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Abstract: An IR reflector based on polymer-stabilized cholesteric liquid crystal (PSCLC) can selectively
tune IR light reflection for smart window application. Broadening the reflection bandwidth to block
more IR heat radiation requires the expansion of the pitch distribution in the PSCLC. Traditional
attempts using ex situ direct current (DC) bias upon an already polymerized PSCLC reflector usually
require a sustaining potential difference holding the pitch gradient of the reflector. Removing the
DC bias will lead to a reflect bandwidth comeback. Here, we have developed an in situ DC curing
strategy to realize an irreversible reflect bandwidth broadening. Briefly, a DC bias was used to
drive the redistribution of impurity cations, which can be captured by the ester group of oligomers,
during the photopolymerization. During the slow polymerization process, such trapped cations
will drag the oligomers towards the cathode and compress the pitch length near the cathode before
the oligomers form the long polymer chain. Consequently, a frozen pitch gradient by such an
in-situ-electric-field-assisted dynamic ion-dragging effect leads to the formation of a pitch gradient
along the electrical field direction. After removing the DC bias, the as-cured polymer is observed to
have frozen such a gradient pitch feature without recoverable change. As a result, the PSCLC reflector
exhibits steady bandwidth broadening of 480 nm in the IR region, which provides the potential for
saving energy as a smart window.

Keywords: infrared reflector; cholesteric liquid crystal; reflection band broadening; polymer
photocuring; direct current (DC) bias

1. Introduction

Today, global overheating has triggered various threats to our planet and modern civilization [1].
Since 1970, Earth’s heat content has risen at a rate of 6 × 1021 joules a year [2], the equivalent of the
energy output of about 190,000 nuclear power plants. The sun is the primary source of Earth’s heat and
according to the National Aeronautics and Space Administration (NASA) about 51% of solar radiation
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is absorbed by the land and ocean, while 30% is reflected back to space [2]. In solar spectra, heat mainly
comes from the light in the IR region in the wavelength range 700 to 2500 nm, accounting for 50%
of solar energy [3]. Reflecting IR radiation will cool down an object and protect it from overheating.
Cholesteric liquid crystal (CLC) exhibits a spontaneous helical structure and is capable of reflecting at
most 50% of unpolarized natural light, making it a good candidate for an IR heat reflector. Such a CLC
design is omnipresent in natural living creatures with evolved collagen, cornea, chitin, or cellulose in
order to selectively reflect photon radiation and survive in a harsh environment. For example, the crab
Carcinus maenas has developed a cholesteric-structured cuticle to sufficiently reflect IR radiation and
avoid overheating, as the crab spends a lot of time on beaches [4,5]. In the artificial world, CLC materials
for IR heat reflectors have also been well-conceptualized and encouraged by the increasing demand
for buildings that contain a comfortable indoor temperature. Smart windows that can selectively allow
visible light to pass through but reflect IR heat exhibit huge application potential not only with regard
to saving energy for domestic cooling but also for compromising global warming issues.

Organic CLC materials have attracted a broadening amount of attention as they are advantageous
in tuning the transmittance of IR radiation depending on environmental conditions [6]. In addition,
compared to commercial inorganic IR reflectors, non-metallic organic CLC will not block or interfere
with wireless communication signals such as radio frequency (RF), cyber, or cellular signals, etc. [7].
However, to sufficiently reflect IR heat, a wide reflection bandwidth is required. The broader the
reflection band, the more IR heat will be reflected. The bandwidth (∆λ) of the reflected light is defined
by ∆λ = ∆n ·P = (ne − n0) ·P, with ∆n = (ne − n0), ne, n0, and P being the birefringence, extraordinary
refractive index, ordinary refractive index, and the helical pitch of the CLC, respectively [8,9]. Normally,
since the ∆n of colorless organic materials is usually less than 0.3, the band width of a single-pitch CLC
in the IR region is limited to a few tens of nanometers [10], making it insufficient for heat reflection.
In this regard, broadening the reflection bandwidth requires a non-uniform pitch distribution or
a pitch gradient in the CLC gel films. Prior strategies for multiplication of pitch in CLC IR reflectors
have mainly relied on a functional dopant that is sensitive to light to induce a nonuniform degree of
polymerization along the vertical direction (the direction perpendicular to the film plane). For example,
Broer et al. introduced a high UV extinction dopant to induce a gradient of UV radiation and hence
obtained gradient UV curing throughout the thickness direction [11,12]. Seiji et al. [13] and Chen
et al. [14] utilized sugar derivative and chiral photoisomers, respectively to induce the trans–cis
photoisomerization that can produce a reversible change in the helical pitch of CLC. Additional
strategies including low-dose UV initiated curing [15], thermal controlled polymerization [16], reactive
interfacial layer coating [17], mechanical strain [18], magnetic field [19], and ex situ electric field [20–24]
assisted pitch change have also been reported. In particular, applying an external electric field on
a polymer-stabilized cholesteric liquid crystal (PSCLC) reflector cell can modify the orientation of
the CLC molecules and also drive the translational motion of the polymer network, inducing a pitch
change in the cell. However, such a pitch change is highly reversible and the broadened pitch will
recover as soon as the holding bias is removed, as the polymer network has already been cured before
the direct current (DC) electric field is applied. This is counter to the motivation of a wide bandwidth
for IR heat reflector implementation.

