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Abstract: Novel core-shell graphitic carbon nitride/zinc phytate (g-C3N4/PAZn) flame retardant
was simple synthetized using two-dimensional g-C3N4 and bio-based PAZn by self-assembly and
incorporated into epoxy resin (EP) for improving the fire safety. The flame retardance and smoke
suppression were investigated by cone calorimetry. The results indicated that g-C3N4/PAZn-EP
displayed outstanding flame retardancy and smoke suppression, for example, the peak heat release
rate and peak smoke production rate decreased by 71.38% and 25%, respectively. Furthermore, the
flame retardancy mechanism was further explored by char residue and thermal stability analysis.
It can be predicted that g-C3N4/PAZn will provide valuable reference about bio-based flame retardant.
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1. Introduction

Epoxy resin (EP) is one of the most important resins because of its excellent moldability, corrosion
resistance, adhesion, mechanical and electrical properties [1,2]. It is widely used in communications,
automotive industry, semiconductor device, construction and other fields [3]. However, EP consists of
flammable hydrocarbon chains, resulting in thermal and toxic hazards to life health and environment
during combustion [4]. Therefore, it is urgent to develop a high-efficiency, environmentally friendly
flame retardant to reduce the fire risk and broaden the application of EP composites.

Recently, plenty of experiments indicate that two-dimensional nanosheets materials have an
advantage of effectively block the transmit of heat and smoke release due to their unique barrier effects,
such as layered double hydroxide [5], graphene oxide [6] and graphitic carbon nitride (g-C3N4) [7].
The nanosheets structure plays a role of a physical barrier with a forming tortuous path between each
layer, which can effectively prolong the conductivity path of heat and smoke release between the matrix
and external environment [8,9]. Among them, g-C3N4 could decompose into nitrogen-containing
non-flammable gas in fire, meanwhile it has low price, excellent thermal and chemical properties [10].
However, g-C3N4 is not enough to achieve the satisfactory effects when used alone as a flame retardant.
Therefore, it is particularly important to further enhance the flame retardancy by hybridizing the
g-C3N4 according to the principle of flame retardancy. Shi et al. found that g-C3N4 hybridized
with organic aluminum hypophosphite could reduce significantly heat and smoke release rate of
polystyrene, resulting in reducing the fire hazards [11]. Moreover, Shi et al. also reported that g-C3N4
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combined with sodium alginate could promote the formation of stable char layer and enhance thermal
stability and flame retardancy of composites [12].

Currently, bio-based flame retardant has received widespread attention due to the trend
of environmentally friendly society. Additionally, phosphorus–nitrogen flame retardant could
synergistically improve the flame retardancy [13]. Bio-based phytic acid (PA) composed by six
phosphate groups was chelated with metal ions easily and provided acid as well as carbon sources [14].
Phosphorus-containing compounds are thermally decomposed to PO·, which can block combustion
though quenching matrix combustion produce H· and HO·; on the other hand, phosphorus-containing
compounds can catalyze the dehydration and carbonization reaction containing O–H compounds [15].
Meanwhile, the metal ions can also catalyze the formation of a stable cross-linked char layer effectively,
preventing the release of smoke and further pyrolysis of polymers [16]. In fact, g-C3N4 and PAZn
containing N, P and Zn flame retardant elements could be an ideal combination improving the flame
retardancy of matrix.

Until now, there has been no research about g-C3N4/PAZn for improving flame retardant of
EP. In this paper, efficient novel core-shell g-C3N4/PAZn was simple synthesized by calcination
and chemical precipitation methods successfully and cured into EP to elevate the fire stately. The
corresponding flame retardancy mechanism was proposed through thermogravimetric and residue
char analysis. g-C3N4/PAZn will provide valuable reference about bio-based flame retardant and
expand the application range of EP.

2. Materials and Methods

2.1. Materials

Melamine (99.5%) and methanol (99.7%) were purchased from Tianjin Kemiou Chemical Reagent
Co. Ltd (Tianjin, China). PA (70.0%), Zinc nitrate hexahydrate (98.0%) and m-phenylenediamine (99.0%)
were provided by Shanghai Aladdin biological technology Co., Ltd (Shanghai, China). Non-solvent
EP-44 (SINOPEC, epoxide equivalent is 0.40–0.47) was obtained from Baling Petrochemical Corporation
Branch, China Petrochemical Co., Ltd (Yueyang, China).

