defibrillated products with different lignin contents
after enzymatic treatment using different EG contents; (a) without EG, (b) LCNF/EG (1/1), (c) LCNF/EG
(1/2), (d) LCNF/EG (1/3).

Table 2. Average lengths and standard deviations of the insufficiently defibrillated products with
different lignin contents after enzymatic treatment using different EG contents (units: µm).

Sample Code Without EG
Ratio of Substrate/Enzyme (LCNF/EG)

1/1 1/2 1/3

LCNF-L27 118.6 ± 41.8 104.4 ± 32.3 89.5 ± 32.9 71.4 ± 20.1
LCNF-L23 101.4 ± 33.9 95.2 ± 29.9 57.3 ± 16.2 56.1 ± 15.9
LCNF-L18 77.8 ± 26.5 80.1 ± 33.5 53.9 ± 22.1 40.9 ± 10.6
LCNF-L9 74.8 ± 24.1 62.6 ± 26.0 44.2 ± 17.0 N/A
LCNF-L3 59.6 ± 15.6 48.0 ± 20.4 21.4 ± 8.4 N/A

3.3. Morphology and Diameter Distribution of LCNFs

Figure 3 shows TEM images of LCNF without EG treatment and LCNF treated by EG with
different contents of lignin and EG. Without EG treatment, LCNF-L27 showed the biggest diameter
among the LCNFs. It was observed that the dimensions of LCNF were significantly decreased with
decreasing lignin content and increasing EG contents. The effects of lignin and EG contents on the
diameter distribution of LCNFs are shown in Figure 4. In all samples, the diameters of the LCNFs
decreased and the diameter distributions narrowed significantly with decreasing lignin and increasing
EG contents, respectively. In the samples treated with EG at ratios of 1/2 and 1/3 (LCNF/EG), LCNFs
showed a diameter of less than 50 nm regardless of lignin content.

The average diameters of the LCNFs are summarized in Table 3. The diameters of the LCNF
were decreased with increasing EG contents, even though they contained some lignin. In particular,
in LCNF-L27, the diameter of the LCNF drastically decreased from 200.2 to 17.3 nm by EG treatment.
Furthermore, in the LCNF-L9 and LCNF-L3, most of the diameters in all the samples were estimated to
be less than 13 nm, which is considered to be the diameter of a single cellulose microfibril. Espinosa et al.
(2017) [30] performed an enzymatic pretreatment and then high-pressure homogenization to obtain
LCNF from unbleached wheat straw soda pulp (lignin content of 17.7%). It was reported that the
average diameter of the LCNFs after the enzymatic process was about 14.5nm. Therefore, it can
be considered that size-controllable CNFs can be produced by adjusting the lignin content and EG
addition in the EG-assisted mechanical grinding process.
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Table 3. Average diameter and standard deviations of LCNFs with different lignin contents after
enzymatic treatment using different EG contents (units: nm).

Sample Code Without EG
Ratio of Substrate/Enzyme (LCNF/EG)

1/1 1/2 1/3

LCNF-L27 200.2 ± 119.2 49.5 ± 21.5 18.0 ± 8.2 17.3 ± 7.6
LCNF-L23 45.3 ± 31.6 24.9 ± 11.2 16.3 ± 10.0 12.6 ± 6.4
LCNF-L18 20.8 ± 15.8 16.6 ± 9.5 12.1 ± 4.9 9.9 ± 4.0
LCNF-L9 12.3 ± 5.8 7.9 ± 1.8 6.5 ± 1.1 4.4 ± 1.6
LCNF-L3 6.7 ± 2.4 4.4 ± 1.3 3.9 ± 0.7 3.8 ± 1.5

3.4. Crystalline Characteristics of LCNFs

Figure 5 shows X-ray diffractograms of LCNF without EG treatment and LCNF treated by EG at
different contents of lignin and EG. All the diffractograms show peaks at about 2θ = 18.5◦ (Iamor) and
22.5◦ (I200), which are considered to represent the typical cellulose I structure, thus indicating that the
crystal integrity was maintained [31]. However, the I200 diffraction patterns were significantly changed
by lignin content and EG addition. That is, the I200 reflection peaks of the LCNFs sharpened with
decreasing lignin contents and increasing EG contents. It can be considered that the degradation of
the amorphous zones of the LCNFs was proceeded by EG, resulting in an increased crystallinity [32].
The CrI values of the EG-treated bamboo LCNFs that were calculated based on Segal’s method [29] are
given in Table 4. Untreated LCNFs exhibited much lower CrI values (32.2%). However, the CrI values
of the LCNFs drastically increased with decreasing lignin content and EG concentration. Qing et al.
(2013) [15] reported that CNFs obtained from bleached eucalyptus kraft pulp after WDM treatment
followed by enzymatic hydrolysis showed a CrI of 60% compared with a pulp fiber crystallinity of
55%. The increase of crystallinity confirmed the hypothesis that the selected enzyme partially digested
amorphous regions. Liu et al. (2020) [16] reported that the bleached bagasse kraft pulp was subjected
to EG pretreatment with a wide range of enzyme dosages (1, 10, 30, 60, and 120 IU/g) and subsequent
mechanical grinding to prepare tunable CNFs with a wide range of sizes. The CrI was increased from
46.1% to 60.2% with an increase in the enzyme dosage from 0 to 120 IU/g in the pretreatment.
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Table 4. Crystallinity index (CrI) of the LCNFs with different lignin contents after enzymatic treatment
using different EG contents (units: %).

Sample Code Without EG
Ratio of Substrate/Enzyme (LCNF/EG)

1/1 1/2 1/3

LCNF-L27 32.2 38.9 50.0 56.0
LCNF-L23 39.3 44.7 52.7 50.9
LCNF-L18 40.9 47.4 58.3 58.0
LCNF-L9 41.7 48.6 52.7 54.5
LCNF-L3 42.2 54.0 57.7 59.1

4. Conclusions

In this study, the effect of EG treatment on the changes in the dimensions of LCNFs with different
lignin contents was investigated. The dimensions of the LCNFs significantly decreased with decreasing
lignin content and increasing EG content. When the amount of EG added was more than two times
the amount of LCNF during EG treatment, LCNFs showed a diameter of less than 50 nm regardless
of lignin content. In the LCNFs with less than 9% lignin content, most of the diameters in all the
samples were estimated to be less than 13 nm, which is considered to be the diameter of a single
cellulose microfibril. The crystal structure showed the typical cellulose I structure in all samples,
but the intensity of the diffraction peak slightly changed depending on the lignin content and EG
addition. The CrI of the LCNF-L3 treated with the EG at a ratio of 1/3 (LCNF/EG) was the highest
value (59.1%). By controlling the composition and structure of LCNFs, it is expected that the wide
range of properties of these materials can extend the property range available for existing materials.
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