In this study, we introduce an in-situ-DC-electric-field-assisted polymerization that takes advantage
of the in-situ-electric-field-assisted cation-dragging effect on oligomers during the slow polymerization
process. The dynamic cation-dragging effect further compresses the pitch length near the cathode,
leading to a pitch gradient along the electrical field direction within the PSCLC. After removing the DC
bias, the as-cured polymer network and pitch gradient are still observed to be very well maintained.
Consequently, the PSCLC reflector which is based on a polymer-stabilized CLC displays a steady
bandwidth broadening of 480 nm in the IR region.
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2. Materials and Methods

2.1. Materials

The LC mixture consisted of both reactive (polymerizable) and non-reactive (non-polymerizable)
mesogens mixed with a photo-initiator. The nematic non-reactive LC mixture MLC-2079 with negative
dielectric anisotropy was chosen to keep the LC director oriented in a planar direction upon application
of a DC electric field. The CLC mixture was prepared by mixing together 78.7% wt % MLC-2079
(∆ε = −6.7, Merck, Darmstadt, Germany), 9 wt % diacrylate monomer RM82 (Merck, Darmstadt,
Germany), 11.3 wt % chiral dopant S811 (Merck), and 1 wt % photo-initiator Irgacure-651 (Ciba
Specialty Chemicals (China) Ltd, Shanghai, China). All materials were used as received without
further purification. Figure 1 shows the chemical structures of RM82, S811, and Irgacur-651. For the
investigation of different photo-initiator concentrations with regard to cell performance, we changed
the concentration of Irgacure-651 from 0.1% to 0.3%, 0.5%, 1%, and 1.5%, respectively.
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Figure 1. The molecular structures of RM82, S811, and Irgacure-651.

2.2. Device Preparation

Firstly, the cleaned indium tin oxide (ITO) coated glasses were irradiated by ozone for 20 min
in an ozone tank (BZS250GF-TC, Huiwo, Shenzhen, China) to make them more hydrophilic. Then,
the inner surfaces of the ITO glass substrates were treated with polyvinyl alcohol (PVA) alignment
layers, which involved rubbing with a plush cloth in parallel directions. Two obtained ITO glasses
with PVA layers were placed face to face and bonded by a mixture of spacers (SiO2) and UV glue with
a weight ratio of 1:99. The gap between the two ITO glasses was 25 µm, as decided by the spacers.
Under UV irradiation for 1 min, a liquid crystal cell was obtained. Meanwhile, differently sized spacers
were also used (5, 15 and 40 µm) to produce cells with different cell gaps.

The LC mixture was stirred thoroughly at 60 ◦C to ensure uniformity before use. The mixture was
filled into the cell by capillary force. The sample cells obtained above were subjected to an in-situ DC
electric field during polymerization. Here, the UV light source used for polymerization was Model
BZS250GF-TC from Shanghai Qunhong (Shanghai, China), whose UV light intensity was fixed at
13 mW/cm2 centered at a wavelength of 365 nm. The polymerization time was 15 min. The whole
preparation process was conducted in the yellow-light area.