2.2. Synthesis of g-C3N4/PAZn

g-C3N4/PAZn was synthesized by calcination and chemical precipitation methods. Firstly,
melamine was taken in a porcelain boat and heated to 600 ◦C for 4 h at a heating rate of 5 ◦C/min to
obtain light yellow g-C3N4 nanosheets. Then, 0.40 g of g-C3N4 nanosheets was dispersed in 60 mL
methanol after stirred and sonicated for 10 min at 80 ◦C. 2.86 g PA and 7.72 g zinc nitrate hexahydrate
were incorporated into 60 mL methanol and added dropwise into above solution, respectively. White
precipitate g-C3N4/PAZn was generated after being stirred for 4 h at 80 ◦C. Finally, g-C3N4/PAZn was
collected by washed with deionized water for three times and dried at 80 ◦C for 12 h. The formation
mechanism of g-C3N4/PAZn is shown in Scheme 1. The NH2 functional group in g-C3N4 can react
with OH in PA, PA can chelate Zn2+ to obtain g-C3N4/PAZn.

2.3. Preparation of EP Composites

EP composites were prepared according to a typical preparation method. 5 phr of synthetic
flame retardants (g-C3N4, g-C3N4/PAZn) were added to pure EP slowly and stirred for 40 min at
60 ◦C. Generally speaking, the required mass of m-phenylenediamine = (relative molecular mass of
m-phenylenediamine/number of active hydrogen) × epoxide equivalent. 11 phr m-phenylenediamine
was added into EP composites and stirred for 20 min. Finally, EP composites was poured into the
Teflon mold as fast as possible following curing under 80 ◦C for 2 h and 150 ◦C for 3.5 h to obtain
g-C3N4-EP and g-C3N4/PAZn-EP, respectively. The composition of EP composites is shown in Table 1.
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Scheme 1. The formation mechanism of g-C3N4/PAZn.

Table 1. The composition of epoxy resin (EP) composites.

Sample EP
(phr)

m-Phenylenediamine
(phr) g-C3N4 (phr) g-C3N4/PAZn

(phr)

Pure EP 100 11 0 0
g-C3N4-EP 100 11 5 0

g-C3N4/PAZn-EP 100 11 0 5

2.4. Characterization

The morphology of samples was analyzed by scanning electron microscope (SEM, JSM-7500F,
JEOL, Tokyo, Japan) and transmission electron microscope (TEM, G2 F20, S-TWIN, Hillsboro, OR, USA).
The crystal structure was determined by X-ray diffraction (XRD, D8-ADVANCE, Bruker, Karlsruhe,
Germany) with the scanning from 10 to 90◦ at the speed of 10◦/min. The functional groups were
investigated by Fourier transform infrared spectra (FTIR, TENSOR 27, Bruker, Germany) spectra
with the scanning wavelength range from 4000 to 400 cm−1. Thermostability of samples were carried
out using thermogravimetric analysis (TGA, STA449C, Netzsch, Germany) from 50 to 800 ◦C at a
heating rate of 10 ◦C/min. The limiting oxygen index (LOI) of samples was measured according to
ASTM D2863 standard by general model JF-3 limiting oxygen index (Jiangning Analytical Instrument
Company, Nanjing, China). The combustion behavior of composites was tested by cone calorimeter
test (CCT, iCONE plus, Fire Testing Technology, West Sussex, UK) according to the ISO5660-1 standard
under the instrument radiant power of 50 kW/m2. The structure of char residue was obtained by
Raman spectrometer (Raman, XploRA Via-Reflex, HORIBA Jobin-Yvon Ltd, Paris, France) with an
excitation wavelength of 514 nm. The tensile strength was performed by UTM4204 electronic universal
testing machine (SUNS, Shenzhen, China), carrying out speed at 50 mm/min and scale distance was
25 mm. The impact test was tested by ZBC2000-B pendulum impact tester (the Winters Industrial
Systems Co. Ltd., Shanghai, China), according to the ISO 180:2000. Differential scanning calorimetry
(DSC) was performed by the Perkin Elmer Diamond DSC and the heating rate was 10 ◦C/min under
N2 atmosphere.
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3. Results and Discussion

