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Abstract: Copolymerizations of 1-decene (DC) with 1,9-decadiene (DCD), 1-dodecene
(DD) with 1,11-dodecadiene (DDD), and 1-tetradecene (TD) with 1,13-tetradecadiene (TDD),
using Cp*TiMe2(O-2,6-iPr2C6H3) (1)–[Ph3C][B(C6F5)4] (borate) catalyst in the presence of
AliBu3/Al(n-C8H17)3 proceeded in a quasi-living manner in n-hexane at −30 to −50 ◦C, affording
ultrahigh molecular weight (UHMW) copolymers containing terminal olefinic double bonds in the
side chain with rather low PDI (Mw/Mn) values. In the DC/DCD copolymerization, the resultant
copolymer prepared at −40 ◦C possessed UHMW (Mn = 1.40 × 106 after 45 min) with low PDI
(Mw/Mn = 1.39); both the activity and the PDI value decreased at low polymerization temperature
(Mn = 5.38 × 105, Mw/Mn = 1.18, after 120 min at−50 ◦C). UHMW poly(TD-co-TDD) was also obtained
in the copolymerization at −30 ◦C (Mn = 9.12 × 105, Mw/Mn = 1.51, after 120 min), using this catalyst.

Keywords: polymerization; titanium complex; catalyst; α-olefin; nonconjugated diene; half-titanocene;
borate; bottlebrush polymer

1. Introduction

Transition metal catalyzed olefin polymerization is the core technology in the polyolefin industry,
and the recent progress in the catalyst development provides new possibilities for the synthesis of
new polymers [1–14]. Homopolymers of long-chain (higher) α-olefins are branched macromolecules
with a high graft density, and the polymers are thus recognized as the simplest bottlebrush polymers,
with their backbone and side chains consisting of alkanes [15,16]. Amorphous poly(α-olefin)s are
used in hot-melt applications due to their high melt–flow rate with low density, and the ultrahigh
molecular weight (UHMW) polymers possess highly entangled bottlebrush architectures and are used
as drag-reducing agents (DRAs) in pipeline transport methods for crude oil and petroleum products
for improvement of piping system capacity [17–20]. Recent reports revealed their melt structure, linear
rheology, and interchain friction mechanism, including effect of side-chain length toward their linear
viscoelastic response and melt microstructure [15,16].

However, reports for synthesis of UHMW polymers by polymerization of higher α-olefins
(1-decene, 1-dodecene, 1-tetradecene, etc.) still have been limited [15,16,21,22], probably due to their
preferred β-hydrogen elimination compared to the repeated insertion of monomer with a steric bulk
(of alkane branching), as seen in ordinary metallocene catalysts yielding oligomers [21,23,24]. There
are several examples for synthesis of (ultra)high molecular weight poly(1-hexene)s [21,25–27] by using
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[2,2-(O-4-Me-6-tBu-C6H3)2S]TiCl2 (with water modified MMAO cocatalyst) [27,28], (C5HMe4)2HfCl2
(under ultrahigh pressure) [25], titanium complexes with diamine bis(phenolate) ligands [26]. Synthesis
of rather high molecular weights poly(α-olefin)s, mostly poly(1-hexene)s, using the other catalysts,
have also been known [24,29–37].

