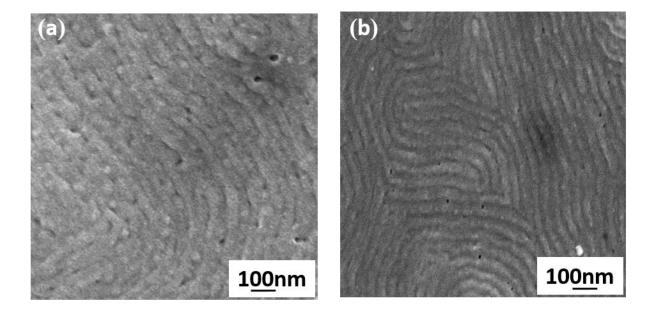


- 1 Supporting Information
- 2 Isoporous Membranes from Novel
- 3 polystyrene-b-poly(4-vinylpyridine)-b-poly(solketal
- 4 methacrylate) (PS-b-P4VP-b-PSMA) Triblock
- 5 **Terpolymers and their Post-modification**
- 6 Sarah Saleem¹, Sofia Rangou¹, Clarissa Abetz¹, Volkan Filiz¹, Volker Abetz^{1,2*}
- 7 1. Helmholtz-Zentrum Geesthacht, Institute of Polymer Research, Max-Planck-Str.1, 21502 Geesthacht,
- 8 Germany.
- 9 2. Universität Hamburg, Institute of Physical Chemistry, Martin-Luther-King-Platz 6, 20146 Hamburg,
- 10 Germany.
- 11 * Correspondence: E-Mail: volker.abetz@hzg.de, Tel: +49 4152 872461


12 13

14

15

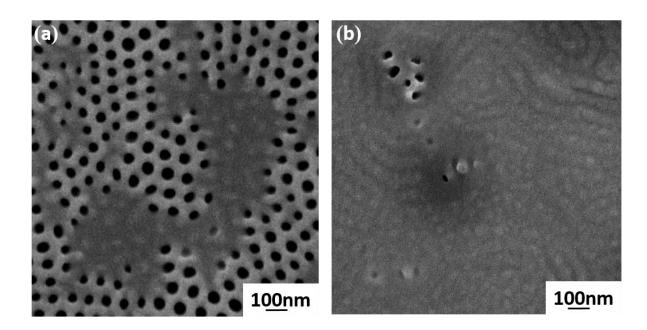
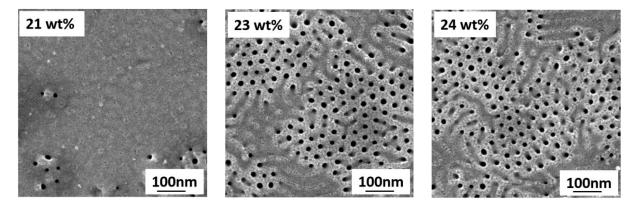

16

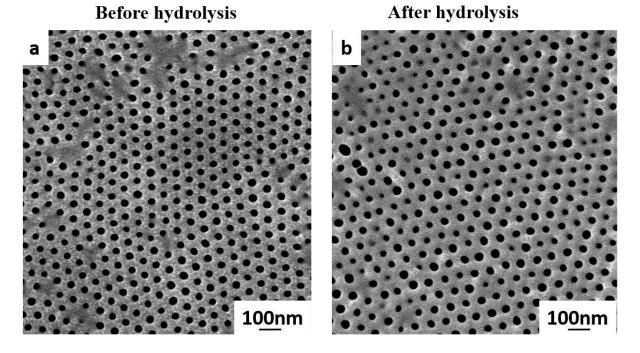
Figure 1. SEM images of PS₇₁-*b*-P4VP₂₆-*b*-PSMA₃¹⁴⁵ membrane surfaces prepared from different solutions: 22 wt% copolymer in (a) 60/40 THF/DMF; (b) 50/50 THF/DMF; (c) 70/30 THF/DMF. The evaporation time before immersion into the precipitant was 10 seconds for the three different concentrations.