3.1. Characterization of g-C3N4/PAZn

The XRD and FTIR were analyzed to determine the crystal structures and surface functional
groups of materials. As shown in Figure 1a, two characteristic diffraction peaks located at 13.1◦ and
27.6◦ reflected the successful preparation of g-C3N4 [17]. The curve of g-C3N4/PAZn was similar
to that of g-C3N4, while a small peak at 17◦ was ascribed to phytic acid. It′s worth noting that
g-C3N4/PAZn appeared a lower and broader diffraction peak about 30◦, demonstrating that the
formation of amorphous PAZn [18]. The change of surface functional groups could further confirm the
synthesis of g-C3N4/PAZn. As shown in Figure 1b, the broad absorption bands at 3470 and 3330 cm−1

were assigned to the stretching vibration of N–H and the absorption peak at 800 cm−1 were ascribed
to triazine ring [19]. In comparison, these peaks seem to be disappeared, indicating the formation of
–NH3

+O and some new absorption peaks appeared in g-C3N4/PAZn [14]. The absorption peaks at
1404, 1253 and 1146 cm−1 were associated to the stretching vibration of C–O, P=O and P–O bonds,
respectively [20]. Moreover, the characteristic bands of Zn salt were detected at 550 cm−1 [21]. This
result could be verified by SEM and TEM analysis.
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The morphology of g-C3N4 and g-C3N4/PAZn was characterized by SEM and TEM, as depicted in
Figure 2. g-C3N4 is two-dimensional nanosheets structure, containing C and N elements. Compared
with g-C3N4, the surface of g-C3N4/PAZn has an obvious coating layer, containing C, N, O, P and Zn
elements, which is further confirmed that g-C3N4 was successfully coated by PAZn.

The thermal degradation behavior was related to flame retardancy and estimated by TGA and
shown in Figure 3. g-C3N4 underwent a one-stage decomposition attributing to the decomposition of
macromolecular chain and the char residues is only 1.22%. T5% is defined as the initial decomposition
temperature (which is the temperature corresponding weight loss of 5%). T5% of g-C3N4 occurred at
650.8 ◦C, indicating that it has high thermal stability and play an effect in physical isolation. Comparing
with pure g-C3N4, T5% of g-C3N4/PAZn was obviously ahead and the char residues of g-C3N4/PAZn
was improved to 43.42%. g-C3N4/PAZn underwent a two-stage decomposition, the first decomposition
step between 250 and 350 ◦C, mainly because the phosphonate group was dehydrated and condensed
into polyphosphoric compounds [22]. In the second decomposition step at between 550 and 650 ◦C it
corresponds to the further degradation of polyphosphoric compounds into phosphorus-containing
oxides and the degradation of g-C3N4 [23].
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3.2. Fire and Smoke Hazards of EP Composites

The LOI is an effectively measure for evaluating the flame retardancy of EP composites, and
the number of samples is 6. As shown in Figure 4, the LOI value of pure EP was 24.5%, indicating
that pure EP is flammability. Obviously, the addition of flame retardant can improve the flame
retardancy of EP composites effectively. The LOI value for g-C3N4-EP increased to 27.4% from 24.5%
and g-C3N4/PAZn-EP further moved up to 28.3%, showing that g-C3N4/PAZn can reduce fire hazards
and expand the application of EP [24].
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CCT can provide relevant information about the flame retardancy and smoke suppression
properties of EP composites in real fire situation. The heat release rate (HRR) and total heat release
(THR) are an important index for assessing the fire hazards, as shown in Figure 5a,b and Table 2. HRR
curves show that: There were two obvious peaks in EP, the first peak corresponds to the decomposition
of EP chain; the second peak corresponds to the further decomposition of char [25]. The peak heat
release rate (PHRR) values of g-C3N4-EP and g-C3N4/PAZn-EP decreased from 1458.14 kW/m2 (pure
EP) to 906.28 and 417.26 kW/m2, which were 37.85% and 71.38% lower than pure EP, respectively.
The THR of g-C3N4-EP and g-C3N4/PAZn-EP were 101.25 and 46.15 MJ/m2, which were 7.78% and
58.0% lower than pure EP (109.79 MJ/m2), respectively. Meanwhile, the residual char amount (R-mass)
was improved obviously to 7.60% (g-C3N4-EP) and 12.90% (g-C3N4/PAZn-EP) compared with that
of pure EP (4.58%). In addition, the time of ignition (TTI) and fire growth index (FGI) are important
factors for estimating flame retardancy, prolonger TTI and lower FGI means higher fire safety. With
the addition of g-C3N4/PAZn, lower HRR, THR, FGI and higher TTI, R-mass attesting that the flame
retardancy of g-C3N4/PAZn-EP was improved [26]. This is due to the barrier and labyrinth effects of
g-C3N4 nanosheets, which can limit heat transfer [27]. Furthermore, phosphorous and Zn2+ exhibited
catalytic charring behavior to form a stable dense char layer and protect the matrix in the combustion
process [28].