We reported that Cp*TiCl2(O-2,6-iPr2C6H3)–MAO catalyst afforded high molecular weight
poly(α-olefin)s by polymerizations of 1-decene (DC), 1-dodecene (DD), 1-hexadecene, and
1-octadecene [21]. It was then revealed that polymerizations of DC, DD, and 1-tetradecene (TD)
proceeded in a quasi-living manner in the presence of Cp*TiMe2(O-2,6-iPr2C6H3) (1)–[Ph3C][B(C6F5)4]
(borate) catalyst and Al cocatalysts at −30 to −50 ◦C, affording UHMW polymers (e.g., poly(DC):
Mn = 7.04 × 105, Mw/Mn = 1.37; poly(TD): Mn = 1.02 × 106, Mw/Mn = 1.38); the polymerizations
proceeded with rather high catalytic activities (activity at −30 ◦C: 4120–5860 kg-poly(DC)/mol-Ti·h) [22].
The PDI (Mw/Mn) values decreased (accompanied with decrease in the catalytic activity) with an
increase in the Al(n-C8H17)3/AliBu3 molar ratio and/or by decreasing the polymerization temperature
(−40 and −50 ◦C). Moreover, it was demonstrated that 1,7-octadiene (OD) polymerization by
Cp*TiCl2(O-2,6-iPr2C6H3)–MAO catalyst afforded polymers containing terminal olefinic double
bonds in the side chain without cyclization, cross-linking (Scheme 1). An introduction of polar
functionality and the subsequent grafting (by living ring opening polymerization of ε-caprolactone)
was also demonstrated into poly(1-octene-co-OD)s under mild conditions [38]. The method introduced
a possibility for synthesis of functionalized polyolefins by incorporation of reactive functionalities,
as demonstrated in the ethylene/1-octene or ethylene/styrene copolymerization in the presence of OD
(synthesis of copolymers containing terminal olefinic double bonds with uniform compositions), and
subsequent chemical modification under mild conditions (Scheme 1) [39–45].
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Scheme 1. Polymerization of 1,7-octadiene (OD) and ethylene copolymerizations in the presence of
OD, using Cp’TiCl2(O-2,6-iPr2C6H3) (Cp’ = Cp*, 1,2,4-Me3C5H2)–MAO catalysts [38,44].

Since, as described above, UHMW polymers are simple bottlebrush polymers prepared by
polymerization of these higher α-olefins via the grafting-through approach, we thus have an interest in
synthesis of the UHMW polymers containing terminal olefinic double bond by copolymerization of DC
with 1,9-decadiene (DCD), DD with 1,11-dodecadiene (DDD), and TD with 1,13-tetradecadiene (TDD),
using 1–borate catalyst [46]. We thus, herein, wish to introduce our explored results for synthesis of
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new bottlebrush polymers with low PDIs containing reactive functionality in the side chain by 1–borate
catalyst in the presence of Al cocatalyst (Scheme 2).
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(DCD), 1,11-dodecadiene (DDD), and with 1,13-tetradecadiene (TDD), using Cp*TiMe2(O-2,6-iPr2C6H3)
(1)–[Ph3C][B(C6F5)4] catalyst in the presence of Al cocatalyst.

2. Materials and Methods

All experiments were conducted in a dry box, under a nitrogen atmosphere, unless otherwise
specified. All chemicals of reagent grade were purified by the standard purification protocols.
The n-Hexane or toluene (anhydrous grade, Kanto Kagaku Co. Ltd., Tokyo, Japan) was stored in a
bottle containing molecular sieves (mixture of 3A and 4A 1/16, and 13X) in the dry box, and was used
without further purification. The 1-Decene, 1-dodecene, 1-tetradecene, 1,9-decadiene, 1.11-dodecadiene,
and 1,13-tetradecadiene (reagent grades, TCI Co., Ltd., Tokyo, Japan) were stored in bottles, in the
dry box, and were passed through an alumina short column prior to use. Cp*TiMe2(O-2,6-iPr2C6H3)
(1) was prepared according to our previous report [46], and [Ph3C][B(C6F5)4] (Asahi Glass Co. Ltd.,
Tokyo, Japan) was used as received.

All 1H and 13C NMR spectra were recorded on a Bruker AV 500 spectrometer (500.13 MHz for 1H;
125.77 MHz for 13C, Bruker Japan K.K., Tokyo, Japan) at 25 ◦C, and all chemical shifts in the spectra
were recorded in ppm (reference SiMe4). Samples for the measurement were prepared by dissolving
the polymers in 1,1,2,2-tetrachloroethane-d2 solution. Gel-permeation chromatography (GPC) were
conducted for analysis of molecular weights (based on the calibration with standard polystyrene
samples as the standard procedure) and the distributions. HPLC grade THF (degassed prior to use)
was used for GPC analysis, and the GPC analysis was performed at 40 ◦C on a Shimadzu SCL-10A,
using a RID-10A detector (Shimadzu Co., Ltd.), using degassed prior to use in THF (containing 0.03
wt.% of 2,6-di-tert-butyl-p-cresol, flow rate 1.0 mL/min). GPC columns (ShimPAC GPC-806, 804,
and 802, 30 cm × 8.0 mm diameter, spherical porous gel made of styrene/divinylbenzene copolymer,
ranging from <102 to 2 × 107 MW).