17 18

- 19 Figure 2. SEM images of the surfaces of PS71-b-P4VP26-b-PSMA3145 membranes cast from a 22 wt%
- 20 copolymer solution in (a) THF/DMF/DOX 1/1/1 (b) THF/DMF/DOX 40/30/30. The evaporation time
- 21 before immersion into the precipitant was 10 seconds.
- 22

Figure 3. SEM images of the surfaces of PS₇₁-*b*-P4VP₂₆-*b*-PSMA₃¹⁴⁵ membranes cast from solutions THF/DMF/Acetone: 50/30/20 wt%. (a) 20 seconds (b) 30 seconds evaporation time before immersion into non-solvent bath.

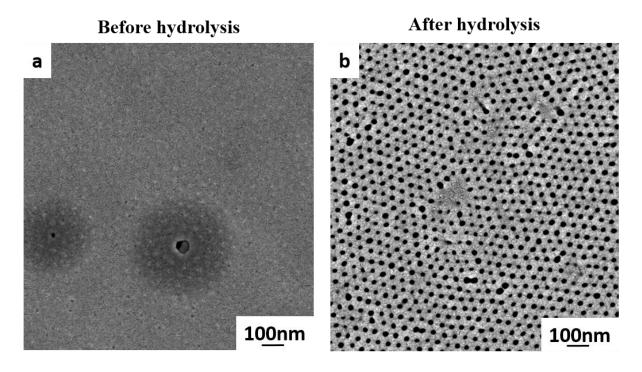


27 28

29

30

Figure 4. SEM images of the surfaces of PS₇₁-*b*-P4VP₂₆-*b*-PSMA₃¹⁴⁵ membranes cast from 21 wt%, 23wt%, 24wt% copolymer solutions in THF/DMF/Acetone: 50/30/20 wt%. The evaporation time before immersion into the precipitant was 10 seconds.



32

33

34

Figure 5. SEM images of the surface of (a) pristine PS₇₀-*b*-P4VP₂₅-*b*-PSMA₅¹⁴³ membrane and (b) PS₇₀-*b*-P4VP₂₅-*b*-PGMA₅¹⁴³ membrane after acidic hydrolysis. The evaporation time before immersion into water bath was 10 seconds.

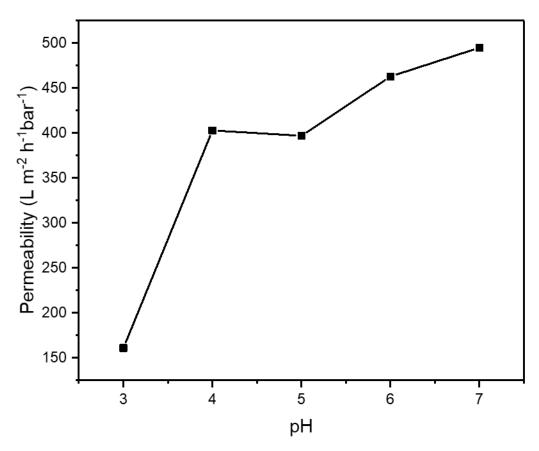

35

Figure 6. SEM images of (a) PS₇₁-b-P4VP₁₇-b-PSMA₁₂⁹¹ membrane (b) PS₇₁-b-P4VP₁₇-b-PGMA₁₂⁹¹
membrane obtained after acidic hydrolysis. The evaporation time before immersion into water bath was 10 seconds.

39 Table 1. Comparison of dynamic contact angle values of PS₇₁-*b*-P4VP₂₆-*b*-PSMA₃¹⁴⁵

40 and PS₇₁-*b*-P4VP₂₆-*b*-PGMA₃¹⁴⁵ triblock terpolymer membranes.

PS71-b-P4VP26-b-PSMA3145	PS71-b-P4VP26-b-PGMA3145
(°)	(°)
63±1	51±1
61±0.5	47±3
56±2	38±2
49±1	37±3
45±1	34±3
43±0.46	27±3
39±3	22±1
34±2	17±2
30±1	13±1
25±4	9±1
16	5±5

42Figure 7. Water permeabilities of PS_{71} -b-P4VP26-b-PGMA3145 membrane measured at various pH, at43pH > 4 high water permeability was observed, due to deswelling of the deprotonated P4VP blocks at44larger pH, leading to their collapse on the pore walls.

45

41