The smoke generation regards an important factor to human survival in fire. As shown in
Figure 5c,d and Table 2, the smoke production rate (SPR) and peak smoke production rate (PSPR) of
g-C3N4-EP were lower than that of pure EP, however the total smoke production (TSP) was higher
than that of pure EP, which is probably due to the barrier and labyrinth effect of g-C3N4 nanosheets,
meanwhile it can release containing nitrogen noncombustible gases at high temperature [29]. It is
worth noting that the decomposition of g-C3N4/PAZn-EP was earlier than pure EP, showing PAZn exist
excellent catalytic carbonization property at the early stage [30]. Furthermore, the barrier performance
of char layer is beneficial to inhibit smoke and toxic gases, the TSP of g-C3N4/PAZn-EP was lower than
g-C3N4-EP. Besides, the effective heat of combustion (EHC) indicates the level of burning of flammable
gases in fire and lower EHC means lower combustible degree of gas [31]. The EHC decreased from
24.88 (pure EP) to 11.39 MJ kg−1 (g-C3N4/PAZn-EP), indicating the lower risk of fire hazard.

Table 2. Combustion index obtained from a cone calorimeter test (CCT).

Sample TTI (s) PHRR
(kW/m2)

THR
(MJ/m2)

FGI
(kW/m2 s)

PSPR
(m2/s)

TSP
(m2)

EHC
(MJ/kg)

R-Mass
(%)

Pure EP 60 1458.14 109.79 11.22 0.48 35.19 24.88 4.58
g-C3N4-EP 61 906.28 101.25 6.71 0.34 37.85 20.91 7.60

g-C3N4/PAZn-EP 63 417.26 46.15 3.48 0.36 35.09 11.39 12.90
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3.3. Research on Flame-Retardant Mechanism

3.3.1. Thermal Stability Analysis of EP Composites

The thermal stability of EP composites under N2 is vital to assess flame retardant mechanism.
TGA and derivative thermogravimetry analysis (DTG) curve and related data are shown in Figure 6
and Table 3, pure EP had one main degradation stage attributing to the decomposition of the C=C bond,
and the maximum weight loss rate (Vmax) reached to 15.87%/min at 371.7 ◦C. The degradation stage of
g-C3N4-EP and g-C3N4/PAZn-EP are similar to pure EP, while they have the lower Vmax than that of pure
EP. This is due to the barrier effect of g-C3N4. It is worth noting that g-C3N4-EP and g-C3N4/PAZn-EP
have another degradation stage around at 600 ◦C, corresponds to the degradation of g-C3N4 [32].
Compared to pure EP and g-C3N4-EP, g-C3N4/PAZn-EP has the lowest T5%, the temperature of
maximum decomposition (Tmax), Vmax and highest R-mass. The results demonstrated that PAZn can
catalyze the degradation and carbonization of EP form stable char layer at the early stage, which could
protect the matrix to degrade and prevent the transfer of oxygen, combustible gas and external heat
thus improving the thermal stability of EP [33].Polymers 2020, 12, x FOR PEER REVIEW 8 of 13 
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Table 3. TGA and DTG data of EP composites.