Typical polymerization procedures were as follows: in the dry box, 1-decene (30.0 mL),
1,9-decadiene (0.5 mL), n-hexane (30.0 mL), and AliBu3 and Al(n-C8H17)3 (prescribed amount) were
added into a 100 mL round-bottom flask, which was connected to three-way valves. The flask was
taken out from the dry box, and a toluene solution containing 1 (2.0 µmol/mL), which was pretreated
with 2.0 eq. of AliBu3 at −30 ◦C, was then added into the mixture precooled at −30 ◦C under N2

atmosphere. The polymerization was started by the addition of a prescribed amount of toluene solution
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containing [Ph3C][B(C6F5)4] (2.0 µmol/mL). A certain amount (3.0 mL) of the reaction solution was
taken out via a syringe from the reaction mixture, to monitor the time course; the sample solution was
then quickly poured into iPrOH (150 mL) containing HCl (10 mL). The resultant polymer as precipitates
was collected, adequately washed with iPrOH, and then dried in vacuo, for further analysis.

3. Results and Discussion

On the basis of our previous reports for polymerizations of 1-decene (DC), 1-dodecene (DD), and
1-tetradecene (TD) [22], and of 1,7-octadiene [38], Cp*TiMe2(OAr) (1, Ar = 2,6-iPr2C6H3) was chosen
as the catalyst precursor, and [Ph3C][B(C6F5)4] (borate) was chosen as the cocatalyst in the presence of
AliBu3 and Al(n-C8H17)3 [22,29]. Copolymerizations of DC with 1,9-decadiene (DCD) were conducted
in n-hexane at −30 to −50 ◦C, in the presence of Al cocatalyst [Al(n-C8H17)3/AliBu3/Ti = 400/100/1.0
(at −30 and −40 ◦C) or 300/200/1.0 (at −50 ◦C), molar ratio]; the ratios were used on the basis of the
homo polymerization results [22]. As reported previously [22,29,47–49], use of Al(n-C8H17)3, weak
reagent for alkylation, and/or chain transfer was effective to proceed without catalyst deactivation,
probably not only due to a role as a scavenger, but also due to the fact that the Al alkyl would contribute
to the stabilization of the catalytically active species by preventing the decomposition from further
reaction with borate [50–52]. The results in the DC/DCD copolymerization are summarized in Table 1.

Table 1. Copolymerization of 1-decene (DC) with 1,9-decadiene (DCD) by Cp*TiMe2(O-2,6-iPr2C6H3)
(1)–[Ph3C][B(C6F5)4] (borate) catalyst a.

Run Al(n-C8H17)3/
AliBu3/Ti b

Temp.
/◦C

Time
/min

Yield c

/mg
Activity

d TON e Mn
f

× 10−4
Mw/
Mn

f
DCD g

/mol%
Conv. h

/%

1 400/100/1.0 −30 5 652 7820 4650 32.4 1.43 8.9 16
10 796 4780 5680 45.3 1.47 8.4 17
15 864 3460 6160 52.4 1.45 8.2 19
20 918 2750 6550 75.3 1.43 8.0 19

2 400/100/1.0 −40 10 246 1480 1760 55.1 1.28 9.1 6
20 582 1750 4150 88.7 1.32 8.8 13
30 966 1930 6900 100.7 1.40 7.8 19
45 1400 1870 9990 140.1 1.39 5.6 20

3 300/200/1.0 −50 60 396 400 2830 32.4 1.19 9.8 10
75 512 410 3660 38.9 1.20 9.2 12
90 574 380 4100 46.8 1.14 8.3 13