2.3. Characterization

Optical characterization of the sample cells was obtained using unpolarizing spectrophotometry
(Lambda 950, PerkinElmer, Shanghai, China) in transmission mode at normal incidence. Optical
microscope photographs of PSCLC sample cells were observed with a polarizing light microscope
(POM, LEICA DM2700P, Leica, Solms, Germany) at room temperature. Impedance spectra were
measured with an impedance analyzer (TONGHUI ELECTRONICS, TH2828, Tonghui, Changzhou,
China).
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3. Results and Discussion

Figure 2 schematically illustrates the application of ex situ and in situ electric fields on the
polymerization of the PSCLC cell. Briefly, an as-prepared CLC reflector consisting of a CLC gel
containing impurity ions, non-reactive LC, a reactive LC monomer, and a photoinitiator was sandwiched
between two parallel ITO substrates coated with alignment layer PVA (Figure 2(ai)), which displayed
a single pitch length feature. The impurity ions in the mixture might have originated from synthetic
and/or purification steps (catalysts, salts, moisture, and dust) [25,26], alignment layers [27], and/or
degradation of LC molecules [28]. By shining UV light to initiate the polymerization for the reactive
LC monomer, a cured network was able to be achieved within the cell to stabilize the LC orientation
directors or freeze the ordered structures (Figure 2(aii)). Normally, applying an external electric field on
such an already-made CLC cell can adjust the pitch length in the PSCLC cell, and it is well-known that
impurity ions trapped by an ester group in a polymer chain are prone to be driven to the corresponding
electrodes and thus induce a translational motion of the polymer network [22,29–31].
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Figure 2. Schematic illustration of pitch length modulation in CLC cell under (a) ex situ electric field
and (b) in situ electric field. Legend: ITO, indium tin oxide; PVA, polyvinyl alcohol.

Consequently, pitch length modulation (Figure 2(aiii)) with a highly recoverable feature
(Figure 2(aiv)) was able to be obtained. In comparison, we applied an in situ DC bias during
the slow polymerization process in the CLC cell. As shown in Figure 2(bi), in the initial state, the CLC
cell displayed a single pitch feature. By simultaneously applying a DC bias and UV light-initiated slow
polymerization, the oligomers which were formed first and which contained the ester group were able
to capture the impurity cations in the CLC by Columbic interaction. The trapped cations anchored at
the short oligomer chains were able to further drag them towards the cathode under the in situ DC
bias (Figure 2(bii)). After completing the whole polymerization process, the short oligomer chains
connected with each other to form a polymeric network. Meanwhile, the in-situ-electric-field-assisted
dynamics of the charged oligomers make the CLC stacking much more compact near the cathode
(Figure 2(biii)). In this way, a pitch gradient was realized using the cation-dragging effect strategy.
Moreover, as the polymerization was completed under a DC bias, the density of the polymeric network
had a gradient along the thickness direction which regulated the CLC stacking in a pitch gradation
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manner. Removing the DC bias induced neither the comeback of the network nor the pitch gradient
(Figure 2(biv)).

As the dynamic of the ion-dragging effect under the in situ DC bias played a key role in forming
the non-uniform polymeric network, the strength of the electric field was of great importance in
inducing the pitch gradient. Figure 3a compares the transmission spectra between the PSCLC cell
treated with in situ DC electric fields of different intensities from 0 (the control) to 3.2 V/µm. It is clear
that a larger electric field strength led to a larger reflect bandwidth. For example, as the field strength
increased from 0 to 1.6 to 3.2 V/µm, the band width increased from 126 to 161 to 278 nm, respectively.
Moreover, such a reflect band is only located in the IR region after a wavelength of 800 nm, indicating
no transparency loss in the visible region (and maintenance of over 90% transparency). We further
quantified the IR reflecting ability by plotting the full-width at half-maximum (FWHM) of the reflection
bandwidth (extracted from the transmittance groove) versus the electric field intensity. As shown in
Figure 3b, increasing the electric field intensity monotonously enlarged the reflection bandwidth. This
was due to the dragging effect of the trapped cations in the polymer network that stretched the short
oligomer chains moving toward the cathode during polymerization. The motion and distortion of
the polymer network would have compressed the helical pitch of the LC on the negative electrode
side and simultaneously stretched the helical pitch on the positive side. After polymerization there
was a pitch gradient throughout the thickness of the cell and thus an enhanced reflection bandwidth.
Figure 3c shows POM images of the PSCLC samples treated by different DC biases. It can be seen
clearly that all samples exhibited an appropriate Grandjean planar texture under the POM, suggesting
that the in situ electric field treatment did not affect the original cholesteric phase or its orientation in
the LC molecules.
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To further verify the hypothetical mechanism, we carried out a series of experiments by changing
different variables in the CLC mixture. Fundamentally, during the slow polymerization, the short-chain
oligomers which were first produced were able to trap the impurity cations forming a charged segment
within the oligomers. Such a charged component can be driven to the corresponding electrode
under an in situ DC bias. In the limit case of there being no monomer or no polymerization process,
no cation-dragging effect will be present even under an in situ electric field, and, hence, the pitch
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length stays invariant. In order to prove this, we fabricated a CLC cell without either monomers or
photo-polymerization with different DC bias treatments. Figure 4a,b show the transmittance spectra of
these CLC cells, whose reflection band did not change regardless of the different electric field intensities.
Figure 4c,d quantify the FWHM of the bandwidth in dependence on the DC electric field intensity.
It is clear that there was no difference in bandwidth. These results suggest that the presence of both
monomers and polymerization is required for the cation-dragging effect.
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under different DC bias treatments; reflection bandwidth of the CLC cell without either monomers (c)
or photo-polymerization (d) under different DC biases. Legend: w/o, without.