Samples T5% (◦C) Tmax (◦C) Vmax (%/min) R-Mass (%)

Pure EP 356.3 371.7 15.87 17.99
g-C3N4-EP 356.3 371.7 13.85 18.83

g-C3N4/PAZn-EP 346.7 361.2 11.99 23.21

3.3.2. Char Residue Analysis

To further explore the flame retardancy mechanism, the char residues were examined by digital
photograph and SEM. As shown in Figure 7a–c, high quality and integrity char layer could effectively
prevent transmit of heat and smoke [34]. The results showed that the char of pure EP had a loose
and fragmentary structure with many holes and cracks on surface because of the rapid volatilization
during intense combustion. With the addition of g-C3N4, the quality of char residue improved slightly
with many holes, which was attributed to the pyrolytic decomposition of g-C3N4. g-C3N4/PAZn-EP
displayed a continuous and density char, indicated that it had good catalytic performance for char
residues, which could provide a barrier to protect matrix, exhibiting excellent flame retardant and
smoke suppression behavior [35]. The results are consistent with the CCT results. In addition, the
char residues of EP composites were further analyzed by Raman spectra (Figure 7a′–c′). The Raman
spectra exhibited two protruding peaks at 1350 and 1581 cm−1, which are defined to the D band and
G band of graphite, respectively. Generally, the area ratio (ID/IG) of D to G band can be judged the
graphitization degree of the char residue [36]. The value of ID/IG of pure EP was 2.70, whereas the
values for g-C3N4-EP and g-C3N4/PAZn-EP were 3.20 and 3.39, respectively. The higher ID/IG value
indicates that the more lattice defects and the smaller size of char residues microstructures, which can
protect the EP during combustion effectively [14].Polymers 2020, 12, x FOR PEER REVIEW 9 of 13 
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3.4. Mechanical Property

From the research of LOI and CCT, it was known that flame retardancy was enhanced greatly by
adding flame retardant. However, the mechanical property was a vital factor that must be considered
in practical application. To research the mechanical property influence of flame retardant, the tensile
and impact tests of EP composites were shown in Table 4. The tensile strength, elongation at break and
impact strength of pure EP were 57.70 MPa, 14.67% and 50.83 kJ/m2, respectively. Due to g-C3N4 and
g-C3N4/PAZn are additive flame retardant, had poor adhesion strength with EP, the tensile strength,
elongation at break and impact strength of g-C3N4-EP and g-C3N4/PAZn-EP are reduced to some
extent. With the addition of g-C3N4/PAZn, the tensile strength, elongation at break and impact strength
of g-C3N4/PAZn-EP are 35.11 MPa, 6.49% and 26.04 kJ/m2, which indicates that g-C3N4/PAZn can
cause stress concentration and block the molecular chains movement [37]. However, it still has a
certain intensity. In comparison, g-C3N4 was added to EP, the corresponding values did not reduce
significantly, this is because of amino groups on the surface of g-C3N4 participate in the reaction in
EP curing process [38]. The glass-transition temperature (Tg) was related to the mechanical property
of EP composites and tested by DSC, as shown in Figure 8. The Tg of pure EP was 152.3 ◦C, and Tg

value decreased with the addition of flame retardants, indicating that flame retardants can affect the
micro-Brownian motion of EP molecular chains. The separate Tg of all the composites confirmed that
the composites were a homogeneous phase. The Tg of g-C3N4-EP (151.7 ◦C) was higher than that of
g-C3N4/PAZn-EP (149.4 ◦C), which ascribed to the strong interfacial interaction and the enhanced
crosslink density both from the reaction between amino groups (g-C3N4) and EP [39].

Table 4. Mechanical properties of EP composites.

Samples Tensile Strength (MPa) Elongation at Break (%) Impact Strength (kJ/m2)

Pure EP 57.70 ± 0.84 14.67 ± 0.57 50.83 ± 1.21
g-C3N4-EP 51.59 ± 0.67 13.17 ± 0.51 35.619 ± 0.87

g-C3N4/PAZn-EP 35.11 ± 0.54 6.49 ± 0.25 26.04 ± 0.46Polymers 2020, 12, x FOR PEER REVIEW 10 of 13 
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4. Conclusions

In this paper, an efficient novel flame retardant core-shell g-C3N4/PAZn was successfully
synthesized by simple calcination and chemical precipitation method. The CCT results proved
that g-C3N4/PAZn displays outstanding flame retardancy and smoke suppression properties, the
values of PHRR and PSPR decreased by 71.38% and 25%, respectively. On one hand, g-C3N4 play
physical barrier role to protect heat and smoke form spreading, meanwhile it releases non-combustible



Polymers 2020, 12, 212 10 of 12

gases for reducing the concentration of oxygen and combustible gases. On the other hand, PAZn can
catalyze the degradation and carbonization of EP form stable char layer, which promotes the formation
of dense char layer to protect EP during combustion effectively.
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