120 742 370 5300 53.8 1.18 7.4 15
a Conditions: 1 1.0 µmol, 1-decene 30.0 mL, 1,9-decadiene 0.5 mL, n-hexane 30.0 mL, AliBu3/Al(n-C8H17)3/
[Ph3C][B(C6F5)4]/Ti = 100/400/3.0/1.0 molar ratio (200/300/1.0 at −50 ◦C), 1 was pretreated with 2.0 equiv of AliBu3
at −30 ◦C for 10 min before addition into the mixture. b Molar ratio. c A prescribed amount (3.0 mL) of the
solution was removed via syringe from the reaction mixture, and the yields were based on obtained amount.
d Activity in kg-polymer/mol-Ti·h. e TON (turnovers) = monomer consumed (mol)/mol-Ti. f GPC data in THF vs
polystyrene standards. g Estimated by 1H NMR spectra. h Estimated ((DCD consumed/DCD charged) × 100) (conv.
= conversion).

As observed in the polymerization of DC, the copolymerization of DC with DCD proceeded with
high catalytic activities (2750–7820 kg-polymer/mol-Ti·h within 20 min), even at −30 ◦C, affording high
molecular weight polymers with rather narrow molecular weight distributions (run 1, Mn = 3.24 ×
105–7.53 × 105, Mw/Mn = 1.43–1.47). The Mn value increased over the time course, without significant
changes in the PDI values. It turned out that the PDI values decreased at a low temperature, with
a decrease in the catalytic activity; the resultant copolymer prepared at −40 ◦C possessed UHMW
(run 2, Mn = 1.40 × 106 after 45 min), with low PDI (Mw/Mn = 1.39), and the PDI value became low
when the copolymerization was conducted at −50 ◦C (run 3, Mn = 5.38 × 105, Mw/Mn = 1.18, after
120 min at −50 ◦C). As shown in Figure 1a, linear relationships between the Mn values and the polymer
yields (turnover numbers, TON) were observed, suggesting that these polymerizations proceeded
in a quasi-living manner, as reported in the polymerization of DC [22]. As shown in Figure 2b
(shown below), the resultant copolymers contain terminal olefinic double bonds by incorporation of
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DCD. The content of DCD estimated by 1H NMR spectra slightly decreased gradually due to rather
high consumption of DCD (rather high conversion of DCD and changes in the DCD concentration in
the reaction solution) during the polymerization time course. This would suggest the possibility of
(rather) gradient composition, although we do not have the firm elucidation at this moment.
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Figure 2. (a) Plots of Mn, Mw/Mn vs. polymer yields (turnover numbers, TON) in copolymerization of
1-tetradecene (TD) with 1,13-tetradecadiene (TDD), using Cp*TiMe2(O-2,6-iPr2C6H3) (1)–borate catalyst.
(b) Selected 1H NMR spectra (in 1,1,2,2-tetrachloroethane-d2 at 25 ◦C) for (top) poly(DC-co-DCD)
(after five min) and (bottom) poly(TD-co-TDD) (after 60 min). The resonance at 5.8 ppm would be
overlapped with the satellite of the resonance at 6.0 ppm.
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Table 2 summarizes results in the DD/DDD copolymerization conducted at −40 and −50 ◦C.
As observed in the DC/DCD copolymerization, the Mn value increased over the time course, without
significant changes in the PDI values, and the PDI became low at−50 ◦C (run 5). The resultant copolymer
prepared at −50 ◦C possessed high molecular weight with low PDI value (run 5, Mn = 5.46 × 105,
Mw/Mn = 1.28 after 120 min). As shown in Figure 1b, a linear relationship between the Mn values
and the polymer yields (turnover numbers, TON) was observed in the polymerization at −50 ◦C,
suggesting a possibility of a quasi-living manner, as observed in the DC/DCD copolymerization.

Table 2. Copolymerization of 1-dodecene (DD) with 1,11-dodecadiene (DDD) by Cp*TiMe2

(O-2,6-iPr2C6H3) (1)–[Ph3C][B(C6F5)4] (borate) catalyst a.