In the typical case where the polymerization process and the trapped cation-dragged oligomer
motion simultaneously exist within the system, a much more complicated dynamic process is present
in the cell in which the reaction rate, drifting velocity, and cell thickness will synergistically affect the
final morphological configuration. Fundamentally, the dynamic competition between the DC-assisted
oligomer drifting velocity and the polymerization rate are the key to the proposed pitch gradient
formation in the resultant PSCLC cell. Faster drifting or a slower polymerization rate will facilitate
nonuniform polymerization or the network gradient, as there will be enough time for the oligomer
to accumulate at one side of the electrode before further polymerization into longer chains occurs.
Thus, we tuned both the polymerization rate and the drifting rate to investigate the underlying physics.
The polymerization rate can be modulated by changing the initiator concentrations to adjust the
propagation reaction rate [32]; the drifting rate can be adjusted by changing the DC bias intensity to tune
the field acceleration coupled by its time integration [33]. Figure 5a displays the reflection bandwidth
summarized as a function of in situ bias from 0 to 3.2 V/um with different initiator concentrations
from 0.1% to 1.5%. It is clear that as the DC bias increased there was an overall increase in reflect
bandwidth, regardless of the initiator concentration. This was due to the stronger electric field forces
that made it easier for the oligomer to drift towards the cathode. On the other hand, at different
DC biases the bandwidth had different dependence on the initiator concentrations. For example,
at a lower bias of 0.8 V/µm, the bandwidth of the PSCLC cell using 0.5%, 1.0%, and 1.5% initiator
concentrations displayed a similar value of 137 nm, while at a higher bias of 3.2 V/µm, the PSCLC
cell using 0.5%, 1.0%, and 1.5% initiator concentrations exhibited a monotonous increased bandwidth
of 256, 278, and 290 nm, respectively. Theoretically, the lower the initiator concentration, the slower
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the polymerization experienced, which will provide enough time for the oligomer to drift towards
the front-side cathode and consequently for a denser polymer network and then a larger reflection
bandwidth to occur. Moreover, in real cases the light penetration for initiating the polymerization
should also be taken into consideration. In fact, prior reports have revealed the importance of UV light
penetration on gradient pitch formation in CLC systems [34]. Here, the UV initiate light comes from
the top cathode and the achiral diacrylate (RM82) molecule first undergoes polymerization near the
top cathode. Due to the consumption for prior polymerization near the top cathode, RM82 diffuses
from bottom to top. When the polymerization rate is much faster than the dynamic motion of RM82,
RM82 is frozen into the network before moving to the top, and a less gradient-like network is formed.
Hence, a lower initiator concentration gives rise to a broader bandwidth when the cell is without in situ
DC bias treatment. To confirm this, we further investigated the reflection bandwidth upon different
initiator concentrations (different polymerization rates) without an in situ electric field. As shown in
Figure 5b, as the initiator concentration increased from 0.1% to 1.5%, the reflection bandwidth exhibited
a monotonous decrease from 136 to 120 nm. This is in distinct contrast to that of the cell using in situ
electric field treatment (Figure 5a), where since the concentration increased from 0.5 to 1.0 to 1.5 wt %,
the bandwidth increased from 256 to 278 to 290 nm at the in situ DC bias of 3.2 V/µm, showing much
larger bandwidths than in the case without in situ electric field treatment. It seems that with high in
situ DC bias treatment, a lower polymerization rate due to the smaller initiator concentration does not
dominate the bandwidth change. It is probably true that the impurity cation concentration, which
could be enlarged by adding more initiator molecules, could further complicate the case. We further
measured the impedance spectra of the cells with different photo-initiator concentrations (Figure 5c).
We found that the CLC system with the highest initiator concentration of 1.5% showed the lowest
impedance, suggesting the largest ion concentration. This could be beneficial for the broadening of
the reflection band because more ions could be trapped at the oligomer and induce a more intensive
dragging effect to evoke a more inhomogeneous network. Overall, it can be concluded that the
competition relationship between the polymerization rate and the dynamic motion of the charged
oligomer determines the final bandwidth performance.
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of different initiator concentrations; (c) impedance spectra of the cells with different photo-initiator
concentrations; (d) reflection bandwidth of PSCLC cells with different thicknesses treated with an in
situ DC electric field.
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The dynamic motion of charged oligomers under a vertical in situ electric field is limited by
cell thickness. Previous studies have also revealed the importance of cell thickness in affecting the
broadening effect [35]. We further investigated the dependence of the reflect bandwidth on cell thickness
with an in situ DC bias treatment. The transmittance spectra of cells with different cell thickness which
were treated with an increased in situ DC electric field are shown in Figure S1 (Supporting Information).
Figure 5d summarized the bandwidth of PSCLC cells with different thicknesses from 5 to 40 µm under
different in situ DC curing bias treatments. As the cell thickness increased, there was a wider reflection
bandwidth. Since the bandwidth is proportional to the pitch gradient, a wider bandwidth suggests
a larger pitch gradient of the PSCLC. At a larger thickness, the degree of the trapped cation dragging
effect can reach a larger scale, as there is more distance for the cations to move. Thus, the dragging
effect compresses and stretches the polymer at an extended level, rendering the resultant network
more nonuniform. Notably, under an electric field of 3.2 V/µm and the largest cell thickness of 40 µm,
a maximal reflection bandwidth of 480 nm was obtained.

So far we have demonstrated that an in situ DC electric field that can fix the polymerization in
a gradient manner induces an irreversible bandwidth broadening. Based on this finding, we further
applied an ex situ electric field to see if there was additional room to tune the bandwidth upon our
already broadened samples. The PSCLC cell which was polymerized under an in situ electric field
of 2.4 V/µm was used for further ex situ DC bias testing. Figure 6a shows the transmittance spectra
of the PSCLC cell under different ex situ DC biases. It can be seen as the ex-situ DC bias increased,
a bandwidth broadening was still exhibited. We also quantified the reflection bandwidth as a function
of ex situ DC bias, as shown in Figure 6b, and found that the reflection bandwidth was even able
to increase from 220 to 540 nm after applying an ex situ bias of 3.6 V/µm. Thus, our in-situ-treated
PSCLC cell still showed itself to be capable of an additional tunability with an ex situ bias. This can
be understood with regard to the additional movement of the already frozen network under the
ex situ bias, which is consistent with reports of ex situ bias inducing reversible band broadening [22].
However, here the starting cell had already been broadened and the ex situ bias gave an extra extent
for electrically tuning the bandwidth onto the next level. As a result, the bandwidth was able to be
enlarged to 540 nm under an ex situ field of 3.6 V/µm.
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4. Conclusions

In summary, we have reported in this work on the preparation of a PSCLC with a negative
dielectric anisotropy in which the selective reflection bandwidth could be greatly broadened by an in
situ curing DC electric field. Briefly, during the slow polymerization process, the oligomers which
were first produced were able to trap the impurity cations and drift towards the cathode under such
an in situ DC bias. Thus, the oligomer drifting and further polymerization into long chains occurred
simultaneously, resulting in a final nonuniform network which regulated the pitch length of the CLC
at a larger scale. Consequently, reflection bandwidth broadening was able to be achieved using this
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in-situ-bias-assisted trapped cation-dragging effect. This dynamic played a key role in the competition
between the drifting and polymerization rate and determined the final device performance. In this
study, using this strategy, we achieved a primitive reflection bandwidth increase to 480 nm (from
126 nm), proving the aforementioned concepts to be true. We believe that by properly tuning the in
situ curing condition and the dynamics of drifting, the IR reflection regulation will further improve,
which is of great importance for practical applications for green-cooling such as smart windows.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/1/96/s1,
Figure S1: The reflection bandwidth of a cell with different thicknesses versus different in situ DC bias treatments.
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