Run Al(n-C8H17)3/
AliBu3/Ti b

Temp.
/◦C

Time
/min

Yield c

/mg
Activity

d TON e Mn
f

× 10−4
Mw/
Mn

f
DDD g

/mol%
Conv. h

/%

4 400/100/1.0 −40 20 828 2480 5900 42.6 1.34 7.9 17
30 897 1790 6390 48.3 1.39 7.7 18
40 932 1400 6640 51.4 1.38 6.6 18

5 250/250/1.0 −50 75 402 320 2390 33.5 1.25
90 492 330 2920 42.6 1.25 7.7 10
105 582 330 3460 49.7 1.24 7.5 11
120 628 310 3730 54.6 1.28 7.5 12

a Conditions: 1 1.0 µmol, 1-dodecene 25.0 mL, 1,11-dodecadiene 0.5 mL, n-hexane 35.0 mL, AliBu3/Al(n-C8H17)3/
[Ph3C][B(C6F5)4]/Ti = 100/400/3.0/1.0 molar ratio (250/250/1.0 at −50 ◦C), 1 was pretreated with 2.0 equiv of AliBu3 at
−30 ◦C for 10 min before addition into the mixture. b Molar ratio. c A prescribed amount (3.0 mL) of the solution
was removed via syringe from the reaction mixture, and the yields were based on obtained amount. d Activity in
kg-polymer/mol-Ti·h. e TON (turnovers) = monomer consumed (mol)/mol-Ti. f GPC data in THF vs polystyrene
standards. g Estimated by 1H NMR spectra. h Estimated ((DDD consumed/DDD charged) × 100).

Table 3 summarizes results in TD/TDD copolymerization conducted at −30 ◦C. Due to a difficulty
of polymerization at low temperature (the n-hexane solution would be heterogeneous due to the
freezing of TD), the polymerization could be conducted only at −30 ◦C, under rather diluted conditions.
As observed in Tables 1 and 2, the Mn value increased over the time course, without significant changes
in the PDI values. The resultant copolymer possessed high molecular weight, with unimodal molecular
weight distribution (run 6, Mn = 9.12 × 105, Mw/Mn = 1.51 after 120 min). As also shown in Figure 2a,
a linear relationship between the Mn values and the polymer yields (turnover numbers, TON) was
clearly observed. The results thus also suggest that the TD/TDD copolymerization proceeded in a
quasi-living manner.

Table 3. Copolymerization of 1-tetradecene (TD) with 1,13-tetradecadiene (TDD) by Cp*TiMe2

(O-2,6-iPr2C6H3) (1)–[Ph3C][B(C6F5)4] (borate) catalyst (−30 ◦C) a.

Run Time/min Yield b/mg Activity c TON d Mn
e
× 10−4 Mw/Mn

e TDD f/mol%

6 10 184 1100 927 48.7 1.26
30 516 1030 2600 52.8 1.38 4.5
40 830 1110 4180 55.3 1.36 4.0
60 1150 1150 5790 64.8 1.41 3.7
75 1510 1210 7610 72.9 1.43 3.5
90 1872 1250 9440 80.4 1.48 3.2

120 2432 1220 12300 91.2 1.51
a Conditions: 1 1.0 µmol, 1-tetradecene 20.0 mL, 1,13-tetradecadiene 1.0 mL, n-hexane 40.0 mL,
AliBu3/Al(n-C8H17)3/[Ph3C][B(C6F5)4]/Ti = 100/400/3.0/1.0, molar ratio, 1 was pretreated with 2.0 equiv of AliBu3 at
−30 ◦C for 10 min before addition into the mixture. b A prescribed amount (3.0 mL) of the reaction mixture was
removed via syringe from the polymerization mixture, and the yields were based on obtained amount. cActivity in
kg-polymer/mol-Ti·h. d TON (turnovers) = monomer consumed (mol)/mol-Ti. e GPC data in THF vs polystyrene
standards. f Estimated by 1H NMR spectra.
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As shown in Figure 2b, the resultant polymers possessed a terminal olefinic double bond, as observed
in poly(1-octene-co-1,7-octadiene) and poly(ethylene-co-1-octene-co-1,7-octadiene) [38], as well as in
poly(ethylene-co-styrene-co-1,7-octadiene) [44] prepared by Cp*TiCl2(O-2,6-iPr2C6H3)–MAO catalyst,
and no resonances ascribed to protons in the internal olefins were observed (additional 1H NMR spectra
are shown in the Supplementary Materials) [53]. The resultant polymers are highly soluble in toluene, THF,
chloroform, dichloromethane, etc., without any difficulties (as seen in poly(1,5 hexadiene) containing partial
cross-linking prepared by Cp2ZrCl2-MAO catalysts even under diluted conditions [54]). The results thus
suggest that the resultant polymers were poly(DC-co-DCD)s and poly(TD-co-TDD)s containing terminal
olefins in the side chain, as expected on the basis of our previous results [22,38].

4. Conclusions

We have shown that synthesis of ultrahigh molecular weight (UHMW) highly branched
(bottlebrush) polymers that contain terminal olefinic double bonds in the side chain with rather low
PDI (Mw/Mn) values has been attained by polymerization of long-chain (higher) α-olefins (1-decene
(DC), 1-dodecene (DD), and 1-tetradecene (TD)) in the presence of corresponding nonconjugated
dienes (1,9-decadiene (DCD), 1,11-dodecadiene (DDD), and 1,13-tetradecadiene (TDD), respectively),
using Cp*TiMe2(O-2,6-iPr2C6H3) (1)–[Ph3C][B(C6F5)4] (borate) as the catalyst, in the presence of
AliBu3/Al(n-C8H17)3. These polymerizations proceeded in a quasi-living manner in n-hexane at −30 to
−50 ◦C, and linear relationships between the Mn values and the polymer yields were observed in all
cases, without significant changes in the PDI (Mw/Mn) values. The resultant poly(DC-co-DCD) prepared
at −40 ◦C possessed UHMW (Mn = 1.40 × 106 after 45 min) with low PDI (Mw/Mn = 1.39), and UHMW
poly(TD-co-TDD) was also obtained in the TD/TDD copolymerization at −30 ◦C (Mn = 9.12 × 105,
Mw/Mn = 1.51, after 120 min). As described in the introduction, these polymers should possess highly
branched bottlebrush architectures, and the present results strongly suggest a possibility of introduction
of reactive functionality (terminal olefins) into the side chain (outside of the cylindrical structure).
Moreover, as described in the introductory, as well as reported previously [38], an introduction of
hydroxy group by treatment of the terminal olefinic double bonds with BBN and the subsequent
grafting (by living ring opening polymerization of ε-caprolactone) would be possible. One issue
we have not yet clarified clearly is the effect of diene monomers on the monomer reactivity ratio.
We thus believe that the results could demonstrate providing new materials (functionalized polyolefin
bottlebrush) based on polyolefins, and more details including further analysis and applications will be
introduced in the future.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/1/3/s1.
Figure S1: 1H NMR spectrum (in 1,1,2,2-tetrachloroethane-d2 at 25 ◦C) for poly(1-decene-co-1,9-decadiene)
(run 1, after 5 min, 1,9-decadiene 8.9 mol%), Figure S2: 1H NMR spectrum (in 1,1,2,2-tetrachloroethane-d2 at
25 ◦C) for poly(1-decene-co-1,9-decadiene) (run 2, after 10 min, 1,9-decadiene 9.1 mol%), Figure S3: 1H NMR
spectrum (in 1,1,2,2-tetrachloroethane-d2 at 25 ◦C) for poly(1-dodecene-co-1,11-dodecadiene) (run 4, after
30 min, 1,11-dodecadiene 7.7 mol%), Figure S4: 1H NMR spectrum (in 1,1,2,2-tetrachloroethane-d2 at 25 ◦C) for
poly(1-dodecene-co-1,11-dodecadiene) (run 5, after 120 min, 1,11-dodecadiene 7.5 mol%), Figure S5: 1H NMR
spectrum (in 1,1,2,2-tetrachloroethane-d2 at 25 ◦C) for poly(1-tetradecene-co-1,13-tetradecadiene) (run 6, after
30 min, 1,13-tetradecadiene 4.5 mol%), Figure S6: 1H NMR spectrum (in 1,1,2,2-tetrachloroethane-d2 at 25 ◦C) for
poly(1-tetradecene-co-1,13-tetradecadiene) (run 6, after 60 min, 1,13-tetradecadiene 3.7 mol